Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, анодное растворение влияние

    Наряду с положительными свойствами гальванические покрытия имеют недостатки наводороживание основы при нанесении покрытия наличие водорода в изделии вызывает водородную хрупкость, снижающую как длительную, так и циклическую прочность. Влияние гальванопокрытий хромом, никелем, медью на выносливость стали в воздухе в значительной степени связано с появлением в приповерхностном слое остаточных напряжений растяжения, которые при воздействии коррозионной среды вследствие нарушения сплошности этих покрытий, являющихся катодными по отношению к стали, усиливают анодное растворение стали. Остаточные напряжения растяжения — не единственный фактор, вызывающий снижение усталостной прочности стали. Снижение усталостной прочности стали можно объяснить еще и наводороживанием стали при гальваническом нанесении покрытий. Обычно наводороживание стремятся уменьшить последующей термической обработкой. Покрытие, являясь эффективным барьером, затрудняет процесс обезводороживания изделий. Новым направлением является легирование покрытий титаном, поглощающим водород при последующей термообработке. [c.81]


    Известны разные способы обновления поверхности твердых электродов внутри раствора, являющиеся вариантами механической очистки поверхности. Эти методики особенно интересны при изучении явлений пассивации [286, 517, 518] а также адсорбции кислорода и водорода [594, 161]. Томашов и Вершинина [567] исследовали кинетику различных электродных процессов (например, разряд водорода, восстановление кислорода, анодное растворение металла) на электродах с непрерывно обновляемой поверхностью и на таких металлах, как железо, никель и палладий, и наблюдали значительные уменьшения перенапряжений. Кроме того, на некоторых из этих металлов при достаточно быстрой очистке их поверхности исчезало ингибирующее влияние адсорбированных ионов галогенов и катионов тетрабутиламмония на водородное перенапряжение. По-видимому, в этих условиях повторная адсорбция ионов не успевала происходить. [c.170]

    Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117]. [c.34]


    Поляризация катодного выделения водорода, имеющая обычно электрохимическую природу, в существенной мере определяется материалом катода и практически не зависит от концентрации электролита [207]. Величина pH оказывает влияние на поляризацию процесса лишь при низких плотностях тока. Из побочных реакций, которые могут протекать на катоде, следует отметить процесс катодного восстановления сравнительно электроположительных катионов (например, меди, никеля), перешедших в раствор с анода [115]. Данный процесс облегчается в кислых средах. В достаточно концентрированных подкисленных нитратных электролитах может происходить катодное восстановление анионов N0 до анионов N0 , а при значительном отрицательном смещении потенциала до образования аммиака [184]. Восстановление катионов нейтрального электролита (обычно К" , Ма+) невозможно вследствие очень низких электроотрицательных значений их равновесных потенциалов, которые обычно не достигаются в условиях анодного растворения металлов. При исследовании кинетики анодного растворения металлов широко применяются методы снятия поляризационных кривых и температурно-кинетический метод. Рассмотрим несколько примеров использования этих методов применительно к анодному растворению металлов и сплавов различной природы. [c.35]

    Медь определяется в растворе, не содержащем благородных металлов, таких как платиновые металлы, серебро, а также ртуть, висмут и других, и содержащем серную и азотную кислоты. Чтобы исключить влияние примесей азотистой кислоты, которая может окислить осадок — медь, иногда добавляют мочевину или сульф-аминовую кислоту. Для предотвращения возможного окисления осадка можно рекомендовать такл е проводить процесс при низкой температуре и малой плотности тока. Наличия хлорид-ионов следует избегать по двум причинам 1) если не добавить соответствующий анодный деполяризатор, например гидразин или гидроксиламин, то происходит анодное растворение платины и выделение ее на катоде 2) если не использовать метод регулируемого катодного потенциала [27], то Си стабилизируется в виде хлоро-комплекса, и таким образом медь(1) остается в растворе и вновь окисляется на аноде. Классическая методика [28] электроосаждения позволяет отделить медь от цинка, кадмия, кобальта, никеля, марганца и алюминия. [c.299]

    Существенным вопросом является состав анодов. Многими авторами было замечено, что аноды из ферромарганца легко пассивируются. Р. И. Агладзе с сотрудниками установили, что пассивацию анодов вызывает примесь никеля, причем вредное влияние никеля можно уничтожить добавкой кремния (на 0,1% никеля — 0,3% кремния). Такие аноды не подвержены пассивации. Аноды болтами крепятся к анодным штангам и загружаются в электролизеры. Катодами служат железные или медные коробки, через которые циркулирует охлаждающая вода. Анодное растворение марганца протекает согласно уравнению  [c.383]

    В литературе имеются и другие теории, объясняющие влияние pH раствора на скорость электродных реакций, в которых участвуют ионы железа [48]. Общим для этих теорий является предположение о непосредственном участии гидроксокомплексов железа (ионов ОН ) в медленной электрохимической стадии. Скорость анодного растворения никеля [49—51] и кобальта [52—54] также возрастает с увеличением pH раствора, что говорит о сходном поведении анодов из металлов группы железа в кислых некомплексных электролитах. [c.150]

    Анодное растворение никеля характеризуется схемами, аналогичными рассмотренным выще [65—68]. В табл. 3.7 и 3.8 приведены результаты изучения влияния на анодный процесс ингибиторов П-2, П-3, П-4, МП-1, МП-2, ФАК, ДМСО и диметилформамида (ДМФА). [c.77]

    Подобно тому, как было объяснено влияние галогенид-ионов на кинетику и механизм анодного растворения железа, можно объяснить влияние хлорид- и сульфат-ионов на анодное поведение никеля. [c.79]

    Рассмотрим влияние хлорид-ионов на кинетику анодного растворения никеля в кислых сульфатных растворах. [c.80]

    На рис. 2 представлены зависимости выхода по току при анодном растворении никеля От частоты и величины общего тока. Область выше кривой обусловлена влиянием емкостного тока. С ростом частоты, как видно из рис. 2, доля емкостного тока линейно возрастает. С увеличением общего тока доля емкостного тока в общем балансе электродного процесса снижается за счет увеличения тока реакции. [c.48]

    Анодное поведение никеля, как и большинства других металлов, зависит от состава раствора, в котором проводятся измерения особенно это относится к кислым растворам. Кислые растворы, содержащие хлор-ионы [13] или некоторые соединения серы [6], оказывают особенно заметное влияние, повышая скорость анодного растворения в активной области и препятствуя пассивации, т. е. расширяя активную область. [c.139]


    В развитии и обосновании этих представлений основная заслуга принадлежит советским ученым. Исследуя растворение железа в щелочах, Б. Н. Кабанов и Д. П. Лейкис впервые пришли к выводу о непосредственном участии ионов ОН в первичной стадии анодной реакции. Б. В. Эршлер обнаружил ускоряющее действие ионов 01 на анодное растворение платины в кислых растворах. Систематические данные по влиянию анионов получены Я. М. Колотыркиным с сотрудниками при исследовании кинетики растворения кадмия, железа, никеля, индия, висмута и амальгам двух последних металлов в кислых растворах электролитов. Была установлена специфичность этого влияния, т. е. зависимость величины и даже знака наблюдаемого эффекта (изменение скорости реакции) как от природы самого аниона, так и от природы металла. На основании кинетических и адсорбционных измерений Я. М. Колотыркин пришел к выводу, что влияние анионов на анодный процесс связано с их специфической адсорбцией на поверхности металла, которая предшествует собственно электрохимической стадии. [c.231]

    Эффект торможения анодного процесса окислителями, означающий, что их роль при растворении металлов может, в частном случае, не ограничиваться деполяризующим действием, а сводиться и к непосредственному взаимодействию окислителя с поверхностными атомами металла, обнаружен и для хромистых сталей при их растворении в серной кислоте [ 64] При введении в хромистые стали никеля их поведение, по-видимому, приближается к поведению никеля, для которого, как указывалось выше [58], специфического влияния окислителей на процесс растворения не проявляется. Так, по данным [65] в случае саморастворения нержавеющей стали, содержащей никель, в азотной кислоте окислительные добавки, в том числе и кислородсодержащие (бихромат, перманганат), оказывают на процесс только деполяризующее действие, вызывая смещение потенциала коррозии в область пере-пассивации. [c.14]

    Отмечена следующая зависимость скорости растворения никеля в указанной выше области потенциалов от концентрации щелочи чем выше концентрация, тем медленнее наступает пассивация, причем с повышением температуры сильнее сказывается влияние концентрации. По-видимому, растворение никеля связано с непосредственным участием в реакции ионов ОН", которые облегчают переход никеля в раствор. При малой концентрации щелочи (например, 0,2% КОН) и низких плотностях тока никель начинает интенсивно разрушаться . Это, вероятно, является причиной быстрой коррозии никелированных анодных поверхностей в тупиковых зонах и местах скопления шлама, где интенсивность циркуляции электролита замедлена, в результате чего он обеднен ионами 0Н . [c.214]

    Процессы, происходящие на анодах под влиянием тока, — анодные процессы, — сильно различаются главным образом в зависимости от того, являются ли электроды растворимыми или нерастворимыми при электролизе. Аноды из некоторых металлов, как, например, из серебра, меди, цинка, кадмия, относятся к первой категории. Платина, иридий, графит, уголь являются нерастворимыми электродами. Наконец, некоторые материалы анодов могут быть растворимыми или нерастворимыми, в зависимости от среды и условий электролиза к таким полурастворимым электродам относятся железо, никель, кобальт, золото, свинец, хром, олово, алюминий. В случае растворимых анодов анодный процесс состоит в растворении металла при прохождении электрического тока, т. е. процесс заключается только в том, что атомы металла, отдавая электроны во внешнюю электрическую цепь, заряжаются положительно и становятся катионами, например  [c.261]

    Особенно большое влияние оказывает увеличение плотности тока на анодный процесс. При увеличении плотности тока в ванне с раствором сульфата никеля без добавки хлоридов анодная поляризация сильно возрастает, аноды пассивируются и растворение [c.77]

    Наиболее широкое применение в гальванотехнике нашли растворимые аноды, изготовленные из того же металла, который осаждается на катоде. Работа растворимого анода оказывает значительное влияние на изменение состава электролита во времени. Обычно растворимый анод работает в области активного растворения металла (участок а на поляризационной кривой рис. 1.8). Если катодный и анодный выходы по току очень близки к 100 %, как, например, в электролите сернокислого меднения, то изменения состава электролита не происходит в течение длительного времени. В растворах сернокислого никелирования катодный выход по току всегда меньше 100 % в результате протекания параллельной реакции выделения водорода, поэтому при анодном выходе по току равном 100 % электролит с течением времени будет подщелачиваться и обогащаться по ионам никеля. Если никелевые аноды находятся в пассивном состоянии и на них протекает параллельная реакция выделения кислорода, т. е. анодный выход по току значительно меньше катодного, то электролит будет подкисляться и обедняться по ионам никеля. [c.27]

    Величина тока обмена для таких металлов, как железо, никель в растворах, содержащих собственные катионы, имеет порядок 10 —10 А/см2. Растворение металла из активного состояния приводит к выявлению граней с относительно плотной упаковкой атомов. Такая селективность растворения кристаллической решетки обусловлена тем, что атомы плоскостей с менее плотной упаковкой растворяются с большими скоростями вследствие того, что силы межатомной связи между ними в этом случае меньше, чем в плоскостях с плотной упаковкой. Естественно поэтому предположить, что характер растворения металла определяется тонким строением его кристаллической решетки, т. е. всей совокупностью структурных несовершенств кристаллической решетки, неоднородностью ее энергетического состояния. Такое влияние атомного строения на анодный процесс является, пожалуй, определяющим в развитии коррозии и особенно локальных коррозионных процессов. Развитие коррозионного процесса приводит к появлению на концевых ступеньках неполных атомных рядов активных частиц, обладающих гораздо более низкой свободной эне ргией активации растворения по сравнению с атомами, находящимися в нормальном положении. Это вызвано тем, что на концевых ступеньках неполных рядов, на неукомплектованных поверхностных плоскостях решетки содержатся атомы, менее прочно связанные с соседними атомами и более плотно окруженные молекулами растворителя. По оценке Т. П. Хора [74], плотность активных мест на поверхности металла достигает 10 —10 см . Эта величина составляет лишь небольшую часть от общего числа поверхностных узлов атомов (10 см 2). Эксперименты показывают, что свободная энергия активации растворения металла (без учета рассмотренного механизма растворения) может быть очень велика и, например, для отожженного и холоднодеформированного никеля достигает 10,6 ккал/моль [74]. [c.8]

    Согласуется с поведением чистых компонентов и влияние добавок никеля к хромистым сталям на их стойкость в активном состоянии. Так, было показано, например, что введение никеля (до 14%) в сталь Х22Т сопровождается резким (на 3 порядка) снижением скорости ее растворения при постоянном потенциале в серной кислоте [54]. Аналогичный результат для сернокислых растворов получен и для стали 1X18 [52] и для других сталей [55]. Для торможения анодного растворения хромистых сталей достаточно уже небольших добавок никеля. Так, сталь, содержащая 25% хрома и 0,5 - 3% никеля, растворяется в 1 н. серной кислоте со скоростью существенно ниже скорости растворения соответствующей безникелевой стали [56].  [c.13]

    Все эти результаты, хорошо согласующиеся с данными последних исследований, позволяют связать пассивное состояние металлов с наличием на их поверхности хемосорбированных слоев кислородсодержащих частиц I 8,80 > 108]. Для хрома [ 109, 110] и никеля [ 1Ц] установлено, что пассивация обеспечивается наличием на поверхности металла примерно монослойных покрытий. Для железа, по-видимому, характерно образование более толстых слоев [112]. Уже сравнительно давно было отмечено [ 1,3,8] J что отсутствие зависимости (или слабая зависимость) стационарной скорости растворения пассивного металла от потенциала ни в коей мере не характеризует истинную кинетику самого процесса растворения. В этом случае влияние потенциала является более сложным, поскольку его рост 1фиводит не только к обычному ускорению анодного растворения металла, но и к изменению состояния металлической поверхности, которое равноценно повышению перенапряжения того же процесса. По-видимому, в случае железа и хрома эти эффекты полностью компенсируют друг друга, что и приводит к независимости стационарной скорости растворения этих металлов в пассивном состоянии от потенциала. Поскольку, однако, характерное для каждой величины потенциала стационарное состояние поверхности устанавливается относительно медленно, эти два эффекта удается разделить, если применить метод быстрого наложения поляризации. Так, например, для хрома ШО показано [ 8], что при быстрых измерениях (постоянное состояние поверхности) сохраняется [c.25]

    Для неблагородных металлов, например никеля или железа, нри некоторых условиях становится заметным анодное растворение металлов с установлением смешанного потенциала (см. 176 и 179). При отсутствии тока 1 = 0) устанавливается более отрицательное значение потенциала по сравнению с равновесным. Поэтому при I О перенапряжение стремится не к нулю, а к некоторому определенному отрицательному значению (т. е. к определенной величине катодного перенапряжения). На рис. 215, а показано подобное поведение (измерения Леграна и Левиной на никеле). При уменьшении pH (подкислении раствора) равновесный потенциал водородного электрода сдвигается к более положительным потенциалам. Смешанный потенциал 8ом в общем случае изменяется только на некоторую долю этого сдвига, так что катодное перенапряжение водорода при смешанном потенциале будет возрастать. Влияние коррозии станет тогда заметным при более [c.582]

    Относительная медленность анодного растворения (и катодного осаждения) железа, кобальта и никеля по сравнению с соответствующими процессами для большинства других металлов известна давно. Ранее предположение [59], что это явление объясняется особой прочностью связи между катионами и электронами в решетке (этому соответствует малый или нулевой вклад электронов данных металлов в распределение электронов по энергиям в их сплавах, а также более высокая твердость и электрическое сопротивление, нежели можно было ожидать), использовалось неоднократно и в разных вариантах, хотя до сих пор высказанное предположение еще не доказано. Опыт показывает, что во многих случаях медленное анодное растворение железа ускоряется в присутствии небольших количеств сульфидов [60, 61], а растворение никеля — в присутствии сульфидов или хлоридов [56]. По-видимому, адсорбция этих ионов или других, образовавшихся из них частиц таким образом изменяет форму кривых Морзе для катионов, что энергетический барьер снижается. С другой стороны, замедление анодного растворения железа, стали и никеля при адсорбции аминов, Ы-циклических молекул, тиомочевии, сульфокислот и многих других органических веществ [62] легче объяснить, исходя из стерических, а не энергетических соображений. Так, Хор и Холлидей [51], показали, что замедление анодного растворения стали в серной кислоте при добавлении 2,6-диметилхинолина можно количественно связать с адсорбцией молекул ингибитора в виде локализованного монослоя Лэнгмюра на активных центрах. решетки А на рис. 48, а). В отсутствие такой адсорбции эти центры работают в качестве анодов. Более глубокому пониманию причин ускорения и замедления анодного растворения под влиянием адсорбции на поверхности раздела металл/раствор препятствует отсутствие данных о детальном механизме реакций в простейших условиях. [c.299]

    Следует вообще согласиться, что пористость никелевых покрытий увеличивается со временем вследствие развития процесса коррозии. Это показано наблюдениями Весли и Кнаппа на тонкой никелевой фольге, которая при выдержке в атмосфере подвергается питтингу, приводящему к перфорации вероятно, кое-что подобное встречается в никелевом слое на стали. Мы не так озабочены первоначальными порами в покрытии, как активными центрами по определению Пирса и Пиннера (см. ниже) последние можно показать, подвергая образцы анодному растворению при низкой э. д. с., которая не удаляет никель с основной части, а только с активных центров. Испытания дали результаты, находящиеся в согласии с результатами испытаний во время длительного пробега автомашин зимой. Влияние хромирования на никелевое покрытие выявляется поразительным образом в работе Весли. В первые месяцы хромовое покрытие оказывало защитное действие, но затем внезапно оно стало очень сильно ускорять коррозию. Последнее можно отнести за счет взаимбдействия большого хромового катода и небольших никелевых анодов (стр. 580). Эта и другая статья американских авторов заслуживает изучения [100]. [c.576]

    Поскольку пассивация поверхности металла особенно сильно отражается на скорости анодного растворения, то для оценки активирующего влияния температуры на примере никеля, как наиболее легко пассивирующегося металла, была исследована зависимость максимального тока активного анодного растворения кр от температуры [21]. Следует отметить, что величина кр, которая является одним из наиболее важных количественных критериев способности металла к активному анодному растворению, также убывает в ряду Ге > Со >> N1 [22]. [c.102]

    Влияние pH на анодное поведение никеля исследовано при концентрации хлористого никеля 20 г/л. При pH = 2. .. 4 никель подвергается только активному растворению при pH = = 4,5. .. 5,5 на кривых обнаружены два максимума, области пассивации и перепассивации. Перепассивация, по-видимому, связана с окислением анода сульфаминовой кислоты, продукты окисления которой разрушают пассивную плеику на поверхности никеля [40 J. [c.141]

    Анализ коррозионно-электрохимических свойств карбидов иа основе хрома показывает, что в области активно-пассивного перехода возможно их растворение с высокими скоростями. Однако возможность избирательного растворения карбида из структуры стали во многом должна зависеть от химического состава стали и карбида, а также от соотношения потенциостатических характеристик указанных материалов в рассматриваемой области потенциалов. Например, в случае хромистой стали Х28 при ее растворении в активном состоянии установлено накопление на поверхности карбида (Сг, Ре) 2зСб, приводящее к самопассивации стали вследствие ускорения катодной и торможения анодной реакций [6]. Следовательно, в этом случае сталь растворяется с большей скоростью, чем карбид. Однако, при растворении хромоникелевых сталей в активном состоянии и при учете, что никель оказывает здесь сильное тормозящее влияние на скорость растворения, а содержание его в карбидах хрома меньше, чем в стали, возможно избирательное растворение указанных карбидов. По-видимому, этим можно объяснить локальные разрушения по границам зерен, наблюдаемые на отпущенных хромоникелевых сталях в активном состоянии [97, 1,001. [c.45]

    Исследовано влияние галоидных солей четвертичных аммониевых оснований на поляризационное поведение нержавстали 1Х18Н10Т в серной кислоте. Обнаружено снижение эффекта торможения анодного процесса при концентрациях добавок 0,2 г л и больше в области активного растворения стали. Исследовано влияние добавок на электрохимическое поведение компонентов, входящих в состав нержавеющей стали. Эффект снижения торможения при низких концентрациях добавок вызван особенностью поведения никеля в сернокислых растворах в присутствии галоидсодержащих соединений. Табл. 1, рис. 3, библ. 3. [c.125]

    В процессах электроокисления важную роль играет не только стойкость самой двуокиси свинца, но также и основы, на которую она осаждена. Шумахер, использовавший для получения перхлоратов двуокись свинца, осажденную на никель и титан, отмечает, ч го материал основы не оказывает влияния на поведение анода. В то же время Миллер и Триггер, наоборот, считают, что двуокись свинца, осажденная на никелевую основу, имеет значительную пористость и слабо зашишает основу от растворения в процессе электросинтеза перхлоратов. Поэтому желательно применять металлы, обладающие большей стойкостью, например, тантал. При анодной поляризации тантала почти во всех растворах на его поверхности образуется непроводяш,ая окисная пленка. Однако это явление не наблюдается в электролитах, применяемых для осаждения двуокиси свинца, тек что на основу из тантала можно наращивать осадки хорошего качества и любой толщины. [c.25]

    Х18Н10, диапазон стойкости значительно больше. Никель, хотя и в значительно меньшей степени, чем хром, повышает пассивируемость стали вследствие торможения анодного процесса растворения и практически не оказывает влияния на катодную реакцию водородной деполяризации. На рис. 5, в и г показано, что и другие легирующие элементы, например медь и молибден, также способствуют еще большему повышению коррозионной стойкости стали. Примером такой стали, содержащей медь и молибден, служит сталь 06ХН28МДТ (см. рис. 5, г), предназначенная для работы в условиях производства серной кислоты и других сернокислотных сред. [c.128]

    Возможно образование и других оксидов Р Оз, FeOOH. Вероятно, растворение железа происходит сквозь оксидную пленку, но изменение ее физико-химических свойств под влиянием различных факторов тормозит анодную реакцию (8.2) и приводит к пассивации электрода, которая усиливается по мере понижения температуры электролита, а также при увеличении разрядного тока. Способству-к>т пассивации и различные примеси мышьяк, сурьма, никель, марганец, магний. [c.202]

    Известно [6], что скорость протекания катодного и анодного процессов изменяется при введении в раствор различных анионов. В зависимости от природы аниона эти процессы ускоряются или тормозятся. Как видно из рис. 65, величина перенапряжения осаждения и растворения никеля зависит от того, протекает ли электродный процесс в хлористых или сернокислых растворах [19,20]. При низких температурах в хлористых растворах в результате активирующего действия хлор-иона неренапряжение ниже, чем в сернокислых. При высоких температурах, когда никелевый электрод является активным, разница в перенапряжении практически исчезает, т. е. присутствие хлор-иона не оказывает заметного влияния на протекание электродных процессов. Таким образом, повышение температуры устраняет ингибирующее влияние большинства посторонних частиц и тем самым способствует активации поверхности электрода. [c.99]


Смотреть страницы где упоминается термин Никель, анодное растворение влияние: [c.81]    [c.301]    [c.65]    [c.298]    [c.298]    [c.19]    [c.125]    [c.301]    [c.274]    [c.57]    [c.120]    [c.111]   
Ингибиторы кислотной коррозии металлов (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анодное растворение

Растворение анодное никель

Ток анодный



© 2025 chem21.info Реклама на сайте