Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация электростатическая

    Из сказанного следует, что как состояние ионов при бесконечном разбавлении, так и состояние ионов в концентрированных растворах зависит от явления сольватации. При этом состояние ионов при бесконечном разбавлении зависит только от явления сольватации. Состояние ионов в концентрированных растворах зависит от явления сольватации ионов, дебаевского взаимодействия между ионами и ассоциации ионов. Совокупность этих явлений — сольватации, электростатического взаимодействия и образования ионных ассоциатов или неполной диссоциации — определяет состояние электролита при любой концентрации в любом растворителе. [c.214]


    Для реакций в растворах, наряду с сольватацией электростатической природн ("неспецифическая сольватация"), во многих случаях имеет решающее значение образование ассоциатов ("специфическая сольватация"). Ввиду изменения реакционной способности субстрата из-за ассоциации с растворителем (образование водородных связей, -комплексов и т.д.) понятие специфической сольватации тесно связано с понятием гомогенного катализа, и выделение специфических влияний среды приобретает первостепенное значение для выяснения сущности происходящих процессов  [c.158]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]

    Электростатическая теория растворов объясняет сравнительно малую электропроводность расплавленных солей огромным тормозящим влиянием ионной атмосферы, которая здесь имеет характер ближнего окружения каждого иона ионами противоположного знака. Растворитель, уменьшающий взаимодействие ионов, отсутствует, а расстояния между нонами очень малы. Вследствие отсутствия сольватации подвижности ионов в расплавах непосредственно связаны с их радиусами, и в ряду щелочных катионов наблюдается правильная последовательность подвижностей  [c.452]

    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]

    Наряду с отмеченными эффектами при контакте полярного растворителя с ионитом наблюдается сольватация ионов, обусловленная электростатическим взаимодействием заряженных ионов с ди-польными молекулами растворителя. Чем меньше дипольный момент растворителя, тем меньше склонность ионита к сольватации. С уменьшением диэлектрической постоянной растворителя увеличивается электростатическое взаимодействие между противоположно заряженными ионами, что способствует образованию ионных пар и ассоциации, а также уменьшению осмотической активности ионов и разности осмотических давлений. Все эти факторы уменьшают степень набухания, но при этом силы отталкивания между фиксированными ионами возрастают до тех пор, пока не будут нейтрализованы в результате ассоциации с противоиона-ми [1]. [c.374]

    Таким образом, основу процесса отмывки ионита составляет изменение физико-механических свойств его под воздействием проникновения растворителя в ионит, электростатических явлений (доннановского потенциала), явлений сольватации (гидратация) и тепловых эффектов. Существующие подходы к составлению математических модулей процесса имеют определенные недостатки (в моделях не отражена взаимосвязь релаксационных, диффузионных, тепловых, химических и др. явлений модели не охватывают весь интервал разбавления растворов и степени сшитости ионитов). [c.376]

    Разделение ионов происходит не только в результате чисто электростатического влияния среды через диэлектрическую проницаемость, но и благодаря сольватации ионов молекулами рас- [c.163]

    Положение существенно изменяется при переходе к растворам, в которых электростатическое взаимодействие между ионами значительно ослабевает в результате сольватации ионов молекулами растворителя, т. е. образования вокруг каждого растворенного иона оболочки из молекул растворителя. Сольватная оболочка образуется в результате ориентации дипольных моментов молекул по направлению поля, создаваемого ионами, а также в результате поляризации молекул растворителя полем центрального иона (образования у них наведенного дипольного момента, также ориентированного по направлению электростатического поля иона). [c.30]

    Сольватация в первом приближении может рассматриваться как результат ориентирующего и поляризующего действия электростатического поля иона или диполя на молекулы растворителя. [c.129]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Сольватация в первом приближении может рассматриваться как результат ориентирующего и поляризующего действия электростатического поля иона или диполя на молекулы растворителя.Предложено несколько соотношений, связывающих константы скорости реакций ионов или дипольных молекул с диэлектрической постоянной растворителя, величина которой связана с макроскопической поляризуемостью растворителя. [c.119]

    Такое явление можно приписать изменению степени сольватации с увеличением полярности растворителя. В воде соли тетра-этиламмония — сильные электролиты, в гексане они диссоциированы слабо, в нитробензоле значительно сильнее. Переход недиссоциированных исходных веш,еств в диссоциированные с ростом сольватации за счет электростатических взаимодействий, по-видимому, облегчает реакцию. [c.227]


    Вырыванию катионов из электрода способствует их сольватация в растворе (разд. IV.7), которая протекает с освобождением энергии, т. е. самопроизвольно. Одновременно с этим удерживающие силы кристаллической решетки металла и электростатического потенциала электрода препятствуют уходу катионов в раствор. При установлении равновесия указанных сил переход катионов в раствор прекращается, а значительная часть их концентрируется вблизи поверхности электрода, По мере удаления от нее концентрация катионов постепенно уменьшается и выравнивается с концентрацией в растворе. Так происходит взаимодействие электрода с раствором, в результате которого образуется двойной электрический слой (рис, У.2). [c.235]

    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]

    Капли ртути, на которые разбивается струя, уносят электростатические заряды из пространства между этой струей и раствором, текущим по внутренним стенкам цилиндра. Поэтому Дг )=0 и, как следует из сопоставления уравнений (20.7) и (20.10), Е=—А . Зная и по уравнению (20.4) можно рассчитать реальную энергию сольватации иона р . [c.98]

    Капли ртути, на которые разбивается струя, уносят электростатические заряды из пространства между,этой струей и раствором, текущим по внутренним стенкам цилиндра. Поэтому Агр = О и, как следует из сопоставления уравнений (20.7) и (20.10), ф = Ур. Зная Ур и по уравнению (20.4) можно рассчитать реальную энергию сольватации иона Такие измерения были впервые выполнены Э. Ланге, а позже Дж. Рэндлсом. [c.100]

    Энергия сольватации представляет собой выигрыш в энергии, который получается при перенесении моля исследуемых ионов из вакуума в данный растворитель. При этом предполагается, что такой выигрыш энергии не включает электростатического взаимодействия ионов, которое неизбежно сказалось бы уже при введении в растворитель второго и каждого последующего иона. Чтобы избежать этого осложнения, раствор нужно поддерживать электронейтральным, т. е. вводить в него соответствующее количество ионов противоположного знака, а притягательное взаимодействие между катионами и анионами элиминировать достаточным (теоретически бесконечным) разбавлением раствора. [c.21]

    Теория Бьеррума является приближенной, так как исходит из сферической модели ионов, не учитывает дискретной молекулярной природы растворителя, сольватации ионных пар и другие эффекты. Поэтому предпринимались попытки ее усовершенствования, в частности, Р. Фуоссом и Ч. Краусом. По мере накопления экспериментального материала появилась также необходимость ввести классификацию ионных ассоциатов, подразделив их на следующие типы а) контактные ионные пары, в которых катион и анион находятся в непосредственном контакте друг с другом б) сольватированные ионные пары, в которых катион и анион связаны друг с другом через одну молекулу растворителя в) сольватно разделенные (или рыхлые) ионные пары, в которых катион и анион удерживаются вместе электростатическими силами, но между ними имеется значительное неопределенное количество молекул растворителя г) катионные, анионные и нейтральные ионные тройники, так называемые кластерные образования типа С+А-С+, А-С+А-, А-С +А- и др. д) квадруполи, например С+А-С+А-и т. п. [c.46]

    Как показывают термодинамические и модельные расчеты, энергия взаимодействия катионов и анионов с дипольными молекулами растворителя (энергия сольватации) во многих случаях оказывается достаточной для того, чтобы компенсировать энергию электростатического взаимодействия ионов в ионных кристаллах (энергию кристаллической решетки) или энергию ковалентной связи атомов в таких молекулах, как НС1 илн НВг. В результате растворы электролитов являются устойчивыми ионными системами, содержащими сольватированные катионы и анионы. [c.75]

    Сольватация (для водных растворов — гидратация) — это образование прочного соединения каждого иона с определенным числом дипольных молекул растворителя в результате электростатического взаимодействия ионов с дипольными молекулами растворителя. Число связанных с ионом молекул растворителя называется сольватным или гидратным числом иона. Если прочность образовавшегося соединения достаточно велика, то ион вместе с сольватировавшими его молекулами совершает тепловое движение в растворе как одно целое. В этом случае говорят о первичной сольватации (гидратации) ионов. [c.161]

    Термодинамические расчеты показывают, что образование ионов в электролитах (при низких концентрациях) сопровождается уменьшением энтропии. Это указывает на то, что появление в растворе ионов приводит к упорядочению раствора. Дипольные молекулы связываются с ионами (сольватируются), ориентируясь при этом. О взаимодействии дипольных молекул с ионами свидетельствует также сжатие растворов электролитов, вызванное действием на молекулы растворителя электрического поля, достигающего очень большой величины вблизи иона. Величины подвижности ионов под воздействием внешнего электрического поля также подтверждают сольватацию ионов. Таким образом, часть молекул растворителя связана прочными электростатическими связями с ионами. [c.162]

    В неводных растворах отступления от электростатической теории наступают еще при более низких концентрациях, чем в водных растворах. Было показано, что электропроводность в общем виде имеет очень сложную зависимость от концентрации. Это несовпадение теории с экспериментальными данными объясняется рядом явлений, которые наблюдаются в более концентрированных растворах и которые теория Дебая не учитывает. К ним относятся явления ассоциации ионов и влияние изменения сольватации ионов. [c.103]

    Бокрис различает первичную и вторичную сольватацию. Первичная сольватация состоит в прочном связывании ионов молекул растворителя. Эти связанные молекулы совершают броуновское движение вместе с ионом, как целое. Вторичная сольватация представляет электростатическое взаимодействие молекул растворителя с первично сольватированным ионом. Самойлов ввел термины ближняя и дальняя гидратация, смысл которых близок к терминам первичная и вторичная сольватация. [c.137]

    Явление гидратации (и общем случае, сольватации) заключается в том, что ионы растворенного вещества окружены растворителем и движутся с некоторой его частью, вступающей с ним во взаимодействие. Различают первичную (ближнюю) и вторичную (дальнюю) гидратации. Первичная гидратация заключается в прочном связывании ионов молекул воды, вплоть до образования донорно-акцепторных связей. Вторичная— представляет собой электростатическое взаимодействие молекул поды с первично гидратированными ионами. Энергетический эффект гидратации довольно значителен и составляет примерно 300— 4000 кДж/моль. Значения теплот ЛЯ и координационных чисел п гидратации отдельных ионов при бесконечном разбавления и 25°С приведены ниже  [c.202]

    Уравнение (165.10) хорошо согласуется с экспериментальными данными для разбавленных растворов (до 2 10 г-экв/л). При больших концентрациях это согласование нарушается, что связано с влиянием на электрическую проводимость сольватации и ассоциации ионов —эффектов, усиливающихся с ростом концентрации раствора, которые не учитываются электростатической теорией растворов. Увеличение размеров сольватной оболочки сопровождается снижением скорости движения иона в электрическом поле. Образование ассоциатов — ионных пар и тройников (см. 158) —приводит к тому, что часть ионов не участвует в переносе электричества. Для расчета электрической проводимости концентрированных растворов используют полуэмпирические уравнения, например уравнение Шидлов-ского  [c.462]

    За пределами строгой количественной теории Дерягина остались такие факторы устойчивости, как сольватация поверхности ч1стиц и структурно-механические свойства адсорбционных слоев. Один из возможных путей учета сольватации в рамках теории устойчивости предложен Ю. М. Глазманом. По его мнению, электростатическое отталкивание соль-ватированных частиц можно рассматривать с позиций расположения внутренней обкладки двойного ионного слоя на внешней стороне сольватного слоя, что равносильно увеличению радиуса действия электростатических сил. Сольватные слои, по определению Дерягина, представляют собой пограничные с дисперсной фазой области среды, обладающие отличными от остальной среды механическими и термодинамическими (или теми и другими) свойствами. [c.8]

    Необходимо иметь в виду, что кал<дому фактору устойчивости соответствует специфисескнй метод его нейтрализации. Например, действие электростатического фактора значительно снижается при Еведенни в систему электролитов, которые сжимают двойной электрический слой. Сольватация при адсорбционно-сольватном факторе может быть исключена лиофобизацпей частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. [c.276]

    Как указано выше, электростатический фактор устойчивости вызывает уменьшение поверхностного натяжения вследствие образования двойного электрического слоя на поверхности частии. При действии адсорбционно-сольватного фактора в отсутствие этого слоя поверхностное натяжение уменьшается в результате сольватации поверхности частиц. В соответствии с уравнением Дюпре для работы адгезии взаимодействие дисперсионной среды с поверхностью частиц приводит к уменьшению межфазного натяжения. Поверхность частиц в системах с адсорбцнонио-сольватным [c.337]

    I. Магнийорганические соединения, будучи нуклеофильными реагентами, не являются, однако, веществами, диссоциированными на ионы. Поэтому нуклеофильная реакционная способность этих реагентов ниже, чем у анионов "ОН, 8Н и др. Как уже отмечалось, степень ионности связи С—Мд в реактиве Гриньяра составляет 35%. Правда, в эфирном растворе она может повыситься из-за сольватации атома магния молекулами эфира, отчего положительный заряд на атоме магния уменьшается, частично переходя на атомы кислорода молекул эфира. Это уменьшает электростатическое притяжение органического радикала К к магнию и увеличивает его анионоидный характер. Однако полного гетеролиза связи С—Мд с образованием карбаниона К все равно не происходит. Таким образом, более корректно схему реакции можно изобразить так  [c.267]

    Легко видеть слабые стороны такого объяснения агрегативной устойчивости. Весьма трудно представить себе возникновение в результате сольватации противоионов вокруг лиофобных частиц сплошных сольватных оболочек, препятствующих слипанию частиц прн их сближении. В самом деле, сольватные йболочки из полярных молекул среды образуются отдельно вокруг каждого противоиона двойного слоя. Это должно приводить к тому, что на границе, разделяющей оболочки двух соседних одноименно заряженных противоионов, молекулы среды, представляющие собой диполи, будут обращены друг к другу одноименно заряженными концами и< следовательно, будут испытывать взаимное отталкивание. Кроме того, следует помнить, что микроструктура окружающего частицы слоя непрерывно меняется в результате теплового движения ионов. Понятно, > то при таких условиях говорить о создании в результате притяжения и ориентации диполей какого-то синюшного слоя из сцепленных друг с другом ионов и молекул среды, нужного для обеспечения положительного раскли-яивающего давления или упругости сольватной оболочки, просто невозможно. Положительное расклинивающее давление, обусловливающее агрегативную устойчивость лиофобных коллоидов, может возникать лишь в результате деформации ионных атмосфер, т. е. может определяться только электростатическими силами. [c.282]

    СОЛЬВАТАЦИЯ (лат. solvo — растворяю) — электростатическое взаимодействие между частицами (ионами, молекулами) растворенного вещества и растворителя. С. в водных растворах называют гидратацией. Образовавшиеся в результате С. молекулярные группы называют- [c.232]

    Однако экспериментально на моделях Дерягиным с сотрудниками было показано, что даже значительное увеличение концентрации электролита (до 1 н. Na l) не уничтожает полностью энергетического барьера между частицами и на небольших расстояниях между ними ( 100А) существуют значительные силы отталкивания. Так как в этом случае невозможно говорить о силах электростатического отталкивания (отсутствует диффузная часть двойного электрического слоя), то Дерягиным введено представление о силах иной природы, по-видимому, связанных с сильной сольватацией поверхности и особой структурой образующихся сольватных слоев. Оба вида сил, как электростатического, так и сольватационного характера Дерягин объединяет под общим названием расклинивающего давления. [c.241]

    Как показывают данные рентгеноструктурных исследований, вещества, обычно ведущие себя как сильные электролиты, например Na l, в твердом состоянии построены из ионов. Эти ионы удерживаются в узлах кристаллической решетки в основном электростатическими силами, определяемыми законом Кулона. При растворении Na l в воде, имеющей большую диэлектрическую постоянную (около 80), силы взаимодействия между нонами ослабевают. Это явление может быть описано как результат взаимодействия ионов с дипольными молекулами воды, следствием чего является гидратация ионов (в общем случае сольватация). [c.147]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]


Смотреть страницы где упоминается термин Сольватация электростатическая: [c.144]    [c.115]    [c.15]    [c.283]    [c.157]    [c.390]   
Неформальная кинетика (1985) -- [ c.174 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте