Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень и температура стеклования

    Измерения модуля, прочности и разрывных удлинений пластмасс еще труднее поддаются точной интерпретации, чем подобные измерения для резин, так как здесь мы обычно находимся еще дальше от равновесных условий. В этих случаях желательно производить измерения при температурах, превышающих в достаточной степени температуру стеклования, или температуру плавления кристаллов (если полимер находится обычно в кристаллическом состоянии). Такие измерения при повышенных температурах возможны, если им не препятствует окисление или другие химические реакции. [c.76]


    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]

    При рассмотрении свойств эластомеров на основе ароматического (ТДИ) и алифатического (ГДИ) диизоцианатов было показано [36], что с ростом содержания уретановых групп температура стеклования возрастает линейно. Степень же поперечного сшивания в широком диапазоне не оказывает влияния на температуру стеклования [37]. Различия в поведении систем объясняются несомненным влиянием фениленовых групп, соответственно возрастанием жесткости цепи и снижением ее гибкости. В кристаллизующихся уретановых эластомерах введение ароматических групп снижает самопроизвольную кристаллизацию за счет взаимодействия с близлежащими элементами регулярной структуры. Введение жестких звеньев сказывается на температуре стеклования эластомеров, которая для испытанного ряда диизоцианатов гексаметилен-, толуилен-, фенилен-1,4- и нафтилен- возрастает и становится равной —67,5 —52,5 —50,5 и — 17°С [38]. [c.536]

    Температура стеклования, °С Степень набухания после погружения в течение 1 мес при 27 °С, % (об) -18 -46 -54 -43 [c.565]

    Особенности диффузии и проницаемости газов в мембранах аморфной структуры при температурах выше и ниже температуры стеклования Гст обсуждаются в работах [6, 8, П, 14]. Мембранную матрицу при Г<7 ст рассматривают как неравновесную систему, для которой существенна конфигурационная часть свободного объема, зависящая от степени неравновесности системы, ее предыстории и во многом определяющая интегральные кинетические характеристики подобных материалов [c.87]

    Однако не для каждой группы линейных полимеров практически возможны все три состояния. У некоторых полимеров при очень высокой степени полимеризации или при наличии достаточно прочных связей между цепями при нагревании деструкция начинается раньше, чем достигается их температура текучести, а иногда даже раньше, чем достигается температура, стеклования. Это имеет место также для тех линейных полимеров, у которых [c.569]


    Характерное различие между температурами стеклования и текучести заключается в том, что первая отвечает появлению гибкости цепей, т. е. подвижности отдельных звеньев их,- а вторая появлению способности самих цепей к диффузионному перемещению. Поэтому температура стеклования зависит в первую очередь от интенсивности взаимодействия отдельных звеньев смежных цепей и при высокой степени полимеризации часто практически не зависит от длины цепей (от сте- пени полимеризации), а температура теку- чести определяется взаимодействием цепей в целом и в той или другой степени воз- юо растает с повышением степени полимеризации. [c.571]

    При изометрическом нагреве волокон напряжение, необходимое для достижения заданной деформации е, постепенно увеличивается (рис. 3.6). В области температуры стеклования это напряжение достигает максимального значения а , а затем падает. Значения увеличиваются с ростом степени ориентации полимера и уменьщаются с понижением степени кристаллич- [c.133]

    Напряжения, возникающие при смещении цепи относительно матрицы твердого тела, могут быть также описаны с учетом понятия о коэффициенте трения мономеров [25]. Смысл такого допущения детально обсуждается Ферри [25], который также приводит перечень численных значений коэффициентов трения мономеров для многих полимеров. Естественно, коэффициенты в сильной степени зависят от температуры. Но даже если проводить сравнение при соответствующей - температуре, например при температуре стеклования каждого полимера, коэффициенты трения мономеров изменяются в зависимости от физической и химической структуры цепи на 10 порядков величины. В верхней части интервала значений получим при соответствующих каждому полимеру температурах стеклования 1740 Нс/м для ПММА, 19,5 Нс/м для ПВА и 11,2 Нс/м для ПВХ [25]. Это означает, что сегмент ПВХ, вытянутый при 80°С из матрицы ПВХ со скоростью 0,005 нм/с, преодолевает силу сдвига 0,056 нН на мономерное звено. При более низких температурах коэффициент молекулярного трения, по существу, растет пропорционально интенсивности спектра времен релаксации Я(т), причем увеличение составляет примерно от одного [c.145]

    Изменяя соотношение стирола и дивинилбензола в исходной смеси мономеров, можно в широких пределах варьировать частоту макромолекулярной сетки, а отсюда температуру стеклования и степень набухания сополимера в растворителях (табл. 27). [c.526]

    В случае аморфных полимеров, отжиг которых производится при температуре, превышающей температуру стеклования, естественно ожидать, что разупорядочение молекулярных цепей, являющееся следствием существования внутри- и межмолекулярных зацеплений, приведет к изменению размеров образца. Поскольку процесс дезориентации представляет собой, по существу, процесс релаксации деформаций, его основной характеристикой является время релаксации, увеличивающееся с понижением температуры (см. рис. 3.17 и 3.18). Величина усадки для полностью законченного процесса восстановления оказывается связанной как со степенью ориентации аморфной фазы /ам, так и с уровнем замороженных напряжений в неотожженном образце [см. (3.9-19)]. [c.76]

    Полностью аморфная заготовка (температура стеклования неориентированного полимера составляла Tg = 67 °С) подвергалась различной степени вытяжки. При этом достигалась значительная ориентация молекулярных цепей, которая вызывала появление кристалличности (до 30%). После отжига (температура стеклования [c.76]

    Одним из основных способов улучшения механических свойств линейных полимеров является их вытяжка. Чтобы зафиксировать ориентированное состояние, полученное в результате вытяжки, полимер охлаждают до температур меньших температуры стеклования. Возникающая анизотропия свойств полимеров отражает анизотропию в ориентации макромолекул. Поэтому, измеряя величину анизотропии каких-либо свойств полимера можно получать информацию о степени ориентации его макромолекул. Одним из наиболее чувствительных индикаторов является двойное лучепреломление (оптическая анизотропия) значение коэффициента двойного лучепреломления Лп часто используется в качестве меры ориентации полимера. Установлено, что Дге линейно связан со средним квадратичным отклонением ориентации макромолекул от изотропного состояния. [c.187]

    Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура жидкости непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц, приводящих к изменению ближнего порядка, степени микрорасслоения и других структурных особенностей жидкости. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего в области некоторой температуры стеклования Тс равновесие в ближнем порядке практически уже не успевает устанавливаться и структура жидкости фиксируется . Отсюда следует, что в данном стекле структура примерно такая же, как у его расплава при температуре стеклования. Жидкость можно застекловать не только путем понижения температуры, но и повышением давления. Стеклование может происходить при некотором давлении рс из-за уменьшения подвижности частиц вследствие возрастания межмолекулярного взаимодействия и уменьшения свободного объема. [c.36]


    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    Согласно теореме статистической физики о равномерном распределении кинетической энергии по степеням свободы, справедливой для всех веществ в области применения классических законов физики, теплоемкость полимера (количество теплоты, необходимой для того, чтобы нагреть 1 кг вещества на 1 К) зависит от числа степеней свободы. В стеклообразном или кристаллическом состоянии наблюдаются только колебательные степени свободы, а в высокоэластическом и вязкотекучем, кроме того, и вращательные и поступательные степени свободы. Этим объясняется хорошо известный факт, что при переходе полимера через температуру стеклования его теплоемкость возрастает. [c.267]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие их свойства. При периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, в той или другой степени запаздывает по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет меньшую эластичность, чем при постоянно действующей силе. Вследствие релаксационного характера процессов деформации температура стеклования данного полимера не является величиной вполне постоянной. [c.220]

    При охлаждении среднее значение энергии теплового движения и подвижность молекулярных звеньев уменьшаются, движение принимает характер преимущественно вращательного качания, поэтому молекулы каучука при пониженных температурах находятся в менее свернутом состоянии. При некоторой температуре, которая называется температурой стеклования, молекулы каучука принимают относительно вытянутую форму и каучук становится твердым и хрупким, способным только к упругим деформациям, т. е. переходит в стеклообразное состояние. С повышением температуры подвижность молекулярных звеньев, наоборот, увеличивается, поэтому в области высокоэластического состояния повышение температуры приводит к увеличению деформации при действии заданной нагрузки. При дальнейшем повышении температуры в значительной степени начинают развиваться необратимые пластические деформации, обусловленные понижением межмолекулярного взаимодействия и взаимным перемещением молекул в направлении действующих сил. Каучук ири этом переходит в вязкотекучее состояние, а температура этого перехода называется температурой текучести. [c.83]

    И наконец, когда при дальнейшем охлаждении вязкость становится очень большой, структура перестает изменяться. Температура, ниже которой структура жидкости перестает изменяться , называется температурой стеклования — Т .. Ниже этой температуры изменение удельного объема происходит в малой степени, т. е. наблюдается более низкий коэффициент теплового расширения. Понижение удельного объема после стеклования при дальнейшем охлаждении протекает, так же как и в кристаллических телах, исключительно за счет уменьшения межмолекулярных расстояний. На графике изменения удельного объема жидкости от температуры обнаруживается перелом, соответствующий температуре стеклования Т - [c.87]

    Температура стеклования Гд полимерных материалов - важная характеристика изменения их структуры. Она является функцией количества поперечных связей, образующихся при термоокислительном распаде материала покрытия, степени ориентации макромолекул, количества пластификатора и т.д. [c.29]

    Температура стеклования и температура хрупкости материала покрытия - чувствительные характеристики, позволяющие оценивать степень пространственной развитости и другие изменения структуры. Определяя через определенные промежутки времени Гд и Г материала покрытия, можно судить о характере протекающих процессов старения. [c.40]

    Низкотемпературные свойства полисульфидных полимеров зависят как от структуры углеводородной части полимера, так и от степени его полисульфидности. Увеличение длины углеводородной части основного звена полимера, введение эфирного кислорода снижает температуру стеклования полимеров, а повышение степени полисульфидности, наоборот, ухудшает их морозостойкость [8, 9]. [c.557]

    Степень деформации может сильно меняться с изменением таких параметров окружающей среды, как температура (ниже температуры стеклования /ст жесткость аморфной фазы может быть значительной), и в присутствии пластификаторов, которые увеличивают деформацию. В полимерных мембранах существуют также так называемые паракри-сталлические области переменной степени кристалличности, которые обладают средним сопротивлением деформации по сравнению с кристаллической и аморфной областями. [c.72]

    Пластичное (вязко-текучее) состояние полимеров. Температура текучести, как и температура стеклования, тоже не представляет собой строго определенной константы для данного полимера, так как и пластичность, и текучесть приобретаются данным полимером по мере повышения температуры довольно постепенно и сильно зависят от харак1ера действующей силы и других факторов. Кроме того, эти свойства сильно зависят также от степени полимеризации и от содержания в полимере других веществ, в частности специально вводимых в него пластификаторов. [c.591]

    Измерить г и 2 для битумов невозможно, и исследователи используют в качестве градуировочной жидкости бензол. Результаты,полученные на серии битумов в области температур от 60 до 225 °С, показали, что поверхностное натяжение по мере снижения температуры линейно возрастает. Ниже определенной температуры (которая зависит от типа битума) температурный коэффициент поверхностного натяжения резко увеличивается, что объясняется автора--ми [571 изменением, происходящем в структуре бнтума. Поскольку поверхностное натяжение зависит от групп, лежащих на поверхности, оно чувствительно к изменению структуры молекул. Однако каких-либо резких изменений в структуре битума не наблюдается, вплоть до температуры стеклования. Такое несоответствие следует в значительной степени приписать вязкостным эффектам, которые затрудняют измерение при помсщи газовых пузырьков. Другие факторы будут обсуждаться ниже. [c.56]

    Поливиниловый спирт относится к сравнительно небольшой группе синтетических полимерных соединений, хорошо растворимых в воде, гликолях, глицерине и в то же время обладаюш,их высокой стойкостью к действию большинства универсальных органических растворителей. Особенно ценна высокая масло-, бензо- и керосиностойкость поливинилового спирта, удачно сочетающаяся с высокой упругостью пластифицированного поли-.мера (пластификаторы—глицерин или гликоли) и со способностью его образовывать бесцветные прозрачные, светостойкие пленки и нити, легко формоваться в изделия методом литья под давлением. Пленки и изделия из поливинилового спирта отличаются высокой поверхностной твердостью и низкой хладотекучестью в нагруженном состоянии. Несмотря на присутствие пластификатора в эластичных пленках, они обладают хорошей прочностью, особенно при растяжении ( 600 кг1смР ) и истирании, превышающей прочность резин. Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость вулканизованной пленки натурального каучука. Такая прекрасная газонепроницаемость и высокая температура стеклования поливинилового спирта обусловлены возникновением водородных связей между звеньями соседних макромолекул  [c.284]

    Кристаллический полиэтилентерефталат предстанляет собой очень твердое, белое, непрозрачное вещество температура стеклования полимера 81, температура плавления 264", степень кристаллизации 55—75%. Ориентацией полимерных цепей можно повысить степень кристаллизации полиэфира. Ориентацию можно проводить медленным вытягиванием нити и./1и пленки, нагретой выше температуры стеклования. [c.423]

    Изменение исходного соотношения хлористых винилидена и винила оказывает заметное влияние на степень кристалличности, температуру размягчения, текучесть и растворимость сополимера, а также на температуру стеклования и его упругость. [c.518]

    Для каждого полимера характерна вполне определенная кривая высвечивания. Даже образцы одного и. того же полимера, если они различаются степенью кристалличности, концентрацией межмолекулярных связей и термической предысторией, имеют различные кривые РТЛ. Анализ положения максимумов на кривых высвечивания полимеров разных классов при различных скоростях размораживания образцов в предлеах (от 2 до 60 К/мин) показал, что увеличение скорости размораживания ш сдвигает максимумы свечения в сторону высоких температур в соответствии с соотношением Т =А—Б1 0У. Здесь А и В — константы, характерные для данного полимера. Положение максимумов на кривой высвечивания зависит от дозы предварительного облучения с увеличением дозы температура максимума в результате сшивания полимера смещается в сторону высоких температур. Для совместимых смесей полимеров характерно наличие лишь одного максимума РТЛ при температуре стеклования смеси, причем его положение меняется при изменении соотношения компонентов. Кривые РТЛ гетерогенных смесей полимеров представляют собой сумму кривых высвечивания отдельных компонентов, взятых в определенном соотношении. [c.242]

    Теплоемкость тела зависит от числа внутренних степеней свободы, т. е. возможных видов движегшя молекул. Процесс стеклования характеризуется постепенным изменением теплоемкости с температурой и может быть определен методом ДТА. Изменение теплоемкости отрал<ается па кривых ДТА отклонением от основной линии обычно в виде излома (см. рис. УП,1). Температура стеклования зависит от нескольких факторов молекулярной массы полимера, внутреннего напряжения и в метлпеп степени — от скорости нагревания. [c.109]

    Температура стеклования с ростом давления окружающей среды увеличивается (например, с ростом степени гидравлического всестороннего сжатия). Температура стеклования зависит от химической природы полимера, от природы и количества добавок и модифицирующих агентов. Молекулярная масса не влияет на Тс в области больших молекулярных масс, например больше 50— 100 тыс. Если молекулярная масса невелика, т. е. соответствует молекулярной массе олигомера, то Гс растет с ростом молекулярной массы. Зависимость Гс от молекулярной массы прекращается, когда молекула приобретает гибкость, характерную для высокопо-лимера, а это происходит, когда длина макромолекулы становится заметно больше длины сегмента. Так, Тс полистирола с ростом молекулярной массы до 10 тыс. увеличивается быстро, а дальше вплоть до молекулярной массы 20 тыс. растет незначительно, достигая предела (100°С) при молекулярной массе 20—30 тыс. [c.146]

    Поликарбонаты, как и политерефталаты, отличаются высокой кристалличностью. Кристаллизация поликарбоната наблюдается только выше температуры стеклования, т. е. выше 150 . Степень кристалличности полимера п степень ориентации в расположении кристаллов оказывают решающее влияние на прочностные характеристики. При кристаллизации поликарбоната образуются мельчайшие кристаллические области, не нарушающие прозрачности полимера. Кристаллитные образования характеризуются стабильностью вследствие жесткости макромолекулярной цепи, в состав которой входит большое количество фениленовых групп [107], снижающих гибкость макромолекул. Молекулярный вес применяемых в технике поликарбонатов колеблется от 20 ООО до 80 ООО. [c.714]

    Поливиниловый спирт получают в виде порошка или мелких гранул белого, иногда кремового цвета. Удельный вес поливинилового спирта 1,293 г см , температура стеклования — 80°. Полимер хорошо растворим в воде, гликолях и глицерине, не растворим в одпоатомных спиртах и большинстве органических растворителей, в том числе в различных фракциях нефти. Поливиниловый спирт легко формуется методом литья под давлением или экструзии, образуя прочные прозрачные изделия, пленки, нити. Изделия отличаются высокой поверхностной твердостью и низкой хладоте-кучестью даже в нагруженном состоянии. Прочность на растяжение пленок, пластифицированных глицерином, превышает прочность резин (600 кг/смР). Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость резин нз натурального каучука. Перечисленные свойства поливинилового спирта объясняются межмолекулярпыми водородными связями, возникающими между звеньями соседних макромолекул благодаря наличию в них гидроксильных грунн  [c.819]

    Вблизи температуры стеклования вязкость аморфных полимеров зависит от степени удаленности температуры, при которой она измеряется, от температуры стеклования При этом основное влнй-иие иа вязкость оказывает величина свободного объема (стр 146) Начало отсчета от температуры стеклования определяется тем, что только пр Т >Тс возможгго перемещение молекул, а гзЕсже тем, что при температуре стеклования удельный свободный объем (V B —свободный объем в единице объема вещества) у всех полимеров составляет одну и ту же часть их удельного объема V, а именно, около 2,5% [c.252]

    Определение температуры хрупкости битумов при больших скоростях нагружения можно было бы допустить при условии, что свойства битумов не зависели или в одинаковой степени зависели бы от скорости нагружения. Однако при температурах выше температуры стеклования все свойства битумов, как и других вязкоупругих веществ, зависят от скорости иагруження, причем в различной степени в зависимости от- качества битумов 18, 11,12]. Объективное представление о хрупкости битум-ов можно получить только проведя испытание при временных режимах, соответствующих эксплуатационным. Естественно, что при эксплуатационных режимах нагружения лабораторное испытание практически неосуществимо, поэтому весьма интересным является определение температур хрупкости битумов при нескольких скоростях нагружения с тем, чтобы по установленной зависимости экстраполяцией можно было определить значение хрупкости при скоростях нагружения, соответствующих эксплуатационным. Посколь,ку в битумных и битумоминеральных покрытиях, при эксплуатации возникают напряжения от механических нагрузок, а также термические и усадочные [13—16] при. сложном их сочетании, то представляется целесообразным изучить, влияние качества битумов на устойчивость к разрушению под действием каждого из названных напряжений в отдельности. [c.37]


Смотреть страницы где упоминается термин Степень и температура стеклования: [c.598]    [c.216]    [c.261]    [c.43]    [c.43]    [c.55]    [c.517]    [c.41]    [c.72]    [c.398]    [c.495]    [c.82]    [c.27]    [c.75]    [c.202]    [c.204]   
Акустические методы исследования полимеров (1973) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте