Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм парафинов на катализаторе

    Лабораторная установка для получения кислот. Лабораторные установки предназначались для изучения основных условий, наблюдаемых в процессе непрерывного окисления жидких парафиновых углеводородов, а также кинетики реакции и механизма действия катализаторов. Схема установки для окисления жидких парафинов приведена на рис. 8. [c.34]


    Для хлорирования газообразных прп нормальных условиях парафиновых углеводородов наибольшее значение имеет термический способ. Термическое хлорирование протекает в отсутствие воздуха и катализатора. Реакция эта протекает также по цепному механизму, она сильно тормозится кислородом и другими соединениями, способными обрывать течение реакционных цепей, например окислами азота. [c.113]

    Дегидроциклизация до ароматических углеводородов. Превращение парафиновых углеводородов в ароматические является одной из наиболее важных и интересных реакций каталитического риформинга. Эта реакция известна менее двадцати лет [15, 29, 36], но и за этот период проделана огромная работа по улучшению катализаторов реакции и изучению ее механизма. [c.166]

    При осуществлении изомеризации парафиновых углеводородов на промышленных алюмоплатиновых катализаторах, промотированных фтором и хлором, металлцеолитных катализаторах, а также сверхкислотах, особенности кинетики и механизма реакции обусловлены механизмом образования промежуточных соединений. [c.14]

    Что касается самого факта торможения реакции изомеризации и-пен-тана водородом, то в соответствии с установившимся в настоящее время взглядом на механизм реакции изомеризации н-парафиновых углеводородов на бифункциональных катализаторах, реакция протекает через стадию дегидрирования парафинового углеводорода с образованием оле-финового углеводорода. Следуя этой схеме, торможение реакции водородом можно объяснить снижением концентрации олефина вследствие гидрирования его в парафиновый углеводород, а также явлениями адсорбционного вытеснения пентана водородом с поверхности катализатора. [c.23]

    О механизме реакции диспропорционирования парафиновых углеводородов существуют различные точки зрения для алюмоплатиновых катализаторов, модифицированных хлором, предполагают следующее протекание реакций [45]  [c.30]

    Несмотря на различный механизм превращения парафиновых углеводородов на всех рассмотренных катализаторах, для них наблюдается общность кинетических закономерностей и торможение реакции изомеризации парафиновых углеводородов избытком водорода. Для всех катализаторов зависимость скорости реакции от парциального давления водорода носит экстремальный характер после достижения определенной концентрации водорода на поверхности катализатора. Величина и положение максимума зависят от типа катализатора, температуры и молекулярной массы парафинового углеводорода. [c.35]


    В зависимости от природы носителя и способа его приготовления различается механизм действия и активность катализатора в реакции изомеризации парафиновых углеводородов. Алюмоплатиновые катализаторы, промотированные фтором, позволяют осуществлять процесс при 360-420 °С и называются высокотемпературными металлцеолитные, на которых процесс идет при 260-400 °С, в зависимости от типа применяемого цеолита, называются среднетемпературными на алюмоплатиновых катализаторах, промотированных хлором, температура процесса изомеризации составляет 100-200 °С, такие катализаторы принято называть низкотемпературными. [c.43]

    Несколько отличный механизм отравляющего действия сероводорода можно предположить на хлорированных алюмоплатиновых катализаторах низкотемпературной изомеризации. Известно, что хлорированный 17-оксид алюминия способен изомеризовать парафиновые углеводороды с высокой начальной активностью даже при отсутствии платины [91, 101]. Диссоциативная адсорбция сероводорода донорно-акцепторными центрами хлорированного оксида алюминия должна снижать кислотность поверхности катализатора. Подобный характер взаимодействия Н2 5 с поверхностью прокаленного оксида алюминия отмечался в литературе [102]. Непрочность подобной связи обуславливает возможность восстановления активности катализаторов низкотемпературной изомери- [c.88]

    При разработке процесса гидроизомеризации парафиновых углеводородов и исследовании катализаторов для этого процесса используются индивидуальные углеводороды или их модельные смеси. В особенности это касается исследований кинетики и механизма превращений парафиновых углеводородов. Для исследования реакций изомеризации использовались додекан, тетрадекан, гидрокрекинга - 2,2,4-триметилпентан, гидрирования - бензол. [c.116]

    На второй ступени характер превращений дизельной фракции несколько меняется. Гидрирование ароматических соединений протекает практически с такой же глубиной и составляет 26%. Наибольшую конверсию претерпевают линейные парафиновые углеводороды - глубина ее составляет 76%. Реакция изомеризации является преобладающей. В продуктах расщепления большая доля принадлежит изопарафиновым угле водородам, что указывает на протекание реакции гидрокрекинга. Отсутствие в продуктах распада углеводородов С1—Сг и преобладание С3—С4 предполагает протекание реакций на катализаторе ГИ-13 по карбкатион-ному механизму. [c.127]

    Изомеризация парафиновых углеводородов сопровождается побочными реакциями крекинга и диспропорционирования для подавления этих реакций и поддержания активности катализатора на постоянном уровне процесс проводится при давлениях водорода 2,0—4,0 МПа и циркуляции водородсодержащего газа. Кинетика и механизм реакции зависят от типа катализатора й условий проведения реакции. [c.178]

    Как было показано с помощью меченых атомов, над окисно-хро-мовым катализатором, механизм этой реакции заключается в том, что парафиновый углеводород с числом углеродных атомов не менее шести постепенно дегидрируется до триена. Триен замыкается в циклогексадиеновый углеводород, а последний дегидрируется до соответствующего ароматического углеводорода  [c.242]

    Парафиновые углеводороды, содержащиеся в нефтяном сырье, превращаются на катализаторах с высокой кислотной активностью по карбоний-ионному механизму преимущественно с разрывом в средней части молекулы с наименьшей энергией связи С—С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование парафинов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбоний-ионы и инициируют цепной карбоний-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы алканов. Изопарафины с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем нормальные ал-каны. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотермичен, при гидрокрекинге почти не образуются метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализаторах с высокой кислотностью. [c.241]

    Низкотемпературный механизм образования продуктов уплотнения из гомологов метана. Поликонденсация олефинов. Влияние природы катализатора на ход процесса образования продуктов уплотнения и других веществ из парафиновых углеводородов может быть весьма значительным. [c.181]

    С 1939 г. появляется ряд теоретических работ по сульфохло-рированию газообразных парафиновых углеводородов, а также н-додекана, в которых изучаются строение получающихся веществ и условия образования побочных продуктов изучается сульфохлорирование циклогексана, метилциклогексана, алкилбензолов и бензола посредством хлористого сульфурила в присутствии катализаторов и при облучении. В этих работах уделяется внимание также механизму реакции. Доказывается возможность приложения реакции сульфохлорирования к непредельным углеводородам, полимерам этиленовых углеводородов, хлорированным углеводородам, жирным кислотам, спиртам, кетонам и сернистым соединениям. Сульфохлорирование такого рода соединений рассмотрено в статье А. Я. Якубовича и Ю. Ж. Зиновьева [c.212]


    Химизм этого процесса очень сложен и, вероятно, для каждого вида сырья индивидуален. В целом же в присутствии указанного катализатора по карбоний-ионному механизму происходят расщепление (крекинг) парафиновых и олефиновых углеводородов, деалкилирование цикланов (с отрывом или крекингом алкильных групп) и целый ряд вторичных превращений фрагментов перечисленных первичных реакций (изомеризация, перенос водорода, диспропорционирование олефинов, конденсация ароматических колец и др.). В результате этих реакций в условиях дефицита водорода (водород извне не подводится) и вывода из процесса некоторого количества углерода (в виде кокса на катализаторе) получаются продукты, химический состав которых придает им ценные товарные свойства. [c.447]

    Превращение циклопарафиновых углеводородов на поверхности катализатора, как и парафиновых углеводородов, происходит по цепному карбкатионному механизму, хотя возможны и неценные реакции. [c.761]

    При риформинге парафиновые углеводороды подвергаются дегидрированию, изомеризации, дегидроциклизации и гидрокрекингу. Механизм дегидрирования парафиновых углеводородов на гетерогенных катализаторах уже достаточно подробно обсуждался ранее. Поэтому коснемся только рассмотрения реакций изомеризации, дегидроциклизации и гидрокрекинга на бифункциональном катализаторе. [c.775]

    Таким образом, механизм гидрокрекинга включает как элементы механизма риформинга парафиновых углеводородов на бифункциональных катализаторах, так и элементы механизм каталитического крекинга парафинов.  [c.820]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]

    Механизм изомеризации на бифункциональных катализаторах. Рассматривая механизм реакции изомеризации парафиновых углеводородов на бифункциональных катализаторах, содержащих металлы VIII группы, можно предположить три типичных случая, в зависимости от кислотности носителя [18]  [c.15]

    Для случая металлцеолитных катализаторов не существует однозначной точки зрения на механизм реакции изомеризации парафиновых углеводородов ряд авторов высказывается в пользу бифункционального механизма [23], для морденитсодержащего катализатора существует предположение о чисто кислотном механизме [24], в работах [25, 26] [c.16]

    В интервале температур до 750"С скорость нерпо11 стадии выше скорости второй. Отсутствие водорода в углеродистых отложениях также говорит в пользу их образования по механизму карбидного цикла. На катализаторах, содержащих оксиды металлов, склонностью к переходу в кокс обладают главным образом ненасыщенные, преимущественно дненовые углеводороды, и в гораздо меньшей степени — насыщенные парафиновые углеводороды [3.19]. Чем выше энергия связи углерода углеводородных молекул с металлом, тем интенсивнее должно быть коксообразование. [c.64]

    Прямогонные нефтяные фракции характеризуются преобладанием парафиновых углеводородов, гидрокрекинг которых ведет главным образом к образованию более легких парафиновых углеводородов. Соотношение парафиновых углеводородов изо- и нормального строения в продуктах реакции, получаемых на промышленных катализаторах гидрокрекинга, значительно превышает равновесное. Этот факт объясняется, по-вндимому, особенностями механизма реакций гидрокрекинга парафиновых углеводородов. Реакции расщепления нормальных парафиновых углеводородов на промышленных кислотных катализаторах гидрокрекинга носят ионный характер, предполагающий начальное образование вторичного иона карбония. Вторичный ион карбония легко изомеризуется в более стабильный третичный, который крекируется по р-связн С—С по отношению к карбионноыу атому углерода, образуя олефин и новый третичный ион карбония. Образующийся олефин, в свою очередь, изомеризуется до изоолефина, который тотчас же насыщается водородом и уже не может вступать в дальнейшие обратные реакции изомеризации в сторону достижения равновесия. [c.135]

    Каталитическая дегидроциклизация парафиновых углеводородов осуществляется в присутствии эффективного катализатора. Установлено, что дегидроциклизация на алюмохромовом катализаторе в значительной степени зависит от давления при низких давлениях степень превращения сырья повышается. На алюмомолиб-деновых катализаторах глубина превращения при высоких и низких давлениях примерно одинакова. В присутствии платинового катализатора возможны два механизма дегидроциклизации непосредственное образование ароматических углеводородов из парафиновых образование шестичленных нафтенов с их последующей [c.132]

    Использование катализаторов [136], способных ускорять ионные реакции, приводит к новым превращениям углеводородов, например к образованию углеводородов С4 и С5 из гексана без выделения осколков С] и С2. Механизм этих реакций пока не установлен, но при его устаиовлении ценный изобутан можно будет получать из сырья меньщей молекулярной массы. Как правило, при гидрокрекинге циклического сырья образуются циклические продукты, а из парафинового сырья — парафинистые продукты. Таким образом, характеристика продуктов гидрокрекинга в значительной мере зависит от вида сырья. Обычно неконденсированные полициклические ароматические соединения дают гораздо более низкие выходы угле водородов ряда бензола, чем конденсированные соединения. [c.212]

    По данным многих исследований реакционная способность углеводородов в реакциях расщепления С—С-связи на алюмосиликатных катализаторах меняется в такой последовательности алифатические и циклоолефиновые>ароматические с числом атомов углерода в алкильной группе более 3>нафтеновые и ызо-па-рафиновые > нафтено-ароматические > м-парафиновые >> поли-метилбензолы моноалкилбензолы с числом атомов углерода 8 и менее> ариловые кольца. Этот ряд качественно совпадает с ожидаемым, исходя из основных положений карбокатионного механизма, и является одним из доказательств обоснованности его применения для каталитического крекинга углеводородного сырья на алюмосиликатных катализаторах. [c.86]

    Наряду с перечисленными реакциями, приводящими к накоплению ароматических углеводородов, под влиянием алюмопла-тинового катализатора и в атмосфере водорода большое развитие получают гидрокрекинг и изомеризация парафиновых углеводородов, а также гидрирование остаточных сернистых соединений. Механизм гидрокрекинга и гидрообессеривания будет рассмотрен в 54. Обе реакции полезны, так как приводят к облегчению фракционного состава и разрушению агрессивных сернистых соединений. В условиях риформинга на алюмоплатиновом катализаторе изомеризация алканов нормального строения в разветвленные происходит в основном только для низкомолекулярных углеводородов С4—С5. [c.245]

    Но он, однако, считает возможной и плоскостную ориентацию молекул циклогексана на активных центрах катализатора, что совпадает с утверждением А. Ф. Платэ [30], допускающим, что на платине из парафиновых углеводородных цепей образуются ароматические шестичленные циклы через секстетный механизм. Молекула парафина сперва адсорбируется на секстете, но дальнейшие превращения протекают по дуплетному механизму. [c.274]

    Реакция окисления парафиновых углеводородов протекаег по радикальному механизму. Вначале под действием тепла или катализатора образуется свободный радикал, который взаимодействует с кислородом и образует перекисный радикал  [c.91]

    Большой объем теоретических работ был посвящен изучению механизма превращения парафиновых углеводородов в ароматические. При выяснении механизма этой реакции необходимо было учитывать накопленные экспериментальные данные. Парафиновые углеводороды ароматизируются в значительно меньшей стенени, чем соответствующие олефины, которые в свою очередь труднее поддаются ароматизации, чем соответствующие шестичленные нафтены наиболее легко протекает ароматизация соответствующих цпклоолефинов. Кроме того, в пределах каждого гомологического ряда легкость ароматизации возрастает с увеличением числа углеродных атомов в молекуле. Разветвление цепей оказывает неодинаковое влияние, т. е. может как затруднять, так и облегчать протекание ароматизации. При попытках ароматизировать олефиновые углеводороды сильное влияние на глубину превращения оказывает положение двойной связи. Эти экспериментальные данные были получены [29 1 в опытах с применением окиснохромового катализатора нри 455°, атмосферном давлении и весовой скорости около 0,22 час - Фактические результаты этих опытов приведены в табл. 4. Приводимые в табл. 4 цифры отражают фактическое образование ароматическ11Х углеводородов, но не характеризуют типа ароматических углеводородов, получаемых из индивидуальных исходных углеводородов по-видимому, из одного и того же сырья могут образоваться многочисленные углеводороды. [c.207]

    Этот вопрос был дополнительно изучен в последующих работах [271, которые показали, что выход и строение образующихся ароматических углеводородов зависят от строения исходного парафинового углеводорода. Согласно первоначальным тебриям механизма циклизации предполагалось, что образование олефина с концевой двойной связью, соединенного с поверхностью катализатора по мёсту двойной связи, сопровождается замыканием кольца и последующим дегидрированием, ведущим к ароматическому углеводороду. На протяженнп всей последовательной цепи реакций промежуточные соединения остаются связанными с поверхностью катализатора. Это иллюстрируется схемой, предложенной Туиггом 137]  [c.208]

    Эта реакция нромотируется обеими функциями катализаторов риформинга, т. е. гидрирующей и кислотной. Это означает, что в данном случае применим ионный механизм, предложенный для реакций крекинга [17, 36] но здесь крекинг сопровождается мгновенным насыщением осколков, ведущим к образованию парафиновых углеводородов. Следовательно, при реакциях гидрокрекинга может и фактически протекает скелетная перегруппировка. Например, было показано [24], что в качестве основных продуктов гидрокрекинга к-гептана образуются пропан и изобутан наряду с меньшими количествами других продуктов и, разумеется, сравнительно глубокой изомеризацией исходного к-гептана. Работы по изучению изомеризации различных парафиновых углеводородов на никель-алюмосиликатном катализаторе [И ] обнаружили высокую степень превращения в ппзкокипящие парафиновые углеводороды наряду с изомеризацией в изомеры разветвленного строения. Например, к-октап при 380°, давлении 25 ат, объемной скорости (по жидкому сырью) 1 час и молярном отношении водород углеводород 4 1 почти полностью превращается в продукт, состоящий главным образом из пропана, изо- и к-пентана и смешанных бутанов. При более низкой температуре наблюдается ослабление реакции крекинга и более глубокая изомеризация в изомерные октаны. Следует отметить, что состав и метод приготовления катализатора оказывают, сильное влияние на протекание реакции гидрокрекинга этим путем можно достигнуть образования более крупных осколков. Если гидрирующая активность катализатора значительно преобладает над его кислотной активностью, то протекает реакция деметилирования, которая представляет особый случай гидрокре- [c.210]

    Таким образом, на основании прямого исследования кинетики образования продуктов уплотнения и других веществ при превращениях парафиновых углеводородов можно отметить различия в поведении метана и его гомологов, а также этана и крекирующихся углеводородов. Различия сводятся к тому, что образование продуктов уплотнения из метана происходит по одному механизму, а из его гомологов — по двум. Эти различия в поведении этана и других гомологов с большим числом атомов углерода сводятся к тому, что промежуточный олефин из этана может получаться только в результате его дегидрогенизации (5), которая в отсутствие специфического для этого процесса катализатора протекает с трудом, а из крекирующихся углеводородов он получается в результате крекинга (6), протекающего легко при температуре 500—600° С. [c.171]

    Для других парафиновых углеводородов природа катализатора также сильно влияет на ход образования продуктов уплотнения и других веществ, причем это влияние здесь более разнообразно, чем при превращении метана, так как оно сводится не только к изменению условий частичного распада продуктов уплотнения (дегидрогенизация, деметанирование, отщепление различных других групп и фрагментов), но и к изменению условий образования промежуточных мономеров поликонденсации. Например, при введении металлических катализаторов, активных для дегидрогенизации, или введении специфических катализаторов крекинга облегчается образование промежуточных олефинов. Следовательно, будет облегчаться и получение продуктов уплотнения по низкотемпературному механизму. Введение специфических катализаторов ароматизации будет способствовать образованию продуктов уплотнения по высокотемпературному механизму. Кроме того, при поликонденсации олефинов и ароматических углеводородов природа катализатора может влиять и на структуру самого процесса поликонденсации, изменяя его элементарные стадии, а это может повлиять на состав и строение получающихся продуктов уплотнения. [c.183]

    В стадии распада полимолекулярного комплекса от продуктов уплотнения олефинов возможно отщепление парафиновых углеводородов с большим или меньшим числом атомов углерода, олефинов, являющихся изомерными исходными, или с другим числом атомов углерода, а также диенов, триенов и ароматических углеводородов. Следовательно, многие вещества, рассматриваемые обычно как продукты изомеризации, крекинга и ароматизации исходных олефинов и парафинов, можно рассматривать как продукты полимолекулярных превращений исходных углеводородов. Например, в работах [24, 461 показано, что процесс ароматизации н-гексана на алюмохромовом и алюмохромкалиевом катализаторах при температуре 500—550° С протекает по полимолекулярному механизму, причем сначала получается гексен по реакции (5), а затем происходит поликонденсация гексена с образованием бензола и других веществ  [c.196]

    При рассмотрении механизма изомеризации парафиновых ут леводородов на бифункциональных катализаторах, содержащих металлы VIII группы, в зависимости от кислотности носителя предлагаются три схемы  [c.784]

    Катализаторы гидрокрекинга проявляют бифункциональные свойства, т. е. окислительно-восстановительные (гидрирующие -дегидрирующие) и кислотно-основные свойства. Парафиновые углеводороды на металлических центрах подвергаются дегидрированию в олефины, а на кислотных центрах олефины образуют высокореакциониоспособиые карбкатионы, которые ва поверхности катализатора вступают в мономолекулярные реакции изомеризации и деструкции с образованием олефинов и карбкатионов с меньшей молекулярной массой. Карбкатионы также вступают в бимолекулярные реакции с субстратом с образованием продуктов реакции и новых частиц карбкатионной природы, т. е. реализуется цепной катионный механизм. [c.819]


Смотреть страницы где упоминается термин Механизм парафинов на катализаторе: [c.140]    [c.143]    [c.122]    [c.129]    [c.307]    [c.195]    [c.208]    [c.209]    [c.210]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы механизм

Механизмы парафинов



© 2025 chem21.info Реклама на сайте