Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фундаментальные свойства

    Третичная структура белковой молекулы образуется при свертывании поли-пептидной цепи в компактную трехмерную систему (в случае ферментов это, как правило, сферическая глобула). При рассмотрении сил, определяющих свертывание полипептидной цепи (цепей), прежде всего укажем на следующее фундаментальное свойство белков полипептидные цепи стремятся свернуться так, чтобы во внут- [c.11]


    Природа и количество ПАВ, входящих в защитные оболочки, в основном определяют коллоидно-химические свойства латексов. Все другие компоненты системы, в том числе и полимер, образующий латексные глобулы, как правило, в гораздо меньщей степени влияют на коллоидно-химические характеристики и в первую очередь на такое фундаментальное свойство латексов, как устойчивость. [c.588]

    I Закон Гесса справедлив для любых химических процессов, происходящих с изменением энергии. Кроме теп лот химических реакций, с его помощью можно рассчи тывать энергии химических связей, кристаллических ре щеток, теплоту растворения и др. Закон Гесса открыт в период становления закона сохранения энергии. В нем впервые выявилось фундаментальное свойство внутренней энергии системы, как функции состояния, т. е. независимость внутренней энергии системы от пути перехода из начального состояния в конечное. [c.155]

    В данной главе приведен хронологический рассказ о научном процессе, посредством которого ученые прищли к выводу, что химические соединения построены из определенного числа атомов различных элементов, имеющих индивидуальные атомные массы, а затем постепенно установили надежную и согласованную таблицу атомных масс. Представление об атомах возникло скорее как философское понятие, чем как средство описания веществ и реакций. Антуан Лавуазье заложил фундамент новой химии, доказав, что масса является фундаментальным свойством, сохраняющимся в химических реакциях. Джон Дальтон превратил философское понятие об атомах в реальность, показав, что атомистическая теория способна объяснять экспериментальные наблюдения, результатом которых явились закон эквивалентных отношений и закон кратных отношений. [c.295]

    Объем действительно сохраняется при 110°С, но этого не происходит при любой температуре, когда вода находится в жидком состоянии. Масса является более фундаментальным свойством, чем объем. [c.506]

    Квантовохимический подход к прогнозированию гетерогенных катализаторов опирается на методы расчета электронной структуры молекул и твердых тел [7—11]. Наиболее фундаментальными свойствами твердых тел, определяющими характер хемосорбции и катализа на них, являются параметры их энергетической зонной структуры, такие, как энергия уровня Ферми, плотность состояний на границе Ферми, ширина энергетических зон и т. п. Реальная структура катализатора проявляется в деформации энергетических зон вблизи поверхности, наличие дислокационных дефектов, неупорядоченности структуры, а также в изменениях, порождаемых взаимодействием катализатора с субстратом. Все это необходимо принимать во внимание при прогнозировании катализаторов. [c.60]


    Пространства, где оно неприменимо, но и собственно фундаментальными свойствами степенных рядов [75, 76]. По-видимому, истинная причина такого поведения связана с исчезновением членов ряда, изменяющихся экспоненциально с г. При разложении по обратным степеням г экспоненциальные члены будут потеряны или убывают до нуля быстрее, чем любой ряд по обратным степеням (например, асимптотические ряды для таких функций тождественно равны нулю). Исчезновение экспоненциальных членов в конечном счете приводит к расходимости всего выражения [77]. Таким образом, для случая дальнодействующих сил разложения по обратным степеням г являются асимптотическими. Они удобны и точны при больших г, но неприемлемы для промежуточных и малых значений г. [c.205]

    Мольные величины и плотности не зависят от размера системы, т. е. они не обладают свойствами экстенсивных параметров, определяемых по уравнению (20.6). Поэтому в литературе их часто называют интенсивными величинами состояния. Эта терминология ошибочна и ее следует избегать. Мольные величины и плотности именно не обладают фундаментальными свойствами интенсивных параметров, определяемых уравнением (20.7), [c.97]

