Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера, определение алюминии и его соединениях

    Широко применяемой калориметрической методикой определения энтальпий образования является сожжение вещества в калориметрической бомбе в атмосфере кислорода. По этой методике были определены, например, энтальпии образования многих оксидов (углерода, кремния, бора, фосфора, серы, магния, алюминия, титана, кобальта и др.) и энтальпии образования ряда соединений, таких, как, например, карбиды, фосфиды, нитриды, фазы переменного состава и т. д. Особенно широко она [c.32]


    Для первой оценки достигнутого разделения смеси неизвестного состава обычно применяют универсальные реагенты. Наибольшее распространение среди них получили иод (пары иода растворяются в большинстве органических соединений), концентрированная серная кислота (при этом нельзя использовать в качестве неподвижной фазы оксид алюминия вследствие протекания химической реакции), бихромат натрия в серной кислоте (после опрыскивания свободной от растворителя пластины ее недолго нагревают). Далее возможно использование серии реагентов, специфических для определенных групп соединений. Информация об индивидуальном веществе складывается из совокупности результатов различных методов, подтверждающих присутствие данного вещества. В последнее время появилось немало публикаций об использовании ферментативных методов детектирования для обнаружения биологически активных веществ используют чувствительные к этим веществам микроорганизмы (биоавтография). [c.391]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электронного заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью (0,1 — 0,3)е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 9 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом д.пя ряда типичных неорганических веществ. Знаком отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрица- [c.63]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Метод применен для определения серы в металлах [466, 1449], стали [211, 1018, 1380], сплавах [466, 984], селене [1304], хроме [467, 1447], кобальте [1380], титане [1114], металлическом уране и его соединениях [1204], окиси алюминия [324], в топливе и золе [1156[, нефти [2265], лаках [548], органических [967, 1087, 1305] и биологических [1185, 2248, 1297] материалах, для определения сероводорода и сульфидов в природных водах [839, 1177], почвах [937], атмосферном воздухе [631, 1459]. [c.120]

    Сернистые соединения в окиси алюминия восстанавливают до HjS и фотометрируют в виде метиленового голубого [324]. Определению 3-10-3% серы не метают 0,5% Rh, 2,5% Fe, 0,15% Pt, и 5% Ni. Относительная ошибка 6%. [c.205]

    Основываясь на различной термической стойкости разных групп сераорганических соединений, Мак Кой и Вейс [114] использовали процесс термокаталитического обессеривания как метод группового анализа сернистых соединений нефтяных фракций. Оказалось, что над окисью алюминия при 450° С разлагаются только сульфиды и меркаптаны. Тиофены в этих условиях не разлагаются. Это давало возможность раздельного определения двух групп сернистых соединений в нефтяных фракциях. Применялась такая последовательность анализа определяли суммарное содержание серы, затем проводили термо-каталитическое обессеривание и по выделившему сероводороду устанавливали содержание сульфидной серы содержание тиофеновой серы определяли по разности. [c.372]

    Для определения содержания паров воды, а также агрессивных компонентов газа (например, сероводорода), которые в процессе отбора и хранения могут выделяться из смеси и образовывать другие соединения, отбирать пробы следует непосредственно в соответствующие газоанализаторы. При отборе проб газов, содержащих соединения серы, необходимо применять трубки и пробоотборники из нержавеющей стали, алюминия или стекла, а при отборе проб под высоким давлением — трубки высокого давления из стали, меди с внутренним диаметром 1,4—1,8", снабженные на концах накидными гайками. [c.156]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]


    Серебро является уникальным катализатором окисления этилена в оксид. Другие катализаторы, например платина и палладий, катализируют окисление этилена только в диоксид углерода. На активность и селективность серебряного катализатора большое влияние оказывают метод его приготовления, а также добавка небольших количеств промоторов. Серебро обычно наносят на носители, в качестве которых используют корунд или оксид алюминия в различных модификациях, силикагель, пемзу. На активность и селективность катализатора оказывают влияние также степень дисперсности серебра, размер и форма кристаллитов. В качестве промоторов чаще всего используют различные хлорпроизводные соединения (кроме того очень малые количества хлорпро-изводных вводят в сырьевую смесь), соединения серы, селена, фосфора в виде соответствующих анионов, а также бария, кальция, алюминия, золота, калия, рубидия, цезия. Промоторы могут влиять как на активность, так и на селективность катализатора. Так, введение в небольших количествах электроотрицательных промоторов на основе хлора или селена повышает скорость реакции не изменяя селективности. Увеличение количества промотора сверх определенного значения приводит к снижению скорости окисления этилена и увеличению селективности. Это объясняется более сильным влиянием увеличения количества промотора на скорость реакции глубокого окисления (И). При введении в катализатор больших количеств промотора реакция может полностью затормозиться. Таким образом, регулируя природу и [c.195]

    Сплавы, легированные алюминием, могут работать в воздушной среде, вакууме и атмосферах, содержащих примесь серы и сернистых соединений. Их используют в основном для изготовления нагревателей промышленных электропечей. Сплавы, легированные кремнием, жаростойки в воздушной и азотсодержащих средах. Они применяются для изготовления нагревателей промышленных и лабораторных электропечей, бытовых приборов и других аппаратов. Наличие нескольких марок сплавов в составе каждой группы объясняется особенностями поведения нагревателей в эксплуатации, разным уровнем технологической пластичности сплавов, дефицитностью никеля, а также традицией применения сплавов в серийных конструкциях электропечей и электронагревательных устройств. Наиболее важными эксплуатационными характеристиками сплавов являются предельная рабочая температура, срок службы и величина удельного электрического сопротивления. Понятие предельной рабочей температуры не является строго определенным. Это рекомендуемая максимальная температура, при которой еще обеспечивается экономически эффективный срок службы нагревателей толстого сечения. Значения предельной рабочей температуры, указываемые в справочниках и маталогах, являются в определенной степени условными, и вопрос о сравнительной стойкости сплавов-аналогов может быть надежно решен пока только путем испытания нагревателей в одинаковых условиях. Ниже приведены предельные рабочие температуры ( 7др ) сплавов в различных средах. [c.107]

    Определение фосфорсодержащих соединений может быть успешно осуществлено с помощью микрокулонометрического детектора, имеющего высокую чувствительность к фосфору, галогенам и сере [5]. Конструкция прибора включает расположенную после хроматографической колонки кварцевую печь для гидрирования соединений фосфора до фосфииа, который далее транспортируется в титровальную ячейку с серебряными электродами. Поскольку при этом происходит также гидрирование серы и хлора, для обеспечения селективности по фосфору мел<ду печью и детектором устанавливается трубка с окисью алюминия или силикагелем. [c.35]

    Кривые изомолярных серий системы алюминий — альберон, снятые но всем длинам волн видимого спектра, также подтверждают образование различных соединений в зависимости от pH и соотношения компонентов. Тем не менее в опубликованной до настоящего времени литературе, касающейся взаимодействия аль-берона и хромазурола 8 с алюминием, есть указания на образование лишь одного соединения, которому, однако, различные авторы приписывают различный состав [2—4]. С другой стороны, для системы хромазурол 8 — железо (III) английскими химиками [5] также было констатировано существование в определенных для каждого условиях нескольких комплексных соединений. [c.211]

    В токе сернистого газа получается вещество желто-оранжевого цвета, твердое при 4° и разлагающееся при 80° оно перегоняется при 200° с образованием соединения AI3 I,-SO . В дестиллате была обнаружена и четырех-хлористая сера. При прямом действии жидкого сернистого ангидрида нй хлористый алюминий в запаянной трубке Руфф [ИЗ] получил вполне определенное кристаллическое соединение Al lg- SOo. Оно было устойчивым при 100°в атмосфере сернистого ангидрида. В растворе в хлористом сульфуриле ого можно совершенно разложить, удаляя при комнатной температуре свободный сернистый ангидрид током сухого углекислого газа. Таким образом, это соединение представляет совершенно неустойчивое вещество, обладающее высоким давлением паров сернистого ангидрида при обычной температуре. [c.45]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть 2—10 % общего их количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений можно воспользоваться стеклянными хроматографическими колонками, объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1. При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалкановых, моноцикло- и бициклоаренов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредотачивается подавляющая часть серу-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бен- зольная смесь (1 1) и некоторые другие полярные растворители. Например, выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150— 325 °С арланской нефти осуществлялось с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ к разделяемой фракции 5 1 [183]. С уменьшением размера частиц силикагеля четкость разделения возрастает, однако скорость перемещения компонентов сырья и растворителей уменьшается, удлиняется время разделения. Оперативный контроль хроматографического процесса и определение группового состава фракции осуществляется по адсорбтограмме, построенной в координатах показатель преломления — массовый выход узких фракций . Показатель преломления отдельных хроматографических фракций и гетероатомных [c.82]

