Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время жизни и время релаксации

    Член 2т]Ро/ . обусловленный изменением геометрических размеров образца, не вносит вклада в пьезоэффект в керамических электретах, где модули упругости весьма высоки. Однако в полимерных электретах модули не так высоки, и пьезоэффект определяется [6, 7] именно членом 2r)Po/S- В работе [10] показано, что для электретов из таких полимеров, как полиамид-12 и ПК, опытное значение d-ц хорошо соответствует расчетным по (167). По порядку величины соответствует расчетному значению пьезомодуль в ПВХ. Пьезоэффект сохраняется до тех пор, пока сохраняется остаточная поляризация, поэтому время жизни — время релаксации пьезоэффекта — соответствует времени релаксации поляризации. [c.116]


    Время жизни т флуоресцирующей молекулы в возбужденном состоянии находится в интервале Ю — 10" сек. Следовательно, любой релаксационный процесс, протекающий поблизости от флуоресцирующей молекулы, может быть изучен в этот промежуток времени. Большинство описанных в этой главе методов, использующих флуоресцентную технику, заключается в определении соотношения времени жизни т флуоресцирующей молекулы в возбужденном состоянии и времени релаксации р полимерной системы. Времена релаксации полимерных систем лежат в области от 10 сек до нескольких секунд или даже часов. Небольшие движения сегментов гибких полимерных цепей в растворе характеризуются величинами р от 10 до 10" сек. Такие процессы относятся к области микроброуновского движения. С другой стороны, вращательное движение изолированной макромолекулы как целого описывается временами релаксации, меняющимися от 10" сек для таких компактных макромолекул, как яичный альбумин, до 10" сек и больше для полимеров с жесткими палочкообразными цепями. Времена релаксации гибких изолированных макромолекул как целого находятся в промежутке между этими экстремальными значениями. В случае гибких или вытянутых полимерных молекул межмолекулярное взаимодействие растет с увеличением концентрации и оказывается заметным даже при низких концентрациях. Для жестких вытянутых макромолекул, подобных вирусу табачной мозаики, имеется критическая концентрация, при которой происходит резкое фазовое расслоение, так что одна фаза оказывается высокоориентированной, а вторая представляет собой беспорядочно перепутанные жесткие цепи [3]. Критическая концентрация, наблюдаемая для гибких молекул, зависит от молекулярного веса и соответствует началу перекрывания доменов полимерных цепей. Дальнейшее увеличение концентрации приводит к перепутыванию [c.169]

    Гипотеза об участии ионов в радиолитических превращениях растворенных веществ. Дж. Вейс и сотр. [52] выдвинули гипотезу о непосредственном участии как положительных, так и отрицательных ионов (Н2О+ и Н2О ) в радиолитических превращениях веществ в водных растворах. Согласно этой гипотезе, указанные ионы имеют время жизни не менее 10 — 10 " сек., т. е. порядка времени релаксации в воде. Кроме того, время релаксации молекул воды в гидратной оболочке ионов может быть значительно выше, чем в чистой воде. Вследствие этого время жизни этих ионов настолько продолжительно, что они могут вступать в реакции с растворенными веществами. Эти ионы могут рекомбинировать  [c.85]


    Рассмотрим совокупность названных процессов на одном примере. Молекула, возбужденная в электронное состояние 5г, первоначально обладает высокой колебательной энергией, так как вообше равновесные положения атомов для потенциальных поверхностей 2 и 5о различны (см. раздел 3.5). Поэтому электронновозбужденная молекула оказывается также горячей . Путем превращения части энергии возбуждения в энергию колебаний ядер и передачи ее окружающей среде (колебательная релаксация) примерно за 10 с достигается термически равновесный уровень состояния S2 , а путем внутренней конверсии за время порядка 10 с —уровень состояния 5ь Таким образом, возбужденные состояния, обладающие более высокой энергией, чем Si, имеют время жизни менее 10 с. Общая скорость безызлучательных процессов, приводящих к уровню Sl, обычно так велика, что другие физические процессы не могут с ними конкурировать. Положение, однако, меняется когда уровень Si уже достигнут, поскольку последний отделен от основного состояния So значительно большим энергетическим интервалом, чем от уровня S2. Для того чтобы энергия молекулы смогла уменьшиться на такую значительную величину, в ходе безызлучательных процессов внутренней конверсии и колебательной релаксации окружающей среде должно быть передано достаточно большое число квантов колебательной энергии. Это неизбежно требует большего времени, чем при дезактивации [c.65]

    Теперь можно сделать некоторые замечания о ширине и форме линии резонансного поглощения. Очевидно, резонансный сигнал не может быть описан б-функцией, поскольку вследствие релаксации состояние спина имеет определенное время жизни, что приводит к уширению линии. Уширение резонансного сигнала должно подчиняться соотношению неопределенности А А( 1 таким образом, ширина линии, обусловленная спин-решеточной релаксацией, должна быть порядка 1/Т1. Однако спин-решеточная релаксация ни в коем случае не является единственным процессом, определяющим ширину линии. В твердых телах и жидкостях существуют многие другие процессы, которые вызывают изменение относительных энергий спиновых состояний, а не их времени жизни. Такие процессы характеризуются временем релаксации Т2, которое часто называют временем спин-спиновой релаксации, но более строго его следует называть временем поперечной релаксации .  [c.21]

    Интересный случай последовательности двух РП был детально проанализирован в работе [64], где рассмотрена ситуация, когда Б РП один из партнеров имеет короткие времена парамагнитной релаксации Г], с. За время жизни PHi релаксация ус- [c.113]

    Комплексы Мп(П) представляют собой примеры систем с медленно релаксирующими электронами (1/т я Л,). Если сигнал ЯМР вообще наблюдается, то он имеет вид одиночной очень широкой линии. Однако в спектрах ЭПР, где наблюдаются переходы электронных спинов, эта медленная релаксация гарантирует длительное время жизни возбужденного состояния и, таким образом, получение узкой спектральной линии. Итак, линии спектров ЭПР систем с медленной релаксацией узкие, а линии спектров ЭПР систем с быстрой релаксацией широкие. Было бы удивительно, если бы удалось осуществить и эксперимент ЭПР, и эксперимент ЯМР с одним и тем же соединением и при одной и той же температуре. Эти методы дополняют друг друга. [c.165]

    Уширение, обусловленное спин-решеточной релаксацией, возникает в результате взаимодействия парамагнитных ионов с тепловыми колебаниями решетки. Пределы изменения времени спин-решеточной релаксации для различных систем велики. Время жизни отдельных соединений настолько велико, что позволяет наблюдать спектр при комнатной температуре, тогда как в случае других систем это невозможно. Поскольку время релаксации обычно растет с понижением температуры, для получения хорошо разрешенного спектра многие соединения переходных металлов необходимо охладить до температуры жидкого азота или гелия. [c.204]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]


    Иерархические уровни организации вещества бесконечны. На первом энергетическом уровне находятся элементарные частицы, на втором уровне -атомы, на третьем - молекулы и т.д. Согласно представлениям временных иерархий, развитой в физике Н.И. Боголюбовым и обобщенного Г.П. Гладышевым, для всех без исключения иерархических структур (выделенных по размерам и энергиям образования) [10] с уменьшением масштаба системы в иерархическом ряду, время жизни подсистемы уменьшается, время достижения системой равновесия (релаксации системы) уменьшается. Между близкими иерархическими уровнями, согласно представлениям Гладышева, внутри системы существует равновесие. Это дает возможность при моделировании системы применять законы классической равновесной термодинамики. [c.14]

    Совпадение максимумов свечения на кривой РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке определяется временем релаксации той кинетической единицы, на которой находятся связанные электроны. [c.242]

    При отсутствии обмена протонами между А—Н и В—Н линии ПМР отстоят для них на 250 Гц. При комнатной температуре происходит обмен, и линии отстоят на 25 Гц. Концентрации частиц одинаковы (0,2 моль/л), а время спин-решеточной релаксации велико. Рассчитайте время жизни протона у А—Н и найдите константу скорости обмена. [c.86]

    Вследствие релаксационных процессов время жизни ядра в возбужденном состоянии ограничено, а, согласно принципу неопределенности, ограничение времени жизни А/ расширит ядерные магнитные уровни энергии, т. е. увеличит ширину Дv линии ЯМР (A Дv 1). Поэтому при малых значениях Ту (10 —10 с) ширина спектральной линии Av составит около 10 кГц и можно считать, что это область низкого разрешения. В мало вязких жидкостях время релаксации обычно-равно 1—10 с, в связи с чем ширина линий составляет доли герца. В данном случае можно говорить о высоком разрешении. [c.51]

    Продолжительность жизни спинового состояния определяется релаксационными процессами. По соотношению неопределенностей Гейзенберга [уравнение (5.1.13)] с этим связана известная неопределенность энергетических уровней. Поэтому времена релаксации дают свой вклад в ширину линий сигнала поглощения  [c.251]

    Как известно, время релаксации определяется способностью сегментов макромолекул к перемещению под действием теплового движения. Способность эта существенно различна, как мы видели, для свободных сегментов и для сегментов, входящих в состав узлов флуктуационной сетки. Время оседлой жизни (до перемещения) свободного сегмента составляет 10 —10 с, а время оседлой жизни сегментов, входящих в состав узлов, составляет 10—10 с. Уже из приведенных данных видно, что для полимера в принципе не может быть одного времени релаксации, а должно быть по крайней мере два времени. Однако понятия свободный и связанный сегменты являются относительными. Так, свободные сегменты неодинаково свободны, поскольку полимер не является идеально однородным и межмолекулярное взаимодействие сегментов друг с [c.139]

    Даже в отсутствие тушителя могут наблюдаться нестационарные явления, связанные с релаксацией растворителя. Молекула в возбужденном состоянии имеет другую геометрию, другой диполь-ный момент по сравнению с молекулой, находящейся в основном состоянии. Переход в возбужденное состояние происходит практически мгновенно, а растворителю нужно время для того, чтобы перестроиться в наиболее энергетически выгодную конфигурацию. Экспериментально это явление проявляется в том, что чем больше прошло времени после вспышки, тем дальше сдвинут спектр испускания в красную область. Так, например, для 4-аминофталимида в н-пропаноле сдвиг достигает 50 нм и время релаксации — десятков наносекунд при температуре —70° С. В связи с этим времена жизни, измеренные на разных длинах волн, отличаются более чем в 2 раза. Релаксация происходит примерно по экспоненциальному закону. [c.97]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта Ау (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна + где а — энергия [c.119]

    Измерения т как функции [М] и экстраполяция к [М]=0 дадут величину А- так как А в свою очередь можно рассчитать, используя В, из коэффициентов поглощения, то измеренная величина может быть использована для проверки вычислений (ср. с разд. 4.6). В общем случае, когда [М] 0, наблюдаемое время жизни короче, чем естественное радиационное время жизни ( = /А). Когда происходит внутримолекулярная релаксация, уравнение стационарной кинетики имеет вид (4.9) и [c.90]

    Пример органических молекул, замороженных в жестких стеклообразных матрицах, часто используется для демонстрации послесвечения при облучении светом. Сейчас стало понятно, что фосфоресценция органических молекул является излучением запрещенных полос и обычно происходит с триплетных уровней. Поскольку радиационное время жизни таких переходов достаточно велико, столкновительная релаксация триплетных уровней достаточно эффективно конкурирует с радиационными процессами, и поэтому в обычных условиях фосфоресценция не наблюдается до тех пор, пока скорость столкновительной релаксации существенно не подавлена. В твердой среде частицы неспособны диффундировать друг к другу, и поэтому [c.98]

    Триплет-триплетный перенос энергии иногда рассматривается как отличное от синглет-синглетного переноса явление. Однако, если рассматривать механизм обменного взаимодействия, тот факт, что обе частицы А и О меняют свою спиновую мультиплетность, не имеет значения, поскольку реакция адиабатическая. Наблюдаемые же отличия в фотохимических процессах возникают в результате большого радиационного времени жизни триплетных состояний. Для среды, в которой процессы тушения и безызлучательной релаксации протекают медленно (например, в жестких стеклообразных матрицах), большое реальное время жизни триплетного донора приводит к тому, что даже неэффективный процесс переноса энергии успешно конкурирует с другими релаксационными процессами. В то же время сенсибилизированная фосфоресценция наблюдается только в таких системах, где процессы безызлучательной релаксации и тушения не являются основными путями дезактивации триплетного акцептора (т. е. вновь в стеклообразных матрицах, или для таких акцепторов, как диацетил). [c.127]

    Иногда минимально возможное значение т, при котором поведение жидкой системы можно описывать, применяя макроскопические характеристики, определяют с помощью величин максвелловского времени релаксации т . Это время сдвиговой релаксации в жидкостях, т. е. релаксации напряжения при некоторой заданной сдвиговой деформации. Максвелловское время релаксации определяют с помощью отношения коэффициента вязкости к модулю сдвига жидкости. Четкого способа обоснования такого подхода к определению минимальных возможных значений т, по-видимому, нет. Да и модуль сдвига жидкостей — величина, далеко не всегда известная. Для жидкого аргона вблизи точки плавления имеет величину порядка 6- с. Но для жидкого натрия получается слишком малая величина 10" с, не удовлетворяющая неравенству (УИ.б). Для жидкого глицерина имеется несколько максвелловских времен релаксации одно из них нри 20°С равно—4-10 с, другое—4-10 с. Если среднее время жизни флуктуаций в области у. настолько мало, что неравенство (УИ.б) не выполняется, то такие флуктуации нельзя рассматривать с помощью термодинамической теории. [c.131]

    Длительное время было принято считать, что процесс ухода этой избыточной колебательной энергии в твердое тело занимает очень малое время, которое порядка обратной дебаевской частоты. В действительности, однако, нри адсорбции атомов могут возникать локальные колебания, частоты которых лежат над зоной разрешенных частот, а амплитуды экспоненциально убывают по мере удаления от поверхности. Согласно Вишеру [1], время жизни локального колебания в твердом теле составляет 10 сек., при условии, что сОо/шь 1Д2, где (о,, — частота локального колебания, со , — дебаевская частота кристалла. В большинстве случаев (Оц значительно больше и при этом время жизни локального колебания будет заметно превосходить время, вычисленное Више-ром [2]. В результате на поверхности катализатора возникают сравнительно долгоживущие колебательно-возбужденные частицы, причем их концентрация выше равновесной. За время жизни локального колебания, вообще говоря, могут произойти смещения ядер, приводящие к химическим превращениям. Рассмотрим вопрос о релаксации твердого тела при атомной адсорбции и возникновении на поверхности неравновесных состояний. [c.73]

    Спи и- спиновая релаксация — это процесс, прн котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия безызлучательно передается какому-либо другому спину, находящемуся на нижнем уровне. Спин, получивший энергию, переходит на верхний уровень. Вследствие этого процесса происходит перераспределение энергии по всей спиновой системе. В основе спин-спинового взаимодействия лежит тот факт, что в любой реальной системе парамагнитная частица находится не только во внешнем магнитном поле, но также подвергается воздействию локальных магнитных полей, создаваемых соседними парамагнитными центрами. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации T a T a — среднее время жизни спина на верхнем уровне, обусловленное спин-спиновой релаксацией. Аналогичным образом может быть определено и — как среднее время жизни спина на верхнем уровне, обусловленное спин-решеточной релаксацией, [c.234]

    Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (10 - с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрущение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига т происходят разукрупнение флуктуационных элементов структуры (ассоциатов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением Лэф при возрастании т. При достаточно больших х происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине- [c.173]

    ИХ в единую пространственную сетку модель сетки зацеплений). Появление концепции сеток, образованных физическими узлами, вызвано тем, что модель хаотически перепутанных цепей не описывает принципиально процессов, которые связаны с существованием больших времен релаксации, причем характер этих процессов не зависит от структуры звеньев макромолекулы и подвижности свободных сегментов. Зацепления следует рассматривать как специфические локальные межмолекулярные взаимодействия физические узлы), оказывающие влияние на крупномасштабные движения цепей и, следовательно, на длинновременную часть релаксационного спектра. Время жизни этих узлов значительно больше, чем время сегментальной подвижности. [c.28]

    Первичные (химические) и вторичные (ван-дер-ваальсовы) поперечные связи образуют первичную и вторичную пространствен-н ле сетки в полимерах. При изучении деформации сшитых эластомеров было установлено существование дополнительной сетки с вторичными узлами двух видов. Один вид узлов при деформации необратимо разрушается, а другой после снятия нагрузки восстанавливается. Ван-дер-ваальсовы узлы в виде зацеплений не играют существенной роли в вязком течении, так как их время жизни менее 10 с, тогда как физические узлы в виде микроблоков надмолекулярных структур имеют время жизни 10 —10 с и определяют характер процесса Я-релаксации (см. гл. 5) и вязкое течение полимеров. [c.167]

    Будем считать, что ядра в состояниях А и В имеют одинаковое время спин-спиновой релаксации Га, и введем эффективное время жизни т=хаТа=Хвтв, где молярные доли ха и хв (ха=1—Хв) легко [c.40]

    Энергия, полученная от радиоизлучения, может передаваться спиновой системой окружения, например, в виде фононов решетки, и такой процесс называется, как уже говорилось в гл. I, спин-решеточной релаксацией (Т ). Время жизни т верхнего состояния уменьшается также из-за индуцированного испускания и при этом, как следует из принципа неопределенности бЕАх Н, возрастает неопределенность энергии состояния и происходит уширение линии (рис. 111.10, а, б). Существует, кроме того, механизм спин-спиновой релаксации (Та), определяемый беспорядочным распределением полей ядерных и электрон- [c.65]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Таким образом, спии-решеточная релаксация является реализацией тенденций двух взаимодействующих термодинамических систем — ядерной и решетки — иметь одинаковую температуру. Вследствие этого процесса ограничивается время жизни возбужденного состояния, т. е. поддерживается избыток ядер на нижнем энергетическом уровне. Именно спин-ре-шеточная релаксация дает возможность наблюдать явление ЯМР. [c.24]

    Можно сделать некоторые замечания о сравнительных характеристиках абсорбционной и люминесцентной спектроскопии, а также спектроскопии КР. Хотя люминесцентные исследования обычно более чувствительны, чем абсорбционные, они ограничены кругом веществ, которые имеют возбужденное состояние, достаточно долгоживущее для спонтанного испускания с Л-фак-тором не более 10 с и способное эффективно конкурировать с предиссоциацией или другими безызлучательными процессами релаксации, которые экспериментатор не волен контролировать (но см. разд. 7.6). Более того, время жизни люминесценции накладывает ограничение на самую длинную временную шкалу в экспериментах с временным разрешением (около 10 с). Взаимодействие электромагнитного излучения с веществом при поглощении или комбинационном рассеянии происходит примерно в течение одного периода волны, или около с в УФ-области. Поэтому промежуточные соединения реакции могут исследоваться с фемтосекундным временным [c.197]

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время Жизни возбужденного атома чрезвычайно мало (10 — 10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопре- [c.53]


Смотреть страницы где упоминается термин Время жизни и время релаксации: [c.277]    [c.200]    [c.10]    [c.200]    [c.126]    [c.165]    [c.165]    [c.50]    [c.65]    [c.66]    [c.156]    [c.23]    [c.464]    [c.464]    [c.86]    [c.105]    [c.44]   
Быстрые реакции в растворах (1966) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни

Время жизни кластеров релаксации

Релаксация время

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте