Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические основность и кислотность

    Поглощение света ароматическими соединениями. Кислотно-основные индикаторы. [c.263]

    Кислоты. Основными кислотными компонентами при производстве пластификаторов являются моно-, ди-, три-, тетракарбоновые алифатические и ароматические кислоты или их ангидриды, а также хлорангидрид ортофосфорной кислоты — фосфорилхлорид. [c.18]

    По методам осаждения все красители, применяемые для производства красочных лаков, делят на две группы кислотные и основные. Кислотные красители представляют собою Na-соли сульфо- или карбоновых кислот сложных ароматических соединений. Получение из них красочных лаков заключается в переводе водорастворимых натриевых солей в нерастворимые соли бария, свинца, кальция, марганца и некоторых других металлов по следующей, примерной, схеме  [c.573]


    Значительные дополнения и изменения внесены во вторую часть — Скорость химических реакций при высоких давлениях , — особенно в главы, посвященные реакциям в жидкой фазе (обш,ие положения, реакции гомолитического разрыва химических связей, реакции ароматического замещения, кислотный катализ, реакции Арбузова, ферментативные реакции и др.) в главе о скорости реакций в твердой фазе рассмотрены превращения, происходящие при одновременном воздействии давления и напряжений сдвига. Новые главы — Некоторые количественные соотношения и корреляции и Влияние давления на скорость пространственно затрудненных реакций — написаны в основном по материалам исследований, проведенных за истекшие годы в Институте органической химии им. Н. Д. Зелинского АН СССР. [c.7]

    Эти индикаторы используют так же, как и Яо-инди--каторы, они представляют собой ароматические спирты и, как предполагают, являются специфичными для кис-лот . Обозначив кислотную и основную форму индикаторов как R+ и ROH соответственно, можно написать следующую реакцию с их участием  [c.131]

    Совершенно неожиданные результаты обнаружены при гидрокрекинге гексаметилбензола в присутствии катализаторов кислотного типа образуются в основном изобутан и ароматические углеводороды С10- Авторы предлагают механизм, включающий частичное гидрирование ароматического кольца, его изомеризацию в пятичленное кольцо, сопровождающуюся ростом боковой цепи, вновь образование шестичленного кольца и так много раз с обрывом цепи, [c.314]

    Сопоставление основных тенденций развития гидрогенизационных процессов убеждает прежде всего в том, что растет их специализация, т. е. возникают все более и более селективные процессы, в которых интенсивно протекает какое-либо одно превращение или одна реакция, в то время как другие возможные сопутствующие реакции сводятся к минимуму. Такая селективность достигается определенным соотношением между различными реакциями собственно гидрирования (гидрирование диенов, олефинов, конденсированных ароматических углеводородов, моноциклических углеводородов и другие), реакциями восстановления различных типов (восстановление кислотных, эфирных, гидроксильных и других кислородсодержащих групп, восстановление аминогрупп и другие), реакциями изомеризации и гидроизомеризации, реакциями гидрогенолиза различных типов (гидрогенолиз связей С—О, С—N, С—8, раскрытие алициклических колец, отщепление алифатических заместителей и другие). [c.335]


    В условиях хранения окисление топлива происходит в жидкой фазе под действием кислорода воздуха. При этом содержащиеся в топливах парафиновые и нафтеновые углеводороды почти не подвергаются действию кислорода — главная роль в снижен 1и стабильности топлив принадлежит органическим соединениям, содержащим кислород, серу (полисульфиды и ароматические тиолы) и азот, и ненасыщенным углеводородам. Кислород активно взаимодействует с алкилароматическими углеводородами, имеющими ненасыщенные боковые цепи. Основными продуктами этого взаимодействия являются спирты, карбонильные соединения и другие вещества, которые в дальнейшем образуют смолы причем оксикислоты и смолы кислотного характера ускоряют дальнейшее окисление, а нейтральные смолы его тормозят. [c.253]

    Бензин содержит порядка 94% олефиновых, 5 /о парафиновых и циклопарафиновых и 1 % ароматических и диеновых углеводородов. При этом парафины, циклопарафины и диены концентрируются во фракции, выкипающей до 60 °С, а ароматические углеводороды — в хвостовых фракциях бензина. В сырье нежелательно присутствие бутадиена, дающего смолообразные продукты конденсации на катализаторе. Растворенный в сырье кислород также интенсифицирует смолообразование. Если в сырье имеется сероводород, то полимер-бензин содержит сернистые соединения (меркаптаны). Любые примеси основного характера в сырье, которые могут в нем содержаться в результате очистки от сероводорода, дезактивируют катализатор, снижая его кислотность. Для поддержания равновесной концентрации фосфорной кислоты сырье должно содержать (3,5—4) 10 % воды. Такая влажность сырья равна растворимости воды в жидких олефинах Сз—С4 при 20—25 °С и может быть легко достигнута при контакте сырья с водой. [c.198]

    Что же представляют собой реакции образования нефтяных углеводородов Наиболее важными моментами здесь являются потеря функциональных групп (кислотных, спиртовых, кетонных и пр.) в исходных биологических молекулах перераспределение водорода, приводящее к получению насыщенных углеводородов алифатического и алициклического рядов реакции деструкции и реакции образования ароматических соединений. Добавим, что все эти превращения должны протекать при температурах, лежащих в пределах 100— 200° С. Совершенно ясно, что эти процессы могут быть в основном каталитическими и что единственным реальным природным объектом, способным катализировать все эти реакции, являются алюмосили каты [23]. [c.194]

    В начальной торфяной стадии происходит накопление и в основных чертах заканчивается образование гуминовых кислот. На стадии бурых углей гуминовые кислоты превращаются в более сложные нейтральные вещества, называемые гуминами или остаточным углем. На этой стадии увеличивается степень конденсированности ароматических ядер гуминовых кислот и уменьшается содержание кислородных функциональных и других боковых групп. На стадии каменных углей продолжается конденсация ароматических ядер, причем наряду с этим уменьшается содержание кислорода и число активных кислотных групп. [c.150]

    Изучение группового углеводородного состава светлых нефтепродуктов, как мы видели выше, базируется в основном на удалении ароматических и ненредельных углеводородов серной кислотой или адсорбентами. На основании анилиновых или нитробензольных точек или изменения показателя преломления или других констант определяется групповой углеводородный состав нефтепродукта. Вследствие высокой реакционной способности отделение ароматических углеводородов от метано-нафтеновых смесей в светлых нефтепродуктах не представляет затруднений, хотя, как мы видели, кислотная обработка может затрагивать также и метано-нафтеновую часть продукта. В высококипящих масляных фракциях, в которых содержится значительное количество сложных по своей природе молекул, состоящих одновременно из ароматических и нафтеновых колец с метановыми цепями, отделение смолисто-асфальтовых веществ и ароматических углеводородов при помощи серной кислоты менее приемлемо, так как кислота наряду с ароматической частью переводит в кислотный слой и метано-нафтеновую [c.522]

    Основными критериями для оценки катализаторов служат объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. При анализе работы установок, а также при выборе оптимального режима каталитического риформинга надо иметь в виду следующее платина не только выполняет свои функции (дегидрирования-гидрирования), но и защищает прилежащие кислотные центры от закоксовывания, поэтому при низком ее содержании (менее 0,3%) катализатор быстро дезактивируется при недостаточных кислотных свойствах катализатора глубина ароматизации циклопентанов мала, и в катализате риформинга содержится много н-алканов, выход его велик, но октановое число невысокое при высоких кислотных свойствах катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, сильная кислотная функция ускоряет изомеризацию циклогексанов в циклопентаны, и реакция, идущая по схеме [c.140]


    Константы кислотности ароматических соединений в основном, возбужденном синглетном и триплетном состояниях [c.160]

    Основные свойства выражены у ароматических аминов значительно слабее, чем у аминов жирного ряда. Бензольный остаток, усиливающий кислотность гидроксильной группы (в результате чего фенолы являются более сильными кислотами, чем спирты), ослабляет основной характер аминогруппы. Ариламины нейтральны на лакмус, но с минеральными кислотами образуют устойчивые соли, водные растворы которых имеют кислую реакцию вследствие частичного гидро лиза. Очевидно, образованием таких солей объясняется способность ароматических аминов, несмотря на незначительную основность, осаждать гидраты окисей металлов из растворов соответствующих солей при этом кислота, образующаяся в результате гидролиза соли металла, связывается амином, что способствует дальнейшему образованию гидрата окиси. [c.567]

    В еще больщей степени легкость электрофильного замещения в ароматическом ряду зависит от основности ароматических соединений, кислотности электрофильных участников реакции, а также от пространственных факторов. Такпм образом, необходимо рассмотреть  [c.411]

    Группа Н индивидуальна для каледой аминокислоты, и именно она придает молекуле специфические химические свойства. Как показано в табл. 40.1, все аминокислоты могут быть разделены на семь классов в соответствии с природой группы К. Группа R может быть алифатической, т. е. неполярной ароматической, т. е. также неполярной спиртовой серусодержащей основной кислотной амидной. В пролине азот входит в пирро-лидиновое кольцо. [c.368]

    Надуксусная кислота, так же как и другие надкисло— ты жирного ряда, не образует солей (в противоположность ароматическим надкислотам). Кислотный характер надуксусной кислоты выражен слабо. В разбавленном едком натре она довольно быстро разлагается с выделенйем кислорода. Основная реакция в щелочной среде - гидролиз надуксусной кислоты  [c.46]

    Для прямого получения ароматических из пефти используются узкие фракции бензина прямой перегонки определенного происхогкдения, которые, если они отобраны в интервале, близком к температуре кипения толуола, содержат 25% и более толуола. Для обогащения такие фракции можно подвергать термическому крекингу, при котором ароматическая часть сохраняется, а неароматнческая часть, как менее стабильная, в основном превращается в кокс и газ. Дальнейшая обработка включает в себя кислотную очистку и перегонку. [c.101]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    В то же время, при слабой активности кислотной функции скорость реакций с участием иона карбония, включая дегидроизомеризацию и дегидроциклизацию, недостаточно велика, что, в свою очередь, должно вести к увеличению образования углеводородов -С и к снижению выхода риформата, т.е. к снижению селективности поцесса. Активность кислотной функции катализатора риформинга в основном определяется наличием на его поверхности хлора. При этом вполне закономерно ставится вопрос какое же конкретное содержание хлора должно поддерживаться на поверхности катализаторов риформинга, как алюмоплатиновых, так и новых би- и полиметаллических. Проведенные нами исследования показали, что для алюмоплатинового катализатора АП-64 оптимальное содержание хлора находится в пределах 0,55-0,65 % мае. Потеря хлора ниже 0,55 % приводит к значительному снижению активности и стабильности катализатора, при превышении оптимума наблюдается резкое увеличение гидрокрекинга углеводородов, падение выхода риформата, быстрое закоксовывание катализатора. Для полиметаллических платино-рений-кадмиевых катализаторов (типа КР-104, КР-108, КР-110) оптимальное содержание хлора, как показали наши исследования, находится на уровне 0,9-1,0 % мае. Регулирование содержания хлора на поверхности катализатора во время его эксплуатации служит технологическим приёмом, использование которого, наряду с обычными параметрами процесса, делает возможным получение высоких выходов высокооктанового бензина или ароматических углеводородов. [c.38]

    Расширение делокализованной системы происходит особенно заметно у азокрасителей, молекулы которых имеют два ароматических кольца, связанных мостиковой группой —N=N—. Метиловый оранжевый, еще один кислотно-основной индикатор (см. рис. 5-6), представляет собой азокраситель со структурой [c.307]

    Каталитический риформинг — сложный процесс, включающий разнообразные превращения углеводородов. Прямогонные бензиновые фракции, служащие сырьем каталитического риформинга, содержат парафиновые нафтеновые и ароматические углеводороды Се—Сю- В результате реакцийт пр екающих на катализаторах риформинга, происходят глубокие изменения углеводородного состава. Ароматизация углеводородов является основным и важнейшим направлением процесса. Перед тем как рассмотреть основные реакции, протекающие при каталитическом риформинге, необходимо отметить, что катализаторы риформинга отличаются наличием двух видов каталитически активных центров дегидри-рующих-гидрирующих центров на платине и изомеризующих - и расщепляющих кислотных центов на носителе. [c.7]

    С[<лонность ароматических углеводородов к образованию комплексов с кислотными катализаторами и взаимодействию с атакующими электрофильными частицами в значительной степени зависит от их основности, которая была определена при измерении коэффициентов распределения между инертным растворителем (н-гексаном) и жидким НР. С другой стороны, протонирующая способность кислот связана с функцией кислотности гаммета Но [149]1 [c.63]

    На катализаторах с высокой кислотной активностью реакции ароматических углеводородов значительно многообразнее и сложнее. Алкилбензолы, содержащие в алкильной цепи от трех до пяти атомов углерода, подвергаются в основном деалкилированию, как и при каталитическом крекинге  [c.294]

    Превращение полициклических ароматических углеводородов на катализаторах с высокой кислотностью наряду с гидрированием и расщеплением колец включает глубокую изомеризацию промежуточных продуктов гидрирования и расщепления, диспропорционирование алкильных заместителей, деалкилирование. Образующиеся в результате ароматические углеводороды представлены в основном производными тетралина и индана, нафтеновые [c.296]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    Первоначально процесс риформинга -проводился на алюмомо-либденовых катализаторах, которые обеспечивали в основном только дегидрирование. Выход ароматических углеводородов был очень низким — от 25 до 30%. Затем перещли к использованию платиновых катализаторов на алюмооксидных носителях (с содержанием платины 0,4—0,65%)- Эти катализаторы были бифункциональными оксид алюминия вследствие амфотерности способствует реакциям изомеризации и гидрокрекинга, платина же — катализатор дегидрирования. Для усиления кислотной функции алюмопла-тиновые катализаторы промотировали добавкой фтора или хлора. Переход на платиновые катализаторы позволил частично вовлечь в переработку парафины, усилив реакции дегидроциклизации выход ароматических углеводородов при этом повысился до 35— 40%. На отечественных установках получили распространение платиновые катализаторы АП-56 и АП-64, промотированные соответственно фтором и хлором [79]. [c.174]

    Изучение кинетики сульфирования ароматических углеводородов С 8 серной кислотой показало [121], что количество образовавшихся сульфокислот прямо пропорционально количеству серной кислоты, и реакция в основном протекает в кислотном слое. По мере повышения температуры и концентрации кислоты скорость сульфирования возрастает. На рис. 3.47 показана зависимость констант скоростей реакции сульфирования л- и и-ксилола от концентрации серной кислоты при различных температурах реакции и на рис. 3.48— зависимость глубины сульфирования отдельных ароматических углеводородов С 8 от длительности реакции в случае употребления 75%-ной H2SO4 при 75 °С. Мольное отношение H2SO4 сырье во всех случаях составляло 35 1. Во всем изученном интервале температур и концентраций кислоты быстрее всех сульфировался л-ксилол. [c.139]

    Ароматизация в присутствии алюмоплатинойого катализатора подробно изучена в отношении парафиновых углеводородов Се— Сз нормального строения. Данные об ароматизации изоалканов немногочисленны и посвящены в основном углеводородам состава Се—Сд. В присутствии алюмоплатинового катализатора с пониженной кислотностью образование ароматических углеводородов происходит в результате Се-дегидроциклизации на образце катализатора, обладающем большей кислотностью, заметную роль играет Сз-дегидроциклизация. [c.134]

    В силикагелях с гидратированной поверхностью в результате наложения кислотно-основных взаимодействий электронов ароматического ядра с гидроксилом кремнекислоты теплота адсорбции ароматических углеводородов значительно превышает теплоту адсорбции насыщенных — и резко уменьшается при дегидратации поверхности кремнезема. По данным А. В. Киселева [66], повышенная адсорбция бензола на гидратированной поверхности силикагеля связана с образованием молекулярных соединений (комплексов) между слабым основанием — бензолом (электродонорной молекулой) — и гидроксилом кремнекислоты (алектроноакцептор-ным и протоно-донорным адсорбентом) [c.236]

    Непосредственное исследование триплетных молекул и их участие в фотохимических процессах стало возможно с появлением метода импульсного фотолиза. Поскольку газы и жидкости, как правило, не фосфоресцируют, что, по мнению Льюиса и Каша, связано с малым временем жизни триплетных молекул, то наблюдение за триплетными молекулами возможно только импульсными методами. В качестве примеров химических реакций, протекающих в триплетном состоянии, следует указать на перенос протона, перепое электрона, отрыв атома водорода и др. Кислотно-основные свойства триплетного состояния органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (или рТС) может быть определена по кривой титрования , причем индикатором является молекула в своем триплетном состоянии. Типичная кривая зависимости концентрации триплетных молекул от pH среды приведена на рис. 57 для 9-азафеиантрена. Основность ароматических соединений в триплетном состоянии ие сильно отличается от основности молекул в основном состоянии в противоположность молекулам, находящимся в синглетно-возбужденном состоянии, основность которых существенно отличается от основного состояния. В табл. 15 приведены значения р/С для основного (Sq), первого сииглетпо-возбужденного (S ) и триплетного (Г ) состояний ряда ароматических молекул. Величины р/С (Т) определены ири помощи метода импульсного фотолиза. [c.159]

    АЗОКРАСИТЕЛИ — органические красители, в составе которых имеется одна или нескол1жо азогрупп —N=N—, связанных с ароматическими радикалами. А.— наиболее распространенный класс синтетических красителей, применяющихся для крашения волокон, пластмасс, кожи, бумаги, резины и других материалов. Представителями А. являются метиловый оранжевый и конго красный, применяющиеся в качестве индикаторов кислотно-основного титрования. [c.9]


Смотреть страницы где упоминается термин Ароматические основность и кислотность: [c.15]    [c.626]    [c.33]    [c.216]    [c.93]    [c.96]    [c.55]    [c.191]    [c.193]    [c.75]    [c.208]    [c.393]    [c.173]    [c.82]    [c.343]    [c.333]   
Новые воззрения в органической химии (1960) -- [ c.434 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

Кислотность—основность влияние заместителей в ароматическом ряду

ЛИЗ кислотно основной



© 2025 chem21.info Реклама на сайте