Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещения константы в ароматических соединениях

    Эффект влияния заместителей на константы скорости реакций может быть описан количественно с помощью определенных уравнений. Одно из наиболее полезных из этих уравнений, предложенное Гамметом [32], устанавливает связь между константами равновесия или константами скоростей реакций мета- и пара-замещенных производных бензола. Уравнение применимо к такой серии ароматических соединений, в которых имеется заместитель в мета-и пара-положениях по отношению к реакционному центру, например к серии замещенных эфиров бензойной кислоты. Согласно уравнению Гаммета константа скорости или равновесия для одного из соединений определенной серии может быть определена из значения для незамещенного (исходного) соединения, если известны два параметра, р и а. Таким образом, уравнение для константы скорости реакции может быть представлено как [c.252]


    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    Примером параллельных реакций может служить столь часто наблюдаемое образование нескольких изомеров при замещениях в ароматических соединениях количественное соотношение образовавшихся изомеров равно соотношению констант скоростей реакций образования отдельных изомеров. [c.803]

    Изучена реакция нуклеофильного замещения нитрогрупны в ароматических соединениях фенолятами 1[атрия в ДМСО и показано, что скорости этой реакции описываются уравнением второго порядка и удовлетворительно коррелируются нуклеофильными а -константами заместителей в ядре как субстрата, так и реагента, и возрастают с увеличением резонансно-акценторных свойств заместителя в нитросоединении и повышением основности фенолята. [c.57]

    Известно много попыток найти взаимосвязь между константами сгх и частотой и (или) интенсивностью полосы поглощения в ИК-спектре соответствующего замещенного ароматического соединения. Среди наиболее успешных попыток надо назвать корреляции частот колебаний группы С=0 в рядах соединений [c.435]

    Катализируемое переходными металлами замещение галогенов. Катализ соединениями меди и некоторых других переходных металлов (никеля, кобальта, палладия) позволяет осуществлять нуклеофильное замещение атомов галогенов в ароматических соединениях при отсутствии активирующих заместите лей. В катализируемой соединениями меди реакции замещения [325, 326] скорость изменяется в зависимости от природы атома галогена в последовательности (1>Вг>С1>Р), противоположной наблюдаемой в некаталитическом варианте. Константа чувствительности каталитической реакции (р=0,5—0,6) почт на порядок меньше, чем в отсутствие катализатора (ср. табл. 2.5). Малая чувствительность к влиянию заместителей, находящихся в пара- и жега-положениях, сочетается с сильным ускоряющим эффектом орго-заместителей, таких как карбокси-,. азо-, гидрокси-, нитрогруппа и др. [c.110]


    Однако для больщинства практических химических задач необходимо знать не абсолютные значения констант равновесия или скорости, а лищь характер изменения этих величин в ряду сходных реакций. Другими словами, мы готовы признать в качестве экспериментального факта, что данная реакция идет необходимо предсказать, как будут изменяться равновесие или скорость при изменении структуры молекул, участвующих в реакции. Типичным примером может служить реакция замещения в ароматических соединениях. Задача здесь состоит не в том, чтобы предсказать, пойдет ли реакция такого типа или нет (такое предсказание можно было бы сделать только на основании оценок абсолютных значений соответствующей константы скорости), а в том, чтобы определить относительные реакционноспособности различных ароматических систем и — что даже более важно с практической точки зрения — относительные реакционноспособности разных положений в данной молекуле. Именно такие сведения необходимы для предсказания ориентации замещения. Отношение скоростей двух реакций с константами скорости fei и 2 соответственно равно [см. уравнение (8.3)] [c.355]

    Результаты исследований кинетики нуклеофильного замещения аминами ароматических соединений, в частности питроароматических соединений, подтверждают, что процесс замещения протекает в две стадии, и позволяют сделать некоторые выводы о механизме образовапия промежуточных стабильных аддуктов. Влияние концентрации основания на величину константы скорости второго порядка ( 2) нуклеофильной реакции первичных и вторичных аминов с 2,4-динитрофенильными эфирами и 2,4-динитрофторбензолом показывает, что промежуточным продуктом является цвиттер-ион 22 [122— 124]. [c.275]

    Для того чтобы иллюстрировать, как влияет на дейтерорб-мен заместитель, обратимся к опытам с ароматическими соединениями, в которых имеется электронодонорная метильная группа или электроноакцепторная нитро-группа. Так, если при реакции с жидким бромистым дейтерием в молекуле нафталина через полчаса почти нацело обмениваются альфа-атомы водорода и только начинается обмен бета-атомов, то за то же время в метилнафталине успевают обменяться на дейтерий все атомы водорода ароматического кольца, а в нитронафталине даже за две тысячи часов происходит замещение только около двух атомов водорода [26]. С другой стороны, когда растворителем служит жидкий дейтероаммиак, а катализатором — амид калия, то введение метильной группы в бензол уменьшает константу скорости обмена в четыре раза, тогда как с л-динитробензолом обменная реакция происходит без добавления катализатора [41] .  [c.51]

    Эти исследователи также измерили скорость дейтерообмена таких ароматических соединений с растворителями [167, 168] и показали, что для ряда замещенных ароматических соединений lg кехр линейно зависит от lg Квг причем линейность сохраняется даже при изменении обеих констант на несколько порядков ( ехр — константа скорости обмена первого порядка). Этого, конечно, и следовало ожидать, так как вполне вероятно, что при дей-терообмене происходит образование в качестве промежуточного соединения сопряженной кислоты углеводорода. Более поразителен тот факт, что, как удалось показать, зависимость lg Кв от lg к (где кг константа скорости присоединения радикалов к ароматическому соединению) также дает прямую линию при изменении рКв на 16 единиц и рк на 6 единиц. [c.524]

    Константы скорости для замещенных бензилгалоидов с ароматическими соединениями в растворе нитробензола прн 25° [c.439]

    Из этих соотношений наиболее широко применяется ураенение Гаи мета, относящееся К скоростям и равновесиям многих реакции органических соединений, содержащих фенильную и замещенные фенильные группы. В 1930 годах обратили внимание на то, что существует связь между кислотностью замешенных бензойных кислот и рядом химических реакций, например скоростью гвдролиза замещенных этилбёвзоа-тов. Эту корреляцию нллйстрирует рис. 4.2, где графически показана зависимость цк/ко от Ig К/Кс, где ко — константа, скорости гидролиза этилбензоата, к — константы скоростей гидролиза замещенных этилбен-зоатов /(о и /( соответствующие константы кислотной диссоциации. Аналогичные диаграммы для многих других реакций ароматических соединений обнаруживают такую же линейную зависимость от констант кислотной диссоциации замещенных бензойной кислоты. Ни принципы термодинамики, ни кинетические теории не требуют существования таких линейных соотношений, Фактйческн, существуют многочисленные реакции, для которых не удалось обнаружить подобных корреляций. Некоторого понимания природы корреляции можно достичь путем рассмотрения зависимости между линейной корреляцией н изменениями свободной энергии, происходящими в двух процессах. Прямая линия на рис. 4.2 выражается уравнением (т —наклон прямой  [c.130]


    Химические сдвиги протонов представлены в нескольких таблицах. В них приводятся химические сдвиги протонов метильной, метиленовой и метиновой групп, непредельных и ароматических соединений и некоторых других типов протонов. Если таблицы не содержат необходимых данных для замещенных метана, можно применить константы экранирования Шулери, приведенные в специальной таблице. [c.112]

    Это предложение Экснера (1966 г.) до настоящего времени не встретило широкой поддержки (см., например, [85]), и при анализе реакционной способности ароматических соединений большинство авторов пользуется тафтовским набором ст - и Сту -констант. Наиболее обширную сводку констант см. в работе [98]. Показано, что в ст -постоянные электроноакцепторных заместителей, определенные по химическим сдвигам -замещенных фторбензолов [991, может быть введена поправка, учитывающая прямой резонанс с атомом фтора. Исправленные таким образом константы хорошо согласуются с найденными другими методами. — Прим. перев. [c.493]

    Не имея возможности даже перечислить хотя бы часть многочисленных исследований (их сотни), которые связаны с уравнением (II, 52), его видоизменением и развитием, отметим лишь некоторые работы. Тафт (см. [436]) осуществил количественное разделение влияния заместителей на составляющие, соответствующие эффектам сопряжения, индуктивному и стерическому. Браун и Окамото [437—-439] модифицировали уравнение Гамметта и показали, что при изменении значения константы а, уравнение (II, 52) может быть использовано для описания реакций элек-трофильного замещения водорода в бензольном кольце ароматических соединений. В работе [440] осуществлена проверка уравнения Гамметта, а в [441—445] показано, что это уравнение находится в соответствии с выводами квантово-механического подхода к оценке реакционной способности. М. М. Кабачник с соавторами применил уравнение Гамметта для выявления таутомерии [446—448] и протолиза [449]. А. А. Баландин и М. Л. Хидекель [450] описали уравнение, являющееся аналогом (II, 52). [c.99]

    Особый интерес с точки зрения возможности детального изучения распределения электронной плотности представляют собой химические сдвиги С ароматических соединений. В этом направлении получены важные результаты как теоретического [П1, 40], так и экспериментального [64, П2— П6] характера. Что касается корреляции химических сдвигов С а-константами, то особенно хороших результатов здесь пока не достигнуто. Отмечается приближенное линейное соответствие химических сдвигов группы —С Нз м- и -замещенных толуолов с соответствующими а-константами Гаммета [116], а также о -С с -константой [64]. Попыток сопоставления с константами Тафта не было. Наиболее полезно провести такое сопоставление для монозамещенных бензолов. В табл. 91 представлены химические сдвиги б углеродов в Л-, м- и о-положениях. Вычисление по методу наименьших квадратов для усредненных б - привело к следующим соотношениям  [c.423]

    Довольно подробно исследовалась корреляция распада под электронным ударом ароматических соединений с ст-константами Гаммета заместителей. В случае мета- и па оА-замещенных ацетофенонов общей формулы Я-СбН4СОСНз отщепление группы С2Н3О (СН3СО ) приводит к образованию фрагментного иона [c.138]

    Такое переходное состояние (или переходное промежуточное соединение) весьма похоже на ион фенония, который принимает участие в перегруппировках, протекающих при анхимерной помощи [42], или на систему азациклопропенового кольца, выделяемого при перегруппировке Небера [41]. Следующие данные говорят в пользу того, что соединение III действительно является переходным состоянием в стадии, определяющей скорость перегруппировки скорость перегруппировки ряда замещенных пикратов анти-ацетофеноноксима в среде 1,4-дихлор-бутана находится в строгой зависимости от природы пара-заместителя [43]. Константа реакции р, вычисленная из уравнения Гаммета [44], оказалась равной —4,1, а эта величина вполне сравнима с величиной р, найденной для типичных электрофиль-ных реакций замещения в ароматическом ряду [45, 46] известно, что в этих условиях стадией, определяющей скорость реакции, по-видимому, является электрофильная атака азота на бензольное кольцо это изображено структурой III. [c.14]

    Активность реагента по Броуну и Нельсону [17] определяется отношением констант скорости реакций замещения СсН х / с.н,- Броун и Мак Гери [20] сочли более удобной величину /р. В отличие от замещения в орто-положении при замещении в пара-положение отсутствует влияние стерических затруднений. Эффект сопряжения, от которого преимущественно зависит взаимодействие ароматического соединения с электрофильным реагентом, не распространяется на метазамещение. Поэтому избирательность, или селективность , замещения предложено [21] выражать в виде логарифма отношения /р//т, названного фактором селективности замещения Рд =lg/p// . Отношение /о//т зависит от пространственных затруднений, поэтому сопоставление /о//,п и /р//т помогает дифференцировать роль сопряжения и стерического фактора при электрофильном замещении. [c.327]

    В. К.) увеличивают ее, хотя нельзя, конечно, решить принципиальный вопрос, является ли это повышение в математическом смысле справедливым, или оно означает такое громадное замедление, что лишает возможности наблюдать за реакцией, так как скорость эгерификации мала, а продолжительность этерификации орто- и ди-орто-замещенных соединений составляет месяцы и даже годы [120, стр. 838—839]. Использование количества образовавшихся соединений как меры реакционной способности ароматических молекул не позволило Мейеру более подробно изучить природу орто-эффекта, поскольку это количество неопределенно зависит от -изменения температуры и условий превращения. Протекание же столь медленных реакций ароматических соединений с заместителями в орто-положении можно было наблюдать лишь при повышенной температуре. Это можно было сделать, применяя как меру реакционной способности молекул константу скорости, поскольку к началу 90-х годов XIX в. был установлен характер температурной зависимости константы скорости реакции [61, 122] [c.32]

    Замеченный Келласом обратный порядок влияния природы галогенов на скорость этерификации по сравнению с аналогичными зависимостями в алифатическом ряду обусловливается своеобразным влиянием строения ароматических соединений на скорость их превращений, что было отмечено еще Менщуткиным в 1881 г. [72]. Позже (в 1897 г.) Меншуткин начал разрабатывать другой ( химический ) аспект влияния орто-заместителей на скорости превращений ароматических молекул. Рассматривая скорости взаимодействия бромистого аллила с замещенными анилинами, Меншуткин пришел к выводу, что при резко выраженных химических свойствах боковой цепи ее влияние будет направлено в одну сторону при всех положениях (подчеркнуто мной.— В. К-) относительно амидогруппы. При слабовыраженных химических свойствах боковой цепи, напротив, смотря по положению ее в бензольном кольце (подчркнуто мной.— В. К.), может иметь место или повышение, или понижение константы скорости [85, стр. 618]. [c.33]

    Для описания электронных. эффектов заместителей используются два основных уравнения — уравнение Гаммета и уравнение Тафта. Первоначально уравнение Гаммета было выведено для реакционной способности ароматических соединений, и в качестве эталонной серии реакций использовалась диссоциация мета- и л грсг-замещенных бензойных кислот. Здесь заместители располож.ены достаточно далеко от реакционного центра, и их стерические свойства не должны оказывать влияния на реакцию. Константы заместителя (о) определяются уравнением [c.205]

    Поэтому, например, доноры в /2 2/ а-положении способствуют 5 , I-реакциям кумилгалогенидов в большей степени, чем это хможно было бы предположить на основани величин Были предприняты попытки учесть оба усиленных резонансных эффекта с помощью новых констант константы о для акцепторных заместителей, сопряженных с боковыми цепями, несущими неподеленные электронные пары по соседству с ароматическим кольцом, и константы для донорных заместителей, сопряженных с электронодефицитными боковыми цепями. Найдено, что величины а vi нужно использовать для корреляции скоростей реакций нуклеофильного и электрофильного замещения ароматических соединений. Поэтому а правильно обозначить как константу нуклеофильного замещения, а [c.207]

    Низкую селективность связывают со структурой переходного состояния, близкой к структуре незаряженного радикального о-комплекса типа (141). Однако показано, [354, 355], что при радикальном замещении Заметную, а иногда и решающую роль-играют полярные эффекты. Последнее особенно ярко проявляется, если субстрат или атакующий радикал уже несет заряд,, как, например, при свободнорадикальном алкилировании про-тонйрбванных ароматических азагетероциклов или при аминировании ароматических соединений с электронодонорными заместителями аммониевыми катион-радикалами R2NH+ (см разд. 14.1), Изучение реакционной способности и ориентации, замещения позволяет говорить об злектрофильности или нуклеофильности радикалов, мерой которой может служить значение константы чувствительности р в уравнении Гаммета. [c.122]

    В настоящее время я-комплексы рассматривают также как комплексы с переносом заряда или внешние комплексы. Для них разработана квантовомеханическая теория типов связи и стабильности [7]. Известно, что эти комплексы образуются между ароматическими соединениями и большой группой акцепторов электронов, таких, как галогены, смешанные галогены, галогеноводороды, ионы серебра, тетрацианэтилеп нельзя не упомянуть также о таких известных комплексах, как пикраты, комплексы с тринитро-бензолом и т. д. [8, 9]. Изучены их УФ-спектры, во многих случаях измерены константы диссоциации, вычислены изменения энтропии и энтальпии их образования. Те комплексы, которые представляют интерес как возможные промежуточные соединения в реакциях ароматического замещения, например комплексы с галогенами, обычно нестабильны и, за некоторым исключением, не были выделены в твердом состоянии. Их существование подтверждается изменениями в ультрафиолетовом спектре при смешении компонентов, измерениями растворимости, давления пара или иногда изменением температуры замерзания [8, 9]. Поскольку они в ка-кой-то степени могут служить моделью промежуточного соединения, их стереохимия представляет значительный интерес и важность. Среди различных предложенных моделей для ароматических комплексов с галогенами на основании изучения ИК-спектров [10] предполагается аксиальная модель (V). В ней два атома галогена размещаются на оси шестого [c.449]

    Другими комплексами, которые могут быть рассмотрены в реакциях ароматического замещения, являются первоначально упомянутые а-ком-плексы, имеющие структуру II. Проблема двух типов комплексов в целом была разработана Брауном с сотрудниками, важный вклад которого заключался в ясной оценке роли комплексов в процессе замещения [19]. Выводы Брауна с сотрудниками были основаны на отличии комплексов ароматических соединений с галогеноводородами, полученных в отсутствие и в присутствии галогенидов алюминия. Продолжая ранние исследования по растворимости ароматических углеводородов во фтористом водороде, Браун и Брэди [20] изучили их основные свойства, с авнивая растворимость хлористого водорода примерно в 25 различных углеводородах при —78,5°, в том числе в гептане и толуоле. Данные подтвердили образование комплексов 1 1 между АгН и хлористым водородом (или бромистым водородом [21]) были также вычислены константы равновесия их образования. К настоящему времени образование комплексов 1 1 было подтверждено анализом кривых температур замерзания комплексов АгН-H l [22], определением их температур плавления [23] и изменением частот в инфракрасных спектрах [24. Как сообщалось [19], эти комплексы бесцветны, не проводят электрического тока и при замене хлористого водорода на хлористый дейтерий ароматический водород не обменивается на дейтерий. Эти физические свойства находятся в согласии со структурой, в которой ароматическое соединение относительно неизменено. Способность к комплексообразованию хорошо коррелирует с основностью ароматического соединения, т. е. метильные группы в бензольном кольце способствуют комплексообразованию, а галогены препятствуют ему. В этом отношении эти комплексы напоминают другие я-комплексы, и Браун с Брэди пришли к выводу, что их лучше представлять как я-комплексы типа VI Г. Дью- [c.450]

    Значение новой шкалы Oj при оценке реакционной способности ароматических соединений подтверждается, например, тем, что при исследовании химических сдвигов в спектрах ЯМР жета-замещенных фторбен-золов лучшая корреляция достигается при использовании величин а , а не констант Гаммета для лета-заместителей [47]. [c.510]

    В зависимости от соотнощения констант скоростей протекающих при этом реакций (йь й 1 и йг) общая скорость процесса электрофильного замещения может лимитироваться как первой, так и второй стадией. Если отщепление протона — определяющая стадия, то это прежде всего выражается, например, в наличии кинетического изотопного эффекта. Если же наиболее медленной стадией является образование о-комплекса, то в этом случае кинетический изотопный эффект отсутствует. Следует отметить, что большинство реакций электрофильного замещения в ароматическом ряду протекает без изотопного эффекта, т. е. лимитирующей является первая стадия-процесса — образование соответствующего комплекса при взаимодействии ароматического соединения с элек-трофильным реагентом. [c.54]


Смотреть страницы где упоминается термин Замещения константы в ароматических соединениях: [c.419]    [c.274]    [c.41]    [c.231]    [c.384]    [c.937]    [c.261]    [c.325]    [c.161]    [c.163]    [c.470]    [c.5]    [c.235]    [c.168]    [c.208]    [c.481]    [c.101]    [c.106]    [c.66]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.106 , c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические соединения константы

Замещения константы

Константы ных соединений



© 2024 chem21.info Реклама на сайте