    Элементы реагируют друг с другом в количествах, пропорциональных их эквивалентам. Следовательно, в молекуле, образованной двумя элементами, произведение числа атомов на валентность одного элемента должно быть равно произведению числа атомов на валентность другого элемента например, А12 0" (здесь валентность алюминия 3, кислорода — 2, а число атомов соответственно — 2 и 3 произведение равно 6 для обоих элементов). Так как валентность водорода равна 1, то число атомов водорода в соединении может, очевидно, характеризовать валентность другого элемента. Так, в соединении HJ йод будет одновалентен, в НзЗ сера двухвалентна, в ЫНд азот трехвалентен и т. д. Отсюда можно дать такое практическое определение валентности  [c.14]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электрон-мого заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью 0,1 — Д,3 е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 10 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом для ряда типичных неорганических веществ. Знако.м -Ь отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —732, а для серы составляет —334 кДж/моль. Значит, ионы типа и 5 не существуют, и все оксиды, сульфиды, независимо от активности металлов, не относятся к ионным соединениям. Если двухзарядные анионы в действительности не -существуют, тем более нереальны многозарядные одноатомные отрицательные ионы. [c.84]

    Дополнительные указания. Определению общей жесткости мешает присутствие в воде ионов меди, марганца, железа и алюминия. В присутствии меди окраска индикатора не меняется, так как ионы меди образуют с ним соединения, которые не разрушаются трилоном Б. В присутствии ионов марганца в щелочной среде выделяется МпО(ОН)2, который адсорбирует индикатор, и окраска раствора становится серой. Для устранения вредного влияния ионов меди, небольших количеств железа и алюминия их следует перевести в труднорастворимую форму. В отмеренную для титрования пробу воды прибавляют 1 мл 5—10%-ного раствора сульфида натрия. Для устранения вредного влияния ионов марганца в отмеренную для титрования пробу воды прибавляют 5 капель 1%-ного раствора солянокислого гидроксил амина. [c.76]

    Все операции по определению сульфатов барийхроматным методом занимают около 3 час. Таким образом, в комбинации с методом Эшка общая продолжительность определения общего содержания серы должна быть около 10 час., а в комбинации с сожжением в калориметрической бомбе — около 3,5 час. Однако, как показали опыты ВТИ, при практическом применении метода появляется необходимость в дополнительных операциях, связанных с удалением из растворов фосфа-той и соединений железа и алюминия, перешедших в раствор из золы топлива. [c.134]

    При проведении нами определения элементов, содержащихся в золе испытуемых проб, готовилась серия эталонных порошков, содержащих алюминий, медь, марганец, стронций, свинец, никель, кобальт и титан с последовательно убывающими их концентрациями. Они разбавлялись синтетической основой, состоящей из химически чистых сернокислых солей натрия, кальция и магния, т. е. элементов, составляющих основную массу золы анализируемых организмов. Изготовление эталонных порошков на указанной основе производилось путем введения в эту основу сернокислых соединений элементов из расчета получения начального эталона с 1%-ной примесью каждого элемента. Смешивание основы со взятыми солями осуществлялось в яшмовой ступке в течение 45 мин с добавлением небольшого количества этилового спирта для обеспечения более быстрого и равномерного перемешивания, солей. Получе1Нные смеси сушились при температуре 105° С и затем переносились для хранения в стеклянные бюксы. Эталоны с меньшими концентрациями элементов получали последовательным разбавлением 1%-ного порошка основой до концентрации второго, третьего и четвертого знаков (1,0 0,1 0,05 0,005 0,0025 0,001 0,0005 0,00025 0,0001%). [c.80]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    В данной главе рассмотрены методы хроматографического разделения сульфидов, сульфоксидов, сульфонов, сульфокислот и их производных. Все эти соединения имеют полярные функциональные группировки, содержащие атом серы в разной степени окисления, что обеспечивает селективность адсорбции на различных материалах. Для разделения соединений этого типа используют в основном силикагель, обладающий определенным преимуществом по сравнению с окисью алюминия, при хроматографии на которой происходит сильная сорбция и ряд соединений, например дисульфокислоты, десорбируется с трудом. Удобным сорбентом для разделения сульфокислот и их солей, и даже нейтральных соединений серы, являются иониты. [c.147]

    Характеристика тиофенов по числу колец с использованием метода селективного разложения сераорганических соединений приведена в работах [41—43]. Удалось деалкилировать [42] тиофены, а нетиофеновую серу разложить до сероводорода и тиолов при 450° С над оксидом алюминия. Остаточное содержание серы относили к тиофеновой. Метод применим и к высо-кокипящим дистиллятам. Основным недостатком этого метода является неполное разложение сульфидов [44], что может привести к завышению результатов определения тиофеновой серы. [c.12]

    Соединяясь с азотом при высоких температурах, редкоземельные элементы дают нитриды с общей формулой MeN. Взаимодействуя с серой, лантаноиды образуют сульфиды иногда различного состава, например СвзЗв, 06384 и СеЗ. Любопытно, что эти соединения наиболее тугоплавки из всех известных металлических сульфидов — они плавятся при температуре выше 2000° С. Такие тугоплавкие вещества, как окись алюминия или металлический титан, могут быть расплавлены в тигле, сформованном из СеЗ. С галогенами лантаноиды легко образуют соответствующие галогениды. Легко происходит взаимодействие с углеродом, кремнием, мышьяком и фосфором, причем получаются соединения определенного состава. Доказано существование гидридов типа МеНз и МеН для лантана, церия, празеодима, неодима, самария и гадолиния. Изучались также гидриды европия и иттербия. [c.132]

    Антропогенные и природные источники ПАУ. Все, что было сказано в предыдущем разделе, посвященном бензо[а ]пирену, относительно происхождения и распространения этого агента в ок-< ружающей человека среде, в полной мере относится ко всей группе соединений класса ПАУ. В серии монографий Международного агентства по изучению рака (МАИР IAR ) тома 32—35 посвящены характеристике отраслей производства, технологических процессов и отдельных продуктов, потенциальная канцерогенная опасность которых связывается с воздействием всего комплекса ПАУ. В т. 34 специально рассматриваются производства алюминия, кокса, чугуна и стали, газификация угля, где определенные категории рабочих подвергаются воздействию ПАУ, происходящих из продуктов переработки угля или нефти и имеющиеся эпидемиологические данные указывают на существование потенциальной канцерогенной опасности в таких отраслях, где занято в общей сложности более. 2 млн. человек. [c.251]

    С целью исследования донных отложений (р. Эльба) на содержание органических соединений серы (дибутилтиофен и его алкильные гомологи) их экстрагировали смесью толуол-метанол (1 3) в течение 40 ч [65 , а при селективном определении никотина в сигаретах табак экстрагировали в две стадии — сначала водным раствором, содержащим малаты или цитраты, а затем (после нейтрализации раствора) хлороформом [66]. В первом случае экстракт очищали на колонке с порошком активной меди (для удаления элементной серы) и разделяли на три фракции на колонке с оксидом алюминия, экстрагируя насыщенные углеводороды н-пентаном, ПАУ — толуолом, а гетероциклические соединения — смесью толуола и метанола. Во втором случае хлороформный экстракт никотина без предварительной обработки хроматографировали на капиллярной колонке с ФИД. Для улучшения воспроизводимости результатов определения никотина и уменьшения возможности возникновения артефактов, мешающих его идентификации, поверхность колонок из нержавеющей стали предварительно обрабатывали основаниями, снижающими адсорбцию никотина. [c.259]

    Алюминий образует нерастворимую комплексную соль, содержащую сульфат-ионы, однако его мешающее действие можно устранить, добавляя винную кислоту. Нерастворимые соединения с реагентом образуют фосфаты, оксалаты, селенаты и теллурнты. Помехи, вызываемые фосфатом, можно устранять, связав его в MgNH4P04. Описанный метод использован для определения серы в углях [104]. Можно заметить, что 4-амино-4 -хлорбифенил не обладает канцерогенными свойствами. Недостаток этого реагента— его относительно высокая растворимость [105]. [c.538]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    Из рассмотренны.х в таблицах 2 и 3 соединений наиболее активными ускорителями вулканизации являются меркаптиды свинца, цинка, бария и алюминия. Меркаптиды никеля, меди и висмута обладают ярко выраженным индукционным периодом действия. Эти ускорители при более высокой температуре вулканизации проявляют более высокую вулканизационную активность. Замедленное действие некоторых меркаптидов объясняется тем, что эти ускорители реагируют с меньшей скоростью в реакциях обм ена атомами серы ускорителя с серой элементарной, и, как следствие этого, накопление пблисульфидных радикалов в смеси задерживается, что и задерживает вулканизацию на определенной стадии этого процесса. [c.524]

    Топлива реактивных двигателей Т-1 и ТС-1 представляют собой лигроинокеросиновые фракции, получаемые прямой перегонкой иефти [534]. Топливо Т-1 отличается от топлива ТС-1 большей плотностью и вязкостью, более тяжелым составом и меньшим содержанием серы. В топливах типа Т-1, ТС-1 и Т-2 содержание ароматических углеводородов составляет от 15 до 20%, парафиновых 30— 60%, нафтеновых 20—45%). В них присутствуют также непредельные углеводороды. В ТС и Т-2 содержится сера в виде дисульфидов, сульфидов и других соединений. Основными коррозионно-активными веществами топлив являются сернистые и кислородные соединения. Однако и углеводородный состав топлива оказывает определенное влияние на коррозионную агрессивность сернистых и кислородных соединений. Среди сернистых соединений коррозионно-активными являются сероводород, элементарная сера и меркаптаны. Из кислородных соединений топлив наиболее коррозионно-активны органические кислоты, которых содержится 0,5—3% [538]. Процессы, происходящие с окислами металлов после длительного воздействия дифенила при высоких температурах, изучались путем исследования структуры порошков [535]. Испытания проводили в интервале температур от 320 до 450° С, продолжительность выдержки составляла 240 ч при 450° С и 500 ч при 370 и 410° С. Испытание порошков было обусловлено стремлением быстрее получить необходимые результаты, так как развитая поверхность порошкообразных образцов способствовала этому. Однако это не соответствовало реальным условиям применения керамических материалов в виде монолитных изделий. Были исследованы изменения структуры окислов циркония, вольфрама, молибдена, алюминия, титана и др. [c.213]

    На рис. 6 приведена хроматограмма сернистых соединений, присутствующих в продуктах коксования, причем на оси абсцисс отложена температура кипения. Эти же авторы предложили методику определения типов тиофеновых соединений, присутствующих в нефти. Пробу подвергают каталитическому разложению при 500° С в реакторе с окисью алюминия (высота слоя катализатора 28 см) в токе азота. За реактором следуют абсорберы с углеводородным растворителем и 4%-ным водным раствором едкого натра. Нетиофеновые соединения серы разлагают до сероводорода и ароматических тиолов, которые собирают в абсорберах и титруют с целью определения нетиофеновой серы. Тиофены деал-килируют в реакторе и получаемые продукты анализируют в колонке длиной 2,4 с 3% диэтилгексилсебацината на хромо- [c.191]


Смотреть страницы где упоминается термин Сера, определение алюминии и его соединениях: [c.4]    [c.528]    [c.481]    [c.226]    [c.173]    [c.690]    [c.198]    [c.264]    [c.272]    [c.259]    [c.84]    [c.134]    [c.14]    [c.238]    [c.1093]    [c.1285]    [c.1093]    [c.1285]   
Аналитическая химия серы (1975) -- [ c.120 , c.197 , c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Сера, определение

Серии определение

Серы соединения

Соединение определение



© 2025 chem21.info Реклама на сайте