Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время перемешивания в системах жидкость—жидкост

    Гидродинамические параметры, такие как распределение скорости жидкости в аппарате, насосный эффект мешалки, время циркуляции и время перемешивания системы (время гомогенизации) могут служить основой для оценки работы различных типов аппаратов с мешалками [106, 122, 136, 162]. Другие параметры, такие как условия создания многофазных систем, межфазная поверхность, диаметр капель (пузырьков), нужны для расчета массообмена в аппаратах с мешалками. Ниже рассматриваются различные проблемы гидродинамики, связанные с перемешиванием неоднородных жидкостей, а также с перемешиванием неоднородных (многофазных) систем. [c.91]


    В системах жидкость — твердые частицы однородное псевдоожижение возможно в широком интервале — от скорости начала псевдоожижения До скорости витания частиц значительные отклонения наблюдаются только для частиц высокой плотности. В то же время, в системах газ — твердые частицы однородные системы существуют только в сравнительно узком интервале скоростей ожижающего агента. Зависимость между порозностью слоя и скоростью во всех случаях однородного псевдоожижения имеет простую форму (11,9). Системы жидкость—твердые частицы обычно легко переходят в псевдоожиженное состояние, в то время как при использовании газов для создания однородного псевдоожижения очень легких и мелких частиц часто необходимо механическое перемешивание. [c.68]

    В гомогенных п роцессах усиление перемешивания содействует выравниванию концентраций исходных веществ во всем объеме и увеличению числа столкновений реагирующих молекул. В гетерогенных системах Г—Ж, Г—Т, Ж—Т, Ж—Ж при отсутствии перемешивания фаз массопередача полностью определяется скоростью молекулярной диффузии передаваемого компонента в неподвижном слое жидкости или газа, прилегающем к поверхности соприкосновения фаз. При перемешивании толщина неподвижных слоев или ламинарных слоев, в которых жидкость или газ текут спокойно параллельно поверхности соприкосновения, уменьшается происходит завихрение (турбулизация) спокойных параллельных струй медленная молекулярная диффузия заменяется быстрой турбулентной. В то же время перемешивание, как правило, увеличивает поверхность соприкосновения реагирующих фаз. [c.74]

    Большинство исследователей пользовались классическим методом выведения системы из состояния равновесия и измерения времени, необходимого для повторного достижения состояния равновесия. Гомогенная система имеет однородное поле температур и концентраций, поэтому достаточно вызвать местное возмущение (создание импульса), чтобы затем измерить время, которое пройдет до того момента, когда температуры или концентрации в системе выравняются. Эти методы измерения обладают тем преимуществом, что они являются относительно быстрыми по сравнению с техникой измерения времени перемешивания двух реальных (сравнимых) объемов жидкости, но требуют применения точных измерительных устройств, позволяющих производить регистрацию (запись) быстрых изменений температур и концентраций. Такие измерения не учитывают, однако, влияния пропорции перемешиваемых жидкостей на время перемешивания. [c.130]


    Сплошная фаза. В настоящее время проведено большое количество исследований массообмена во время перемешивания в системе жидкость—газ. В большинстве случаев результаты исследований обработаны относительно произведения кса = к с, так как лишь совсем недавно были разработаны методы измерения межфазной поверхности [4, 28, 64, 80]. На основе выполненных разными авторами исследований можно принять, что коэффициент массоотдачи зависит от следующих переменных  [c.332]

    На практике часты случаи, когда двухфазная система во время перемешивания превращается в однофазную (например растворение твердых веществ в жидкости). [c.53]

    В предыдущих параграфах рассматривалось взаимодействие жидкости и бактерий в биореакторах, но во всех аэробных системах следует, кроме того, учитывать наличие газовой фазы — либо воздуха, либо воздуха, обогащенного кислородом. Понятно, что в реакторах с барботажем среднее время пребывания газовой фазы существенно меньше, чем время пребывания фазы жидкость — микроорганизмы . Следовательно, в зависимости от конфигурации биореактора, типа перемешивания и вводимой в реактор мощности газовая фаза может находиться как в режиме идеального вытеснения, так и в режиме полного смешения. Степень перемешивания газовой фазы зависит от движущей силы массопереноса в системе газ — жидкость и имеет большое значение для конверсии субстратов. [c.106]

    Чем медленнее добавлять осадитель, тем точнее будет определена кривая осаждения и тем меньше будет возможность совместного осаждения. Следует сохранить достаточное количество раствора полимера на тот случай, если необходимо будет получить дополнительные точки на кривой осаждения или проверить какой-либо сомнительный результат. Ошибки, обусловленные испарением растворителя во время осаждения, например для системы бензол — метанол, составляют менее 0,3%, если сосуд хорошо закрывать после осаждения и турбулентное движение жидкости во время перемешивания сводить к минимуму. На рис. 74 приведены [c.320]

    В газовой фазе проводятся высокотемпературные контактно-каталитические процессы, для которых используются контактные аппараты различной конструкции. Для газовых реакций, идущих со значительным теплообменом, применяют аппараты змеевикового типа, например трубчатые печи. Для систем газ+жидкость применяют колонные и башенные аппараты с различными насадками (внутренние устройства) и без них для системы жидкость-[-жидкость — аппараты емкостного типа с мешалками или без них для системы газ+твердое вещество — гребковые аппараты полочного типа, вращающиеся барабаны, шнеки и другие аппараты с механическим перемешиванием. В последнее время получили широкое распространение аппараты с кипящим слоем материала, через который снизу вверх движется газ, а твердые частицы находятся во взвешенном состоянии. Для систем жидкость- -твердое вещество применяют проточные камеры, заполненные зернистым продуктом и емкостные аппараты с мешалками. Для систем твердое вещество+твердое вещество должно быть предусмотрено устройство, хорошо перемешивающее материалы. [c.17]

    Применение фасонной насадки позволяет интенсифицировать массообмен при ректификации и абсорбции за счет направленного ввода паровой или газовой фаз в жидкую [50]. Особенно целесообразно применение фасонной насадки в процессах, протекающих в системах жидкость — жидкость, жидкость — твердое тело, жидкость — газ — твердое тело при наложении на взаимодействующие фазы низкочастотных колебаний. В последнем случае удается организовать активное поперечное движение фаз, снижающее поперечную, неравномерность и препятствующее продольному перемешиванию. В то же время фасонные насадки могут иметь большое свободное сечение, достигающее в ряде случаев 50% и более, а наличие направляющих лопаток, отогнутых под углом 25— 30°, обусловливает большую глухую площадь насадки в плане, через которую происходит наложение вибрационных колебаний на рабочие среды. [c.38]

    Перемешивание больших объемов. При перемешивании небольших объемов правильно подобранной мешалкой гомогенизация достигается за очень короткое время. Иное положение имеет место при перемешивании больших объемов жидкости. Для мгновенного достижения однородности перемешиваемой среды необходимы затраты очень большой мош,ности, которая потреблялась бы только периодически, что экономически нецелесообразно. Весьма быстрая гомогенизация больших объемов обычно и не нужна. При проектировании аппаратуры для таких случаев перемешивания величиной, требующей определения, является время, необходимое, чтобы достичь заданной степени гомогенизации. Поскольку полная гомогенизация может быть обеспечена лишь через бесконечно большое время, для характеристики процесса, осуществляемого в производственных условиях, введено понятие об окончательном перемешивании , которое яв ляется таким состоянием системы, когда дальнейшее перемешивание не приводит к заметным изменениям концентрации или состава обрабатываемой смеси. [c.47]


    До сих пор рассматривался наиболее простой случай перемешивания—перемешивание взаимно-растворимых жидкостей. На практике, однако, чаще всего встречаются более сложные случаи, когда в результате перемешивания образуется гетерогенная смесь. Очень часты также случаи, когда в начале перемешивания имеется двухфазная система, постепенно во время перемешивания превращающаяся в однофазную (например, растворение твердых веществ в жидкости). [c.62]

    Мешалки закреплены на валу так, что засасывание и выталкивание жидкости обеими мешалками совершается в одном направлении (мешалки работают на себя — см. рис. 136). Аппарат с таким перемешивающим устройством представляет собой как бы два сосуда без дна, поставленных друг над другом, с обычными пропеллерными мешалками. Перемешивание происходит очень быстро, и поэтому такая конструкция предназначена прежде всего для процессов, при которых короткое время перемешивания необходимо ввиду малого времени пребывания компонентов в перемешиваемой системе. [c.299]

    За период, истекший после первого издания, основные идеи, высказанные ранее при анализе процессов массопередачи, получили дальнейшее развитие. Это прежде всего относится к рассмотрению явлений турбулентного переноса в двухфазных системах газ — жидкость, пар — жидкость, жидкость — жидкость. Явления турбулентного переноса и связанные с ними эффекты продольного и радиального перемешивания жидкостей и газов привлекли за последнее время внимание почти всех исследователей, занимающихся изучением процессов химической технологии. [c.3]

    Следует, однако, отметить некоторые исключения из этого общего правила. Движение жидкости не может быть описано моделью стержневого потока с продольным перемешиванием при газожидкостном псевдоожижении слоя стеклянных частиц размером 0,25 мм, а в случае низких скоростей жидкости (3,6 см/с и ниже) — также и при использовании частиц диаметром 1 мм. В этих системах время пребывания жидкости, найденное из опытов с трасером, значительно ниже среднего времени пребывания, рассчитанного по задержке твердой фазы, вычисленной на основании данных о расширении слоя и результатов опытов с меченым газом. [c.668]

    Грэй [17] и Чапман, Холланд [15] в своих экспериментах сравнивали время, необходимое для однородного распределения окрашенной жидкости в объеме смесителя. Этот метод применим, когда различные системы существенно различаются по времени перемешивания. [c.84]

    ТЗ предыдущих главах было рассмотрено перемешивание жидкостей в единичном аппарате. Однако непрерывную обработку жидкостей обычно проводят в каскаде аппаратов с мешалками (рис. V- ). Преимущество такой системы в толг, что в каждом аппарате можно поддерживать определенную температуру жидкости. Такие системы особенно широко применяют, когда к перемешиваемой жидкости требуется добавлять другие компоненты или выдерживать ее определенное время при заданной температуре [1]. [c.86]

    Искусственные эмульсии обычно получают путем диспергирования — энергичного перемешивания смеси двух взаимно нерастворимых жидкостей. Образующиеся капли жидкостей двух видов в обеих фазах в размешиваемой системе растягиваются в струи. При достаточной степени растягивания (удлинения) капли приобретают неустойчивую форму и дробятся. Таким образом, возрастает дисперсность. С увеличением числа капель увеличивается и вероятность их обратного слияния, так что любое диспергирование приводит к установлению стационарного состояния, характеризующегося определенной, максимально возможной степенью дисперсности и определенным распределением капель по размерам. Это предельное состояние существенно зависит от наличия в смеси препятствующих коалесценции стабилизаторов, называемых эмульгаторами. Увеличение дисперсности в разбавленной эмульсии приводит к повышению ее устойчивости за счет снижения скорости седиментации. Например, молоко, подвергнутое дополнительному диспергированию, во время длительной транспортировки не образует сливок. Для получения эмульсий используют различные аппа- [c.240]

    В соответствии с этой моделью принимается поршневое течение без перемешивания вдоль потока при равномерном распределении субстанции в направлении, перпендикулярном дви кению (рис. П-2). Время пребывания в системе всех частиц одинаково и равно отношению объема системы к объемному расходу жидкости. [c.110]

    При достаточно интенсивном перемешивании суспензий устойчивый турбулентный режим движения потока устанавливается практически во всем объеме реактора. Известно, что при турбулентном движении жидкости элементарные массы жидкй-сти хаотически перемещаются в объеме реактора вследствие непрерывного возникновения беспорядочных пульсаций скорости, имеющих различные амплитуды. Движение отдельного элемента объема (частицы твердой фазы) носит сложный характер. Любой элемент объема за сравнительно короткий промежуток времени может оказаться в любой точке реактора. В реакторах с идеальным перемешиванием вновь введенные частицы мгновенно и равномерно распределяются по всему объему аппарата [45]. Любая из находящихся в реакторе твердых частиц с равной вероятностью может оказаться в любой точке системы, т. е. частица в рассматриваемый момент времени может покинуть реактор, причем это относится и к частицам, которые только что были введены в аппарат. При этом существуют частицы, которые находятся в аппарате очень продолжительное время. Следовательно, время пребывания частицы в реакторе будет случайной величиной, которая может принимать любые положительные значения. [c.124]

    Большинство исследований мощности, расходуемой на перемешивание, было выполнено на системах с постоянными геометрическими параметрами, однако в последнее время появляется все больше работ, касающихся влияния геометрических параметров аппарата с мешалкой на мощность N. Важнейшими из этих параметров являются диаметр сосуда аппарата О, высота жидкости в сосуде Л, отдаленность (расстояние) мешалки от дна сосуда к, шаг винта пропеллерной мешалки 8, длина лопасти мешалки а, ширина лопасти мешалки Ь, ширина отражательной перегородки в сосуде В, число лопастей мешалки Z и число отражательных перегородок в сосуде J. [c.176]

    Газожидкостные реакции. В принципе подходы к исследованию систем газ — жидкость и многофазных жидкостных систем не отличаются один от другого. Если имеется фазовая диаграмма состояний и обеспечено энергичное перемешивание, то с известным приближением кинетические исследования можно проводить в описанной выше аппаратуре, что обычно и делается. Однако даже учет фазового состояния не дает возможности избежать ошибок в кинетических исследованиях. Причина этого состоит в том, что реакционной средой в любой газожидкостной реакции является жидкость, т. е. на поверхности катализатора реакция происходит между жидкостью и расстворенным в ней газом. Из-за поверхностного натяжения жидкость заполняет поры пористых катализаторов или покрывает поверхность монолитных, поэтому, когда частица катализатора попадает в газовый пузырь, доступ реагентов к ней прекращается. Следовательно, в зависимости от гидродинамической обстановки в системе газ — жидкость может измениться среднее фактическое время взаимодействия катализатора с реагентами. Поэтому для выяснения истинной кинетической картины реакций, протекающих в системах газ — жидкость, эксперимент надо вести с раствором газообразного реагента в жидкости, замеряя концентрацию реагирующего газа в растворе. [c.199]

    За период, истекший после второго издания книги, вышедшей также на английском и немецком языках, основные идеи, высказанные ранее при анализе процессов массопередачи, получили дальнейшее развитие. о прежде всего относится к рассмотрению явлений турбулентного переноса в двухфазных системах газ — жидкость, пар — жидкость, жидкость — жидкость. Явления турбулентного переноса и связанные с ними эффекты продольного и радиального перемешивания жидкостей и газов, взаимодействие потоков в двухфазных системах привлекли за последнее время внимание почти всех исследователей, за- нимающихся изучением процессов химической технологии. Дальнейшее развитие получили представления вихревого переноса субстанции в жидкостях и газах как основа изучения структуры потоков. [c.3]

    Сходство уравнений (I, 98) и (1, 99) позволяет утверждать, что влиянне основных параметров процесса в настоящее время можно считать установленным вполне достоверно. Следует также сделать вывод о достаточной надежности всех трех (свето-электри-ческого, фотографического и седиментометрического) методов определения поверхности контакта фаз.—Дополн. редактора.] Перемешивание взаимно-нерастворимых жидкостей дисковой мешалкой изучал Л 1ишек [102]. Для упрощения он сначала рассматривает случай, когда между каплями диспергируемой фазы не происходит столкновений. Это условие может быть соблюдено при относительно малом количестве диспергируемой фазы по сравнению со сплошной. В непрерывно действующих системах такие условия могут быть соблюдены при небольшой продолжи- [c.75]

    Способы выпрямления потока. Как вытекает из предыдущих заключений, по величине объемного коэффициента полезного действия наиболее выгодны цилиндрические сосуды, в которых при перемешивании не образуется воронки. Для всех операций химической промышленности необходимо интенсивное перемешивание, позволяющее сократить время перемешивания в аппаратуре как периодического, так и непрерывного действия. Преимуществом интенсивно работающих мешалок является бол] -шое число оборотов, при котором уменьшаются потери. аые.пгии в передаче.. Все эти условия, однако, способствуют образованию центральной воронки. При использовании обычных быстроходных мешалок, которые наиболее распространены в настоящее время, нужно принимать специальные меры, препятствующие образованию воронки, например на пути спирального кругового движения жидкости в аппарате устанавливать отражательные перегородки. Согласно теории турбулентности, за каждой такой перегородкой образуются местные вихри, которые поддерживают общую турбулентность системы и неравномерное распределение скорости в жидкости. Другими мерами, препятствующими образованию [c.322]

    Тот факт, что все операции твердофазного пептидного синтеза проводятся в одном сосуде (после присоединения первой аминокислоты к носителю) и что эти операции включают только подачу жидкости, перемешивание и удаление жидкости фильтрованием, позволяет провести автоматизацию системы. Прибор, который автоматически осуществляет все эти операции, описан в работе [81] и за последние 3 года был использован для синтеза многих пептидов. Этот прибор, будучи загружен аминоацилированным полимером и снабжен запасом растворителей, реагентов и растворов БОК-аминокислот, может работать без присмотра в течение 24 час, и за это время удлинить пептидную цепь на полимере-носителе на 6 аминокислотных остатков. После того как аминокислотные резервуары будут промыты и заполнены растворами шести новых аминокислот, прибор может продолжать синтез в течение следующих 24 час. Прибор можно отрегулировать на программу с использованием карбодиимида или на программу с применением активированных эфиров каждому типу синтеза соответствуют различные программирующие барабаны. Этот прибор обеспечивает большой выигрыш во времени, особенно при синтезе длинноцепочечных пептидов. [c.156]

    Для характеристики различных свойств системы, определяющих время пребывания, может быть использован коэффициент продольного перемешивания, или коэффициент диффузии Е, м 1сек, учитывающий нерегулярность течения потока, связанную с перемешиванием, изменением скорости в разных точках сечения реактора, молекулярной и турбулентной диффузией, наличием застойных зон и т. п. При идеальном вытеснении все частицы движутся равномерно, перемешивания нет, коэффициент диффузии равен нулю. В случае идеального смешения жидкость полностью перемешивается и коэффициент перемешивания или диффузии Е стремится к оо. [c.33]

    В настоящее время нет полных сведений о распределении времени пребывания в системах с контактом двух жидких фаз, В насадочных колоннах с движущимся вверх газо-жидкостным нотоком величи-чины Рбр по имеющимся данным, колеблются от 100 до 5% соответствующей величины для однофазного потока При противотоке жидкости и газа через кольца Рашига и двух несмешивающихся жидкостей в колонне с насадкой Ре, для жидкой фазы близко к 0,1. При потоке жидкостей сверху вниз через насадочный материал перемешивание уменьшается. По данным Крамерса и Алберды для слоя высотой 0,7 м из колец Рашига размером 10 мм значение ЛГ лежит между 10 и 20. Продольное перемешивание возрастает с уменьшением жидкостной загрузки и слабо зависит от скорости газа. [c.112]

    Например, когда толуол или ксилол осторожно вводят в соприкосновение с водным раствором додециламина, образуется система, в которой происходит самопроизвольное эмульгирование. Эту систему изучали многие авторы (Каминский и Мак-Бен, 1949 Гартинг и Райс, 1955 Дэвис и Хейдон, 1957). При концентрации эмульгатора >0,1 М самопроизвольное эмульгирование происходит в водной фазе. Капельки масла стабилизируются вследствие адсорбции на своей поверхности активного вещества. Равновесное поверхностное натяжение остается постоянным (порядка 1 дин/см при изменении концентрации эмульгатора от 0,4 до 0,03М), и нет тенденции к тому, чтобы оно стало отрицательным. В этой системе происходит значительное перемешивание в поверхностных слоях. Под микроскопом видно, что отдельные капли или нити ксилола прорывают поверхность раздела двух жидкостей, некоторое время движутся в воде, а затем возвращаются обратно. Во время такого путешествия от них отделяются более мелкие капли, которые остаются в воде и стабилизируются. [c.61]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    В этом случае из-за идеального перемешивания внешняя и внутренняя функцни РВП идентичны. Это легко проверить, положив минимальное время пребывания равным нулю. Для ламинарного смешения, при котором ФРВП рассчитывают из профиля скоростей, это в принципе невозможно. Следует отметить, что в сложных системах для расчета ФРВП необходимо точное описание траектории движения жидкости между субсистемами. [c.212]

    С целью установления соответствующих зависимостей рассмотрим работу насадочной колонны с нижним питающим кубом (см. рис. 11) полученные соотношения в целом будут справедливы и для колонн других конструкций, кратко охарактеризованных выше. Пусть в начале работы колонны в ее кубе. находится Мо молей загрузки, в которой молярная доля вышекипящей примеси составляет хо. Для равномерного смачивания иасадки жидкостью колонна вначале обычно подвергается захлебыванию , после чего в ней устанавливается необходимый тепловой режим, чтобы скорости потоков ж1идкой и паровой фаз по колонне были постоянными. Избыток жидкости из ректифицирующей части при этом стекает в куб насадкой захватывается (задерживается) лишь некоторое определенное количество жидкости. Величина Ж1идкостного захвата (задержки) зависит в основном от типа и поверхности насадки, а также от скорости потоков жидкости и пара в колонне. Затем в течение некоторого времени (пусковой период) колонна работает в безотборном режиме (режим полного орошения) до достижения в ней стациона(рного состояния и лишь после этого включается система отбора части дистиллята. Время пускового периода может быть определено расчетным путем. Однако такая оценка является весьма приближенной и поэтому время пускового периода определяется экспериментально. Как показали результаты соответствующих исследований, время пускового периода можно несколько снизить, если с самого начала процесса колонна будет работать в отборном режиме. Разумеется, отбираемый при этом дистиллят по своему составу не будет отвечать составу требуемого продукта вплоть до выхода колонны к заданному стационарному состоянию, и его целесообразно во избежание потерь исходного вещества отводить в питающий куб. В результате будем иметь случай стабилизированной ректификации, для которой справедливы закономерности, характеризующие непрерывную ректификацию. Действительно, поскольку при циркуляции жидкость — пар количество вещества в колонне не изменяется, по достижении стационарного состояния будет постоянным и состав питания — образующегося в кубе колонны пара. Совершенно очевидно, что пренебрегая, как и выше, эффектом продольного перемешивания, уравнение рабочей линии колонны, работающей в стационарном состоянии, для рассматриваемого случая можно записать в виде [c.84]

    Эти трудности могут быть частично преодолены в том случае, когда один из продуктов жидкофазной реакции имеет достаточно высокое давление паров при температуре реакции. Тогда проба может быть отобрана из газовой фазы над раствором, при этом отпадает необходимость ее обработки перед анализом, не требуется устойчивость всех компонентов смеси в ходе анализа, часто удается ликвидировать или уменьшить воздействие агрессивных компонентов. Главный источник возможных ошибок — отставание изменений состава паров над раствором от изменений состава раствора. Возможность применения ГЖХ с отбором проб из газовой фазы определяется, таким образом, кинетикой массопередачн в реагирующей системе через границу раздела фаз. В условиях интенсивного перемешивания жидкости и турбулентного режима движения в газовой фазе скорость массопередачн для большинства органических соединений в идентичных условиях с точностью около 30% одинакова. Это позволяет вывести общие критерии использования отбора проб из газовой фазы. Можно показать, что он пригоден для реакций, время полупревращения которых не ниже 10 мин. Кроме того, необходимо, чтобы вещество, для которого снимается кинетика, обладало достаточным давлением пара. Количество вещества в пробе должно превышать порог чувствительности хроматографа [c.372]

    При фракционировании осаждением образец полимолекулярного полимера при постоянной температуре растворяют в жидкости, которая неограниченно растворяет все его фракции. Образуется гомогенный Прозрачный раствор, к которому при тщательном перемешивании постепенно добавляют нерастворитель до появления устойчивого помутнения. Появление мути является первым признаком начала расслоения системы, которое наступает через некоторое Время. При Этом образуются две фазы, разделенные ясно видимой поверхностью раздела. Одна фаза представляет собой наиболее высокомолекулярную фракцию, выпавшую в осадок в результате поР]ижения растворяющей способности среды при добавлении не-расгворителя, иди, как его называют, осадигеля. Эта фаза содержит небольшое количесто обеих жидкостей, в которых высокомолекулярная фракция набухает. Вторая жидкая фаза — это раствор смеси остальных фракций полимера. [c.334]

    Многочисленными исследованиями установлено, что образовавшийся гель не всегда удается закачать в отдаленные от призабойной зоны участки пласта. Часто время от совмещения всех компонентов системы до начала образования геля в пласте не достаточно, чтобы обработать глубинные зоны пласта, поэтому было предложено несколько технологических приемов устранения этого недостатка. Например, Сандифордом (Пат. 4009755 США) предложено последовательно закачивать в пласт оторочки раствора полимера, раствора сшивающего агента и водной буферной оторочки между ними. Смешение закачанных жидкостей и гелеобразование происходят в отдаленных от призабойной зоны нагнетательной скважпны участках пласта. Размер неактивной буферной оторочки воды рассчитывается таким образом, чтобы гель образовывался в нужной части пласта. Р.Сиданск (Пат. 4494606 США) считает, что последовательная закачка водного раствора высокомолекулярного полимера, углеводородной оторочки и второго водного раствора, содержащего сшивающий агент, позволяет более равномерно распределить по пласту сшитую полимерную спстему. По мнению автора, углеводородная буферная оторочка создает условия более эффективного перемешивания в пласте двух реагирующих между собой реагентов. В качестве полимера могут быть использованы полисахариды, гидроксиэтилцеллюлоза или синтетические полимеры. Предпочтение отдается полиакриламиду. [c.81]

    МЕЖФАзНАЯ поликонденсация, процесс получения полимеров, происходящий на границе раздела двух несмешивающихся жидкостей, реже-жидкости и газа или твердого в-ва и жидкости. Одной из фаз чаще всего бывает водный р-р мономера, другой р-р второго мономера в орг. р-рителе По ряду признаков, особенно внешних, к М.п. примыкает эмулы ионная, или суспензионная, поликонденсация, проводимая в смеси двух смешивающихся р-рителей в присут неорг. солей или оснований, обусловливающих создание двухфазной системы. По ряду закономерностей М п как ступенчатый процесс аналогична др. разновидностям поликоиденсации, но протекающим в однофазной системе (расплаве, р-ре). Однако имеются и особенности, связанные со специфич. ролью границы раздела фаз, напр, возможность достижения высоких мол. масс полимеров при неколичественном их выходе и(или) отклонении от стехиометрич. соотношения реагирующих в-в. М.п. неравновесный процесс скорость ее определяется диффузионными факторами. Поэтому с целью увеличения пов-сти (границы) раздела фаз М.п. проводят при высоких скоростях перемешивания в присут. эмульгаторов (ПАВ, чаще щелочных солей сульфокислот). В М. п. используют реакционноспособные мономеры (дихлорангидриды к-т вместо самих к-т или их эфиров, диизоцианаты и др.), проводят ее за короткое время (мин), обычно при комнатной т-ре. [c.15]

    При изучении динамики адсорбции в таких аппаратах, когда ожижающим агентом служила паро-газовая смесь, установлено 66], что время защитного действия псевдоожиженного слоя периодического действия практически равно пулю. Коэффициент перемешивания частиц в пссвдоожнженном слое, создаваемом газовым потоком, сильно отличается от соответствующего коэффициента в системе жидкость — твердое тело [41]. Хорошее перемешивание твердой фазы в этом случае приводит к тому, что частицы находятся примерно одинаковое время в лю-йом участке реактора. Если стадией, определяющей процесс, является внешний перенос массы, то массообмен в такой системе закапчивается на небольшой высоте (примерно 5— 10 диаметров зерна) от газораспределительной решетки. При адсорбции газов и паров характерны резкий экспоненциальный профиль распределения концентрации вещества по высоте слоя и постоянство величины адсорбции во всех точках слоя. Следствием этого и являются пренебрежимо малая потеря времени защитного действия слоя и линейиая зависимость величины /пр от 1в в системе газ — твердое тело. [c.138]

    Объем реакционного пространства камеры при работе в жидкой фазе равен примерно часовому объему жидкой сырьевой смеси (при рабочей температуре), проходящей через установку, т. е. время пребыва1[ия жидкости должно быть около часа во всей системе и около 15—20 мин. в одном реакторе. Несмотря на это, колебания температуры на входе в систему практически мгновенно распространяются по первому реактору и, например, нонижеБио температуры внизу реактора сейчас же вызывает почти такое же понижение температуры во всех остальных точках, в том числе и наверху первого реактора. Это может быть только в том случае, если жидкая фаза в реакторе интевспвно перемешивается. Это перемешивание объясняется наличием в реакционной камере двухфазного режима, а именно жидкой фазы, через которую барботирует или прорывается фонтанами поток газов. В результате перемешивания, несмотря на экзотермичность реакпии, температура при сравнительно небольшой высоте реактора практически одинакова при работе в жидкой фазе. [c.323]

    Механическое перемешивание в системах жидкость—газ обычно осуществляется при проведении процессов, скорость которых лимитирована массообменом в сплошной фазе, т. е. при абсорбции т руд-норастворимых газов. В этом случае основное сопротивление массопередаче оказывается в сплошной фазе. При чисто физической абсорбции мешалки обычно не используются. Чаще их применяют для систем, в которых абсорбция сопровождается химической реакцией. Вероятно, это обусловлено малой растворимостью газа в жидкости, а при химической реакции растворимость газа возрастает в несколько раз. Типичные случаи перемешивания систем жидкость—газ — это процессы гидрирования, хлорирования, ферментации, биологической очистки воды и т. п. Необходимо отметить, что для многих химических реакций с малыми скоростями требуется длительное время контакта (пребывания), что легко может быть осуществлено в аппарате с мешалкой. Перемешивание дает возможность создания большой межфазной поверхности. Это вызывает значительное повышение коэффициентов массопередачи, рассчитанных на единицу объема, [c.328]


Смотреть страницы где упоминается термин Время перемешивания в системах жидкость—жидкост: [c.273]    [c.387]   
Перемешивание в химической промышленности (1963) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Перемешивание жидкостей

Системы газ жидкость

Системы жидкость жидкость



© 2025 chem21.info Реклама на сайте