Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость энергии активации

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]


    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    Температурная зависимость коэффициента проницаемости газов обычно описывается уравнением Аррениуса. Проницаемость паров и жидкостей через непористые полимерные мембраны в значительной степени зависит от их растворимости в полимере. При соприкосновении с жидкостями или их парами полимеры в большей или меньшей степени набухают. При этом межмолекулярные силы полимера ослабевают, энергия активации обычно снижается, что приводит к увеличению коэффициента диффузии. В общем случае коэффициент диффузии зависит от концентрации распределяемого вещества в полимере [5]. При сорбции водяного пара полимерными пленками наблюдается сильное отклонение от закона Генри уже при относительной влажности воздуха 40-60% [19]. Решение задачи стационарной диффузии газов и паров через плоскую мембрану при условии зависимости коэффициента диффузии от концентрации дано в работе [5]. [c.538]

    Диоксид углерода занимает промежуточное (между пропаном и метаном) положение по растворимости, а его коэффициенты диффузии Dim.iT, im-> 0) И энергия активации примерно такие же, как для метана. Этим объясняется промежуточное значение коэффициента проницаемости и сдвиг зоны изменения температурной зависимости в область больших давлений, где влияние сорбции особенно значительно. [c.90]


    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]

    Хотя действие излучения не аналогично тепловой денатурации, все же между обоими явлениями имеется тесная связь. Давно известно, что устойчивость белков к денатурации (если последняя характеризуется снижением растворимости белков) понижается под действием ионизирующего излучения [31]. Фрике [79, 80] показал, что относительно малые дозы рентгеновских лучей (33 000 р) не вызывают немедленно заметных изменений свойств яичного альбумина, но они ускоряют тепловую денатурацию. Результаты его работы показывают, что образование разрывов в полипептидных цепях может быть обнаружено только при повышении температуры, когда процесс развертывания специфической белковой структуры происходит с повышенной скоростью. Существование скрытых разрывов подтверждается низкой энергией активации этого процесса. Процесс развертывания сопровождается выигрышем энтропии меньшим, чем [c.229]

    Исследуем влияние энергии активации проницания на температурную зависимость Л, при этом примем, что стандартное давление Рст достаточно мало, следовательно, растворимость определяется законом Генри (3.11), а газовая фаза представляет собой идеальную смесь. [c.86]

    Реакции, которые быстро протекают при комнатной температуре, можно замедлить, снизив температуру. Если энергия активации примерно 40 кДж/моль, то понижение температуры на 100° снижает скорость примерно на 6 порядков. Нижний предел температуры определяется растворимостью реагентов и возрастанием вязкости, если реагенты смешиваются. Выбор термостатирую-щей жидкости определяется рабочим диапазоном температур. [c.287]

    Вещества Ох и Red должны быть растворимы, а концентрации их постоянны. Скорость реакции можно определить по концентрационному уравнению Аррениуса, она пропорциональна энергии активации, необходимой для протекания реакции  [c.102]

    Описанные явления могут в определенной области температур наблюдаться и в порошкообразных смесях взаимно растворимых веществ. Поскольку растекание по поверхности осуществляется путем поверхностной диффузии, а энергия активации поверхностной диффузии в 3—4 раза меньше, чем объемной диффузии, то может существовать область температур, в которой растекание при температуре опыта будет идти с наблюдаемой скоростью, тогда как объемная диффузия будет исчезающе слаба и оба вещества будут относиться друг к другу как взаимно нерастворимые. [c.223]

    Температура. В процессах деструктивной гидрогенизации скорость протекающих реакций, как и во всех химических превращениях, возрастает по мере новышения температуры. При этом могут изменяться и направление реакций, и характер конечных продуктов. На первом этапе (жидкофазная гидрогенизация) очень важно правильно выбрать температурный режим растворения исходного топлива и скорость его нагревания, которые могут иметь различные значения для многообразных твердых топлив. В большинстве случаев конечная температура растворения, обеспечивающая минимальное набухание топлива и максимальное растворение, составляет 370—420 °С. По мере роста температуры уголь подвергается деполимеризации, что ускоряет процесс растворения. При жидкофазной гидрогенизации полученного угольного раствора процессы протекают более интенсивно по сравнению с газофазной стадией, поскольку энергия активации в первом случае примерно в 2 раза выше. Существенным и весьма положительным фактором, влияющим на скорость реакций, цротекающих в жидкой фазе, является то, что растворимость водорода в жидких продуктах, а следовательно, его концентрация и парциальное давление над катализатором увеличиваются с температурой (рис. 6.2 и 6.3). [c.176]


    Количество образующихся побочных продуктов в большей степени зависит от концентрации катализатора, чем от температуры. Учитывая, что основная реакция алкилирования характеризуется высокой энергией активации, оказывается выгодно проводить процесс в присутствии растворимых количеств катализатора при повышенных температурах, так как при этом относительная скорость образования побочных продуктов резко уменьшается [119]. [c.140]

    Так, при исследовании реологических свойств [83] водных растворов капроната и каприлата натрия в интервале концентраций 1—40% и температур 20— 60° лаурата натрия (4—32% 30—60°) и миристата натрия (1—5% 40- 60°) было показано, что установленное при этом практическое постоянство кажущейся энергии активации вязкого течения при различных концентрациях мыла (в среднем около 5—7 ккал моль), отсутствие аномалии вязкости в соответствии с независимостью коллоидной растворимости углеводородов в растворах этих мыл от концентрации подтверждает наличие в этих растворах мицелл преимущественно сфероидальной формы. [c.386]

    Сплавы меди и серебра активность зависит от величины зерен кристаллитов и от величины фазовых границ чистые металлы—плохие катализаторы энергия активации значительно уменьшается при подмешивании другого металла (в пределах растворимости) от 27 ккал для чистого серебра до 17 ккал для серебра с 3% меди [c.238]

    Анализ данных табл. 3.2 и 3.3 позволяет отметить, что введение различных заместителей в полимерные цепи заметно меняет и растворимость, и скорость диффузии, причем энергия активации диффузии, как правило, возрастает. Это сильно воздействует на температурную зависмость проницаемости и, как будет показано далее, на селективность процесса проницания. [c.90]

    Обессеривание с применением твердых реагентов. Представляют интерес опыты по обессериванию сернистого нефтяного кокса из белаимской нефти путем добавления к нему окнслов, гидроокисей и карбонатов щелочных и щелочноземельных металлов [94]. Эти опыты основаны на химическом связывании выделяющихся газообразных сернистых соединений из кристаллитов кокса, сопровождаемом получением неорганических сульфидов, хорошо растворимых п воде. Поскольку энергии активации реакций распада серооргаиических соединений и рекомбинации ненасыщенных сеток ароматических колец различны, скорости реакций (16) и (17) можно регулировать изменением температуры и скорости нагрева кокса. С повышением температуры и скорости нагрева органические соединения серы распадаются более интенсивно, в то время как скорость процессов уплотнения, обладающих меньшей энергией активации, в этих условиях изменяется не так значительно. Исходя из изложенных теоретических представлений, можно проводить низкотемпературное обессерива1ше, если в период между реакциями распада и уплотнения вывести продукты распада первичных сернистых соединений из зоны реакции, например, используя для этой цели твердые реагенты. В этом случае [c.207]

    Энергия активации вязкого течения и значения предэкспоненты уравнения Френкеля — Андраде для исследованных растворов изменяется в соответствии с высказанными выше соображениями о природе дисперсных структур в наполненных растворах ВМС нефти. Здесь важно отметить, что введение сажи в >астворы ВМС повышает степень структурирования и термическую стабильность струкхур. Этим определяется поведение краски при повышенных температурах, когда краска разогревается в печатной машине до 50°С, иногда до 70°С. Из полученных данных видно, что наибольшей термостабильностью обладают растворы асфальтитов. Однако существенным недостатком их как связующих является исчезновение аномалии вязкости уже при 40 "С. Для ее сохранения в умеренных пределах, по-видимому, необходимо их модифицировать асфальтенами или нефтяным пеком. При этом следует обратить внимание на то, что нефтяные пеки содержат в больших количествах карбены, не растворимые в масле МП-1. Но с повышением температуры они начинают растворяться, сохраняя при этом аномалию вязкости. Однако размеры частиц карбенов не должны превышать размеры сажевых. Достижение этого условия является важной рецептурной задачей. [c.264]

    Иногда, если заранее известен характер изменения условий протекания процесса при изменении температуры, удается найти истинные энергии активации. Так, при растворении солей в воде скорость процесса часто ограничена скоростью отвода продуктов реакции и известна температурная зависимость растворимости соли (ст). Тогда по уравне шю (XXIII. 11) [c.282]

    Установлено, что процесс коррозии железа в расплавленных карбонатах лития и калия протекает в диффузионном режиме в несколько стадий. При этом на поверхности металла накапливаются оксидные и солевые пленки, образующиеся из продуктов коррозии. Обнаружено, что скорость коррозии уменьшается со временем за счет образования на поверхности металла оксидов и малорастворимых в расплавленном карбонате ферритов. С увеличением температуры скорость коррозии возрастает. При увеличении продолжительности эксперимента скорость коррозии стремится к постоянному значению. Энергия активации коррозионного процесса равна 3.168ккал/моль. Коррозия железа в расплаве карбонатов определяется растворимостью оксидных и солевых пленок, покрывающих поверхность металла, сцеплением их с основой и скоростью диффузии через пленку окислителей и ионов металла. Толщина пленок, составляющая Юмкм, растет с увеличением температуры и временем выдержки в расплаве. Отмечено уменьшение стационарного потенциала железа с ростом температуры в связи с понижением вязкости расплава. Введение карбоната кальция в расплав способствует понижению стационарного потенциала вследствие образования малорастворимого феррита кальция. При увеличении темпера- [c.25]

    Авторы считают, что влияние радиации на сорбционные свойства полиэтилена объясняется главным образом химическими изменениями в полимере. Влияние этих химических изменений позволяет объяснить изменение растворимости и теплот растворения газов в полиэтилене. Как видно из данных, приведенных в табл. 12, при облучении полиэтилена наблюдается уменьшение коэффициентов диффузии (возрастающее с увеличением размеров диффундирующих молекул) и небольшое увеличение энергий активации диффузии. Предпрлагается, что при облучении полиэтилена происходит пространственно-неравномерное образование поперечных связей, приводящее к возникновению участков полимера с высокой плотностью сшивок. Эти участки вероятно расположены друг от друга на расстояниях, больших, чем протяженность зоны активации В этом случае Ео должна оставаться постоянной, а коэффициенты диффузии [c.105]

    Исследование проницаемости пленок из сополимера этилена с дибутилмалеинатом по отношению к Не, Аг и СН4, растянутых на холоду до 500—600%, показало что одноосная вытяжка приводит вначале к незначительному снижению проницаемости и не изменяет кажущейся энергии активации проницаемости до значений растяжения не более 490%). Однако при дальнейшем растяжении в области образования шейки значения проницаемости снижаются, а энергии активации проницаемости возрастают. Авторы предполагают, что растяжение полимера в области образования шейки приводит к ориентации молекул в аморфных областях, это способствует снижению подвижности сегментов и соответственно уменьшению проницаемости. Значительное уменьшение проницаемости полипропиленовых пленок при их ориентации наблюдалось в работе Близкие к указанным результатам были получены Брандто и Бойером Было показано, что коэффициенты диффузии и растворимости газов изменяются при растяжении таких частично кристаллических полимеров, как полиэтилен, полипропилен и найлон. Величина и направление этих изменений зависят от свойств диффундирующего вещества и температуры эксперимента. Ориентация аморфного поливинилбутираля не влияла на коэффициент диффузии. [c.150]

    Ишикава и Коно [7] изучали кинетику реакции фенола с растворимым природным лигнином, лигнином Класона, оксиэтилп-рованным лигнино.м из ryptomeria japoni a, с бензальдегидом и ванилином, как модельными веществами. Они нашли, что энергия активации реакции фенолиза составляла 8—10 калорий для лигнина и 11 —13 калорий для модельных веществ. [c.553]

    Для подтверждения высказанного предположения проведена серия первопринципных расчетов нитридов А1, Оа, содержащих примесные комплексы ОаК (2Ве, 2Mg + О), (2Ве, 2Mg + 81), (2Ве, 2Mg + Н), (2С + О), АШ (2С + О), где примеси располагались в соседних узлах решетки матрихц [80—84]. Например, в системе GaN Mg изолированный дефект (М ) генерирует набор локализованных состояний с энергией активации -0,2 эВ. Дополнительное введение химически активных донорных центров (О, Н) приводит к возникновению новых межатомных взаимодействий (в комплексах [2Mg(0, Н)]) и понижению энергии акцепторных примесных состояний по схеме рис. 2.13. Кроме того, указанные взаимодействия в значительной мере редуцируют энергию кулоновского отталкивания одноименно заряженных примесных ионов, увеличивая тем самым растворимость дефекта в матрице, что позволяет регулировать число носителей, а замена дальнодействующего кулоновского рассеяния на короткодействующее рассеяние на комплексах повышает их подвижность. [c.55]

    Как уже отмечалось, в качестве активного центра зародышеобразования могут рассматриваться вакансии углерода на торцах кристаллитов. Действительно, несложный расчет числа вакансий углерода на единицу торцевой поверхности графита (с учетом энергии активации диффузии вакансий углерода) дает величину графитового блока 10—50 Нм для того, чтобы математическое ожидание наличия 1—2 вакансий углерода приближалось к единице. Но при этом не нужно забывать, что чем выше организован графит, тем меньше разница в растворимости его алмаза, т. е. тем меньше пересыш,ение в расплаве. Поэтому можно говорить о двойственной роли процесса графитизации а) при большой концентрации слабоорганизованного графита нет или мало активных мест для образования алмаза, но возрастут линейные скорости роста алмазов из числа образовавшихся б) при малых концентрациях слабоорганизованного графита скорость роста алмаза должна возрастать, но одновременно возрастает и рост монокристаллов графита, являющегося конкурирующей фазой. [c.351]

    Для изучения и расчета многокомпонентной диффузии в пол-шостью растворимых и неассоциированных жидкостях Каллинен ([22, 23] предложил рассматривать диффузионную кинетику по аналогии с химической. Рассмотрим кратко основные предпосылки и содержание предложенного им метода расчета. Основываясь на представлениях об активных молекулах и наличии энергетического барьера при диффузии молекул в жидкостях из одного состояния в другое в соответствии с теорией абсолютных скоростей реакций, коэффициенты трения Рц были выражены через энергию активации молекул следующим образом  [c.58]

    Таким образом, кажущаяся энергия активации растет с увеличением концентрации гидрируемого вещества в растворе и с уменьшением его растворимости, т. е. с ростом концентрации пропиоловокислого натрия на поверхности катализатора и уменьшением скорости активации водо-реда. [c.165]

    Если ы-полимер проэкстрагиро-вать бензолом д я удаления перекисей, то скорость повышения его растворимости уменьшается до величины, характерной для чисто термической реакции. Типичные кривые, характеризующие течение реакции, приведены на рис. 19. Эти кривые описываются уравнениями первого порядка относительно концентрации полимера вплоть до точки, соответствующей глубине реакции 90%. Значение этой последней особенности не ясно, так как реакция протекает до глубины 100%. Скорость повышения растворимости полимера при данной температуре быстро уменьшается при увеличении содержания бутадиена одновременно возрастает энергия активации процесса (рис. 20). [c.58]

    Имеются два механизма, по которым может происходить увеличение растворимости полимера—могут разрываться или поперечные связи, или участки цепей между этими связями. Последний механизм более вероятен, так как при разрыве межмолекулярных связей нельзя ожидать образования заметных количеств растворимого полимера сразу же после начала реакции. Если это так, то уменьшение скорости растворения при увеличении содержания бутадиена в полимере может быть обусловлено тем, что в полимерах с большим содержанием бутадиена межмолекулярные связи расположены ближе друг к другу, в результате чего от сетки могут отделяться только сравнительно небольпгае отрезки макромолекул. Увеличение энергии активации является мерой изменения прочности разрываелп.тх связей, вызванного изменением состава цепи. [c.58]

    К уравнениям вида (II, 1) можно отнести зависимости между теплотами образования МеХ (X == С1, Вг, J) и атомным объемом (FtLq)xj [555], теплотами образования и молекулярной концентрацией в рядах ионных соединений [70], теплотами образования и энтропиями соединений в ряду LajOg, e.jOg, PrgOg [14], теплотами сгорания и рефракцией в гомологических рядах органических соединений [556], теплотами смачивания кремнезема одноосновными спиртами и объемом сорбционных пор силикагелей, получаемых из этих спиртов [557], между энергией активации реакций и полярностью заместителей [558, 559], сродством к метильному радикалу и молекулярной рефракцией [560], изобарным потенциалом образования некоторых полийодидов и оптической плотностью [561], парциальными молярными теплотами растворения некоторых газов в воде и их поляризацией [562], эффектом растворимости и показателем преломления [563], электрической прочностью и другими свойствами жидких диэлектриков [564, 565]. [c.101]


Смотреть страницы где упоминается термин Растворимость энергии активации: [c.73]    [c.248]    [c.121]    [c.236]    [c.267]    [c.216]    [c.102]    [c.204]    [c.433]    [c.215]    [c.216]    [c.158]    [c.198]    [c.299]    [c.149]    [c.34]    [c.22]   
Технология серной кислоты (1985) -- [ c.47 , c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия активации



© 2025 chem21.info Реклама на сайте