    В формулировке (17.2) дополнительные условия экстремальной задачи выражены через экстенсивные параметры всей системы в целом, относящиеся к представлению энергии. Поэтому можно ожидать, что при формулировке условий равновесия при помощи результата преобразования Лежандра внутренней энергии одно или несколько дополнительных условий можно выразить через интенсивный параметр всей системы в целом. Это предположение (правильность которого будет доказана) ясно показывает природу задачи, которая здесь возникает. В то время как именно для гетерогенной системы каждый экстенсивный параметр равен сумме соответствующих экстенсивных параметров фазы, интенсивные параметры, согласно 15, определены только для каждой фазы, но не для всей системы в целом. Определение экстенсивных параметров для всей системы в целом основано на фундаментальном свойстве (20.6). Аналогичным образом определение интенсивных параметров основано на фундаментальном свойстве [c.112]

    Несмотря на все это, Д. И. Менделеев не только открыл периодическую закономерность, но и понял, что эта закономерность представляет важнейший закон, что в ней проявляются фундаментальные свойства вещества, и это дало ему возможность уверенно предсказать свойства новых, еще не открытых элементов, что справедливо было отмечено Ф. Энгельсом как научный подвиг. Эти предсказания блестяще оправдались. Так, например, для галлия, названного Д. И. Менделеевым экаалюминием, он предсказал следующие значения свойств атомная масса 68, плотность 5,9—6, атомный объем 11,5. Оказалось, что у галлия атомная масса равна 69,7, плотность 5,96 и атомный объем 11,6. Дальнейшее развитие химии и физики позволило подвести теоретическую базу, объяснить периодический закон, вывести его как следствие законов, описывающих элементарные свойства вещества. [c.454]

    В восьмом ряду дополнительное осложнение связано с тем, что после лантана La идут 14 элементов, чрезвычайно сходные с ним по свойствам, названные лантаноидами. В приведенной таблице они размещены в виде отдельного ряда. Таким образом, восьмой и девятый ряды образуют большой период, содержаш,ий 32 элемента (от цезия s до радона Rn). Наконец, десятый ряд элементов составляет незавершенный 7-й период. Он содержит лишь 21 элемент, из которых 14, очень сходные по свойствам с актинием Ас, выделены в самостоятельный ряд актиноидов. Как мы теперь знаем, такая структура таблицы является отражением фундаментальных свойств химических элементов, связанных с особенностями строения их атомов. [c.22]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    Качественным отличием волокнообразующих полимеров является способность макромолекул изменять свою форму в результате теплового движения, а также под влиянием разнообразных внешних воздействий. Гибкость макромолекул является тем фундаментальным свойством, которое определяет динамику структурообразования в полимерных системах. [c.9]

    Структура химических волокон, пленок и других полимерных материалов предопределяется как комплексом свойств макромолекул соответствующих волокнообразующих высокомолекулярных соединений, так и способами их взаимной упаковки в полимерном теле (надмолекулярной организацией полимерного субстрата, морфологией полимерного материала). Как отмечалось выше, фундаментальным свойством, отличающим полимеры от низкомолекулярных соединений, является гибкость макромолекул. [c.89]


    Несмотря на все это, Д. И. Менделеев не только открыл периодическую закономерность, но и понял, что эта закономерность представляет важнейший закон, что в ней проявляются фундаментальные свойства вещества, и это дало ему возможность уверенно предсказать свойства новых, еще не открытых элементов, что справедливо было отмечено Ф. Энгельсом как научный подвиг. Эти предсказания блестяще оправдались. Так, например, для галлия, назван- [c.577]

    Позднее американский биохимик Фокс описал экспериментальные условия, в которых термическая конденсация смеси аминокислот приводила к образованию полимеров. Такие смеси полипептидов образовывали в соленой воде проте-ноидные микросферы и проявляли в присутствии АТР многие черты поведения, характерного для клеток. Фактически капли Опарина и Фокса вели себя как термодинамически открытые системы. Это составляет одно из фундаментальных свойств живой материи. [c.188]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Оба эти фундаментальных свойства ферментов (способность ускорять реакцию и специфичность катализа) часто взаимосвязаны, и эта [c.127]

    Изданное в 1956 году на русском языке Руководство... широко вошло в повседневную практику наших учебных заведений и научных учреждений. Им пользуются отнюдь не только неорганики, но и химики других специальностей, а также представители многих других профессий — технологи, биологи, геологи и другие. Сведения, содержащиеся в новом издании, касаются оптимальных путей синтеза и фундаментальных свойств неорганических соединений. Поэтому их ценность и новизна сохранятся на протяжении еще многих лет . I [c.671]

    Координацию можно рассматривать как одно из фундаментальных свойств вещества, заключающееся в способности ча- [c.126]

    Квантовые числа п, I н т1, фигурирующие в решении уравнения Шредингера для атома водорода, не полностью характеризуют движение электронов в атомах. Экспериментально установлено, что электрон имеет еще одно фундаментальное свойство, называемое спином. Спин проявляется в существовании у электрона собственного момента импульса и связанного с ним магнитного момента. Упрощенно спин можно представить как вращение электрона вокруг собственной оси. Проекция соба-венного момента импульса электрона может иметь только дна значения + /оА и - /гh (знаки плюс и минус соответствуют различным направлениям вращения электрона). Поэтому в теорию строения атома введено спиновое квантовое число т,, которое может иметь только два значения +>/2 и т. е. [c.29]

    Атомная масса. Фундаментальным свойством химических элементов является атомная масса (атомный вес), представляющая собой величину массы атома, выраженную в атомных единицах массы. Применение особой единицы для измерения атомной массы связано с тем, что массы атомов чрезвычайно малы (10-2 4- [c.12]

    Валентность элементов. Понятие валентности как числа единиц сродства данного атома к другим используется в химии давно. До создания квантовой теории химического строения были установлены такие ее свойства, как целочисленность и направленность/ которые считались фундаментальными свойствами ковалентной связи. Было обнаружено существование кратных (двойных и тройных) связей, переменной валентности элемента в различных соеди- [c.81]

    Классическая механика рассматривала чистое движение материальной точки и общие законы движения, соверщенно не принимая во внимание свойства самого движущегося тела, В квантовой механике пришлось встретиться с такими особенностями движущихся объектов, которые делают невозможным одновременное измерение импульса и координаты с любой степенью точности. Принципиально невозможно полностью изолировать частицу от окружающей среды, рассматривать ее вне времени и пространства — их неразрывная связь составляет фундаментальное свойство природы. [c.26]

    Дуализм волн и частиц—фундаментальное свойство микромира оно означает невозможность независимого рассмотрения таких характеристик частицы, которые в классической физике разделялись. Обратим внимание на результат, к которому приводит уравнение Шредингера, если система представляет собой свободную частицу. Свободная частица, описываемая бесконечной волной, есть простейшая система, находящаяся на низшей ступени организации. Энергия частицы не квантуется и, наблюдая ее, мы, вообще говоря, могли ничего не узнать о стационарных состояниях и скачкообразных переходах между различными энергетическими уровнями, столь существенно определяющих химические свойства элемента. Одним из наиболее глубоких по содержанию утверждений квантовой теории является признание дискретности состояний тех систем, на которые наложены какие-либо ограничения. Будем считать наборы различных ограничений признаками организации. <2 этой точки зрения следующая ступень организации есть частица, находящаяся в потенциальном ящике. Значения ее энергии уже квантованы. Эта организация способна существо- [c.50]

    В настоящее время очень мало известно о внутреннем строении электрона. Однако его взаимодействие с внешними электромагнитными полями указывает на наличие у него собственного (помимо орбитального) момента количества движения, являющегося таким же фундаментальным свойством электрона, как его масса и заряд, и определяемого уравнением, аналогичным (4.12) для орбитального момента  [c.62]

    Следовательно, для разных электронов, которые описывались бы разными функциями, вероятности находиться в выбранном элементе объема т были бы различны. Это противоречит общему выводу квантовой механики, изложенному выше и основанному на фундаментальном свойстве антисимметрии волновой функции системы по отношению к перестановке пространственных и спиновых координат любой пары электронов. Таким образом, нет внутренних электронов атома и внешних его электронов, электрический заряд в каждом элементе объема как вблизи ядра, так и вдали от ядра создается в равной мере каждым из электронов атома. [c.59]

    Итак, в модели почти свободных электронов мы установили, что электронные уровни энергии образуют энергетические зоны. Это — фундаментальное свойство, которое имеет место и в приближении сильной связи оно обусловливает многие рхругие свойства кристаллических тел. Природа его — в брэгговском отражении. На электронные волновые функции накладывается периодичность решетки, что и приводит к расщеплению энергии.(Величйна разрыва зависит от интенсивности соответствующей фурье-компоненты (У ) потенциала. [c.124]

    Для характеристики конкретного вещества введено понятие удельной намагниченности а = М/т (т—масса тела), которое полностью отражает специфику его взаимодействия с внешним полем. Однако во многих случаях удобно пользоваться понятием удельной магнитной восприимчивости х, являющейся коэффициентом пропорциональности в соотношении а = хЯ, не зависящим ни от размеров тела, ни от напряженности поля, а определяющимся только фундаментальными свойствами вещества и в некоторых [c.705]

    Древнегреческие философы не придавали никакого значения точным измерениям массы в химических реакциях. Об этом не думали и средневековые европейские алхимики, металлурги и ятрохимики (химики, применявшие свои знания в медицине). Первым, кто осознал, что масса является фундаментальным свойством, сохраняющимся в процессе химических реакций, был великий французский химик Антуан Лавуазье (1743-1794). Суммарная масса всех продуктов химического превращения должна точно совпадать с суммарной массой исходных веществ. Установив этот закон, Лавуазье опроверг прочно укоренившуюся флогистонную теорию горения (см. гл. 6). Он показал, что при сгорании вещества оно соединяется с другим элементом, кислородом, а не разлагается с выделением гипотетического универсального вещества, которое называли флогистоном. Закон сохранения массы является краеугольным камнем всей химии. Но в химических реакциях сохраняется не только суммарная масса веществ до начала реакции и после ее окончания должно иметься в наличии одно и то же число атомов каждого сорта независимо от того, в сколь сложных превращениях они участвуют и как переходят из одних молекул в другие. [c.63]

    Как только химикам стало ясно, что именно масса-а не объем, плотность или какое-нибудь другое поддающееся измерению свойство - является фундаментальным свойством, сохраняющимся в процессе химических реакций, они стали пытаться установить правильную шкалу атомных масс (атомных весов) для всех элементов. О том, как это делалось, рассказано в гл. 6 результатом этой многолетней работы явилась таблица естественных атомных масс, помещенная на внутренней стороне обложки этой книги. Как мы уже знаем из гл. 1, молекулярные массы молекулярных соединений и формульные массы немолекулярных соединений (например, солей) определяюгся путем суммирования атомных масс всех входящих в их состав атомов. [c.64]

    Механо-реологические свойства в общем случае зависят от времени и нелинейны. Сужая круг задач, ограничиваются постоянными во времени и линейными моделями. Реологические свойства могут быть фундаментальными и сложными [11]. Фундаментальными являются упругость, вязкость, пластичность и прочность. Сложные свойства представляют собой комбинацию фундаментальных свойств и модели, они отражают сложное поведение веществ, являются комбинацией фундаментальных (элементарных) моделирующих элементов. По предложению Мизеса идеализированным материалам и соответствующим им моделям и уравнениям присвоены имена ученых, которые впервые предложили эти модели (Гука, Ньютона, Максвелла и др.). [c.25]

    Если при поиске обнаружено, что имеется несколько вариантов доказательства истинности подцели (т. е. есть несколько фактов или правил, сопоставимых с ней), то ПРОЛОГ автоматически отмечает так называемую точку возврата, т. е. запоминает альтернативные варианты решения. Если в какой-то момент выполнения программы очередная подцель не может быть вьшолнена, автоматически производится возврат к последней отмеченной точке возврата и ПРОЛОГ пытается найти другой вариант доказательства (или, что то же самое, другой путь выполнения программы). Автоматический перебор всех возможных вариантов решения является фундаментальным свойством языка ПРОЛОГ, которое часто оказывается крайне полезным и значительно сокращает объем текста программы. Кроме фактов и правил, определяемых про-1-раммистом, в программе можно использовать так называемые встроенные предикаты, вьшолняющие всевозможные действия — вычисления, сравнение величин, ввод-вывод и др. Как видим, вместо десятков разнообразных операторов, из которых конструируется программа в процедурных языках, в языке ПРОЛОГ имеется всего один вид оператора —правило, что и определяет лаконичность языка. [c.221]

    Таким образом, здесь обнаруживается такое фундаментальное свойство сыпучей среды, как шамять напряжений. Любое динамическое воздействие, приложенное к сыпучей среде, не проходит бесследно для нее, запоминается ею до предела насыщения информацией, выраженной через напряжения. Предел этой информации определяется физико-механическими свойствами зернистой среды. [c.11]

    С точки зрения этой теории различие между независимым и зависимым от времени изменением структуры заключается в более низком значении ki для последнего. Применение теории к вязкости эмульсий дало различные значения к ш к для разных концентраций дисперсной фазы. Пока нет опубликованных данных, показывающих возможность проинтегрировать эти константы скорости так, чтобы подтвердить справедливость кинетической теории. Согласно Денни и Бродки, наибольшим недостатком метода является то, что обратное вычисление для восстановления основной диаграммы сдвига по известным значениям констант потребовало бы больше информации, чем значения констант последующее развитие должно рассматриваться скорее как способ связать течение с фундаментальными свойствами материалов, чем изображение течения жидкости . [c.247]

    В отличие от низкомолекулярных соединений полимеры существуют только в конденсированных афегатных состояниях жидком и твердом. Однако фундаментальное свойство высокомолекулярных соединений - гибкость макромолекул - обусловливает возможность реализации различных способов взаимной упаковки полимерных цепей и, следовательно, разнообразие фазовых состояний. [c.122]

    Биоорганическая химия сблизила и иереилела практическую деятельность химика-органика и биохимика. В данной главе авторы постарались показать взаимосвязи между органической химией и биохимией, с одной стороны, и химией белка и медицинской химией (фармакологией) —с другой. Как основной используется химический подход, н механизм биохимических реакций описывается в сравнении с их синтетическими моделями. Органический синтез и биосинтез пептидной и фосфоэфирной связи (гл. 3) рассматриваются параллельно таким образом выявляется удивительный ряд сходных закономерностей. Каждая аминокислота представлена как отдельное химическое соединение с уникальным набором свойств. Способность аминокислот к диссоциации обсуждается в терминах, принятых в органической химии для кислот и оснований, и фундаментальные свойства аминокислот подаются читателю так, чтобы не было впечатления, будто аминокислота — это нечто совершенно особенное. Химия аминокислот представлена как часть курса органической химии (реакции ал-килирования, ацилирования и т. п.), а сведения по биохимии рассмотрены с химической точки зрения. [c.26]

    Современное производство по переработке нефтяного сырья или вьшуску нефтехимической продукции- это чрезвьгчайно сложная иерархическая система, надежность которой обусловливается надежностью ее структурных составляющих [24, 25]. Функционирование подобного технического объекта происходит в соответствии с законами так назьшаемых больших систем, одним из фундаментальных свойств которых является специфическое реагирование в определенных состояниях (бифуркащюн-ных точках) на внешние воздействия. Поведение системы в окрестности бифуркационной точки может быть описано на основе принципа синергизма Согласно этому принципу в критической области даже незначительное внешнее воздействие может привести к тому, гто система выйдет из положения неустойчивого равновесия и резко изменит свое состояние [26, 27, 28]. [c.19]

    Соответственно, рассмотрение указанных фундаментальных свойств и переходов между различными релаксационными состояниями (о терминологии см. гл. I) должно вестись с позиций физической кинетики, подкрепленных термодинамикой и статистикой. Именно таков характер изложения в основных главах книги (с II по VIII). [c.7]

    Клеммы входа, которые помечены (+ и —), называются неннвер-сионными и инверсионными входами, и входы являются дифференциальными (разностными), так как выходное напряжение зависит от разности входных Л и коэффициента усиления А. Фундаментальное свойство операционного усилителя состоит в том, что выходное напряжение является инвертированной (т. е..с обратным знаком) и усиленной разностью выходных напряжений  [c.39]

    В основе термодинамики лежат три обобщения, или принципа первый принцип термодинамики является законом сохранения энергии второй ее принцип характеризует направление всех естественных, самопроизвольно протекающих процессов менее общий третий принцип позволяет определить абсолютное значение одного из фундаментальных свойств вещества — его энтропии (см. 11.3). Эти принципы, или законы, являющиеся обобщением огромного опытного материала, могут быть выражены по-разному часто их формулируют в виде утверждения о невозможности осуществления Perpetuum mobile — вечного двигателя первого рода, в котором производимая машиной работа превышала бы количество подведенной теплоты вечного двигателя второго рода, в котором работа производилась бы за счет одного источника теплоты, и вечного двигателя третьего рода, в котором работа производилась бы за счет охлаждения источника энергии до абсолютного нуля температуры. [c.78]

    Квантовые числа п, I и т, фигурирующие в решении уравнения Шредингера для атома водорода, не полностью определяют движение электронов в атомах. Изучение спектров и другие исследования показали, что к этим характеристикам следует добавить еще одну. Это связано с тем, что, как показывает опыт, электрон имеет четвертую степень свободы упрощенно можно сказать, что он вращается вокруг собственной осн. Это движение называется спином , оно обусловливает наличие у электрона собственного момента импульса, о столь же фундаментальное свойство электрона, как егозаряд и масса . Как показали экспериментальные исследования, проекция собственного момента количества движения электрона может иметь только два значения и —знаки плюс и минус соответствуют раз- [c.45]

    Говоря о строении какой-то системы, обычно имеют в виду некоторую относительно устойчивую пространственную ее конфигура-цию, т. е. взаимное расположение образующих ее частиц, обусловленное существующими между ними связями вследствие присущих этим частицам сил взаимодействия . Однако даже в химических микросистемах говорить о жесткой пространственной структуре не приходится. Уже в атомах мы сталкиваемся с делокализацией электронов, В простых молекулах наряду с делокализацией электронов, приводящей к образованию химических связей, имеет место и делокализация атомных ядер в результате колебаний, в сложных молекулах к этому добавляется взаимное вращение одних частей молекулы относительно других, приводящее к образованию множества конформаций. Последнее особенно явно представлено в молекулах полимеров, с чем связаны многие их фундаментальные свойства. Чем сложнее система (чем больше число образующих ее частиц), тем больше многообразие возможных состояний, в которых она может находиться при нозбужденин, т. е. при получении энергии. Наиболее упорядоченную структуру система имеет в основном состоянии, т. е. в состоянии с минимально возможной энергией. Чем выше энергия возбуждения, представляющая собой энергию относительного движения составляющих систему частиц, тем больше относительные перемещения этих частиц (если движение можно рассматривать классически) или их делокализация (если. движение имеет квантовый характер). Возбужденные молекулы подвержены разного рода колебаниям и внутренним вращениям одних фрагментов относительно других, а при достаточно высоких энергиях химические связи разрываются, и система приобретает качественно иной структурный облик. Роль вышеуказанных структуроопределяющих факторов неизмеримо возрастает для макроскопических систем. [c.122]

    Доквантовая теория химического строения устанавливала целочисленность валентности, существование кратных (двойных и тройных) связей и переменную валентность элементов в зависимости от того, в какое соеданение элемент входит. Устанавливалась также связь между высшей валентностью по водороду и по кислороду и номером группы периодической системы, в которой находится элемент. С развитием стереохимии представление о валентности дополнилось учением о направленности валентности. Со гласно этому учению химическая связь ха рактеризуется не только определенным чио лом единиц сродства, валентностью, но и направленностью валентности в пространстве. Так принималось, что валентностЯ атома углерода направлены под углом друг к другу в 109°28, т. е. от атома углерода, находящегося в центре Правильного тетраэдра, к его вершинам. Направленность валентности и ее целочисленность считались фундаментальными свойствами ковалентной связи. [c.182]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    Ясно, чтолзучение оптического поглощения в магнитном поле представляет собой многогранный, мощный метод определения фундаментальных свойств полупроводников. Такие измерения не дублируют, а расширяют и дополняют работы по циклотронному резонансу. [c.431]


Смотреть страницы где упоминается термин Фундаментальные свойства: [c.52]    [c.135]    [c.310]    [c.5]   
Свойства и химическое строение полимеров (1976) -- [ c.15 , c.16 ]

Свойства и химическое строение полимеров (1976) -- [ c.15 , c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте