Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины, сольватация ионных пар

    Для контролируемых зарядом реакций должна существовать достаточная разница в уровнях энергии между высшей занятой молекулярной орбиталью (ВЗМО) донора и низшей свободной молекулярной орбиталью (НСМО) акцептора. Это достигается, если донор имеет высокую электроотрицательность, т. е. он имеет низко-лежащие занятые орбитали и, таким образом, не имеет тенденции отдавать свои электроны. Для реакций в растворе процесс удаления электронов от донора, который обычно является отрицательно заряженной частицей (основанием или нуклеофилом), включает потерю энергии сольватации это обстоятельство затрудняет протекание процесса. Чем меньше ионный радиус атома, с которого удаляются электроны, тем больше энергия сольватации и тем ниже будет лежать орбиталь. Поэтому контролируемые зарядом реакции включают атомы с высокой электроотрицательностью и малым ионным радиусом, т. е. с высокой орбитальной электроотрицательностью. Примером таких заряженных частиц является Р" или ОН примерами незаряженных частиц, склонных к контролируемым зарядом реакциям, являются вода и амины. [c.73]


    Следовательно, чем симметричнее процесс относительно нейтральных молекул и ионов, тем, в общем случае, большую роль играет сольватация молекул в общем балансе энергии. Напротив, для резко несимметричных процессов (например, протонирование амина или диссоциация карбоновой кислоты) процессом управляет сольватация ионов. Именно гидратация аммониевых катионов приводит к смене порядка основности аминов в водном растворе по сравнению с газовой фазой. [c.171]

    Проведение такого рода сравнений позволило классифицировать растворители на выравнивающие и дифференцирующие . В выравнивающих растворителях, например в воде, гидроксилсодержащих растворителях и аминах, уравнение Онзагера соблюдается в широком интервале концентраций. При этом среди солей щелочных металлов соли Ы являются более сильными (меньше связываются в ионные пары), чем соли Ыа и К, а значения рК всех этих солей сравнимы со значениями рК тетраалкиламмониевых солей. В дифференцирующих растворителях сольватацию можно обнаружить, но, как правило, она достаточно слабая и не обеспечивает выравнивания. В таких растворителях значения рК выше и варьируют больше, причем соли меньших ионов могут быть очень слабыми электролитами, тогда как для солей больших ионов различие между двумя классами несущественно. [c.116]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]


    Образование ионов в неводных растворителях в зависимости от свойств растворителей может протекать по механизму про-толитической диссоциации или в результате других химических реакций. Электролитическая диссоциация возникает в полярных протонных и апротонных растворителях, молекулы которых содержат неподеленные электронные пары. Протонные растворители, благодаря наличию гидроксильных и аминных групп, обладают также протондонорными свойствами и образуют водородные связи как между молекулами растворителя, так и с растворенным веществом. Все это способствует растворению и диссоциации электролита и сольватации ионов. Действие полярных апротонных растворителей, например, диметилсульфоксида, [c.413]

    Теперь кажущуюся аномальную основность алкиламинов можно объяснить двумя противоположными эффектами усилением основности благодаря повышению степени алкилирования амина и ослаблением основных свойств вследствие снижения степени сольватации иона аммония при повышении степени алкилирования. [c.141]

    Реакционный комплекс иногда называют комплексом столкновения, однако совершенно очевидно, что простого столкновения далеко недостаточно для образования структуры, в которой возможен перенос протона. Работа W , которую необходимо затратить для образования реакционного комплекса, представляет собой по существу ту часть А на, которая не зависит от изменений р/СанА. Величина Ц/ , необходимая для переноса протона с членов гомологического ряда кислородных кислот на один и тот же субстрат, согласно предположению, определяется потерями энтропии при фиксации молекулы кислоты и свободной энергией ее десольватации. Свободная энергия десольватации третичных аминов практически не коррелирует с их основностью. Сольватация аминов обусловлена главным образом ван-дерваальсовскими взаимодействиями, которые играют заметную роль и при сольватации ионов, поэтому разумно предположить, что свободная энергия десольватации аммониевых солей также никак не связана с их кислотными свойствами. Было показано, что даже прочность водородных связей лишь слабо коррелирует с силой кислот. Таким образом, в ряду родственных кислот [c.133]

    Вследствие заметной полярности связи Ы—С литийорганическне соединения обладают высокой реакционной способностью по отношению к полярным или легкополяризуемым связям. Нуклеофильный характер еще более возрастает при сольватации иона лития эфирами, подобными тетрагидрофурану, или третичными аминами, например 1,2-бис (Ы,Ы-ди-метиламино) этаном. [c.538]

    По мере выяснения важной роли, которую играет взаимодействие с растворителем в процессах перехода протона, усиливался интерес к вопросу о строении изолированных комплексов, образованных с сильными органическими основаниями таких сильных кислот, как галогеноводородные, трифторуксусная, азотная и др. Этот интерес еще обострялся в связи с появлением теоретических расчетов простейших комплексов такого рода (преаде всего комплексов ГмН-МНз), результаты которых оказывались довольно противоречивыми [37, 38]. В углеводородных или хлоруглеродных неполярных растворителях комплексы сильных кислот с аминами имеют ионную структуру и при высокой температуре распадаются сразу на свободные молекулы [39]. В азотной же матрице комплекс HjN H l, согласно [40], имеет молекулярное строение, но комплексы (СНз)зМ с H l и НВг трактуются скорее как ионные. В работах [10, II, 41] ИК-спектры комплексов H L с (СНз)зМ и другими азотсодержащими акцепторами протона в аргоновой матрице интерпретируются уже только как спектры молекулярных комплексов. Такой же вывод сделан и авторами работы [12], исследовавшими ИК-спектры комплексов H l и НВг с триметиламином в растворах в жидких азоте и кислороде. Однако взаимодействие F3 OOH с(СНз)зЫ и (0 45)3N в аргоновой матрице, по-видимому, ведет к переходу протона [31]. Хотя трактовка экспериментальных данных не всегда может быть проведена однозначно, все же кажется бесспорным, что небольшие различия в межмолекулярных взаимодействиях комплекса с такими растворителями, как благородные газы, азот, углеводороды, могзгт решающим образом сказаться на структуре комплекса. Присоединение второй молекулы донора протона [12] или сольватация комплекса протонодонорными молекулами часто приводят к образованию ионных структур. [c.133]

    В аминах более высокая основность атома азота усиливает сольватацию ионной пары, а в таких растворителях, как пиридин я этилендиамин, флуоренилнатрий и флуорениллитий при комнатной температуре находятся полностью в форме сольватно разделенных ионных пар [44]. В циклогексиламине соль лития также преимущественно находится в форме рыхлой ионной пары [c.120]


    Расчет значений и р дает важные сведения о взаимодействии иона металла с лигандом. Так, например, установлено, что щестикоор-динационные комплексы никеля с амида.ми типа R ON(R2)Rз характеризуются меньщими Од и р, если R, и R2 — алкильные группы, а не атомы водорода. В то же время известно, что по отнощению к фенолу и иоду донорная способность этих амидов увеличивается с ростом числа алкильных групп. Поэтому было высказано предположение, что между соседними координированными. молекулами амида [14] в комплексах металлов возможны пространственные взаимодействия. Исследование комплексов никеля (II) некоторых первичных алкила.минов показало, что если даже вода замещает в комплексах амины, они взаимодействуют с никелем более сильно, чем вода, и почти так же сильно, как аммиак [19]. Авторы работы [20] сообщили также о высоких значениях Од для никелевых комплексов этилени.мина [20]. При объяснении причин неустойчивости алкиламинных комплексов в воде учитывалась энергия сольватации [19]. [c.98]

    Как же протекает эта реакция в водном растворе В то Время как нейтральные аммиак и триметиламин гидратируются примерно в одинаковой степени, ион аммония гидратируется значительно сильнее, чем МезЫН . Как показывают уравнения (4.21) и (4.22), при сольватации с образованием водородных связей в водных растворах основность любых аминов возрастает, поскольку положительно заряженный ион аммония сольватируется лучше незаряженных аминов [31]. Б то же время сольватация за счет образования водородных связей снижается при увеличении числа алкильных заместителей ср. уравнения (4.22) и (4.21). Ион аммония может быть стабилизирован четырьмя водородными связями, а МезЫН имеет только один кислый атом водорода, способный участвовать в создании водородной связи. [c.140]

    Согласно теории сольватации, осиовность аминов должна в сильной степени зависеть от растворителя. Это и отмечалось в целом ряде случаев. В табл. 10 приведены значения AG° для. MOHO-, ди- и три-н-бутиламинов в растворе хлорбензола.. Хлорбензол — практически неполярный растворитель и поэтому неспособен стабилизировать ионы, так что это влияние на соли аммония исклн)чается. Действительно, названные бутиламины не обнаруживают падения основности при переходе от вторичного амина к третичному. Их основность изменяется в соответствии с индуктивны-м рядом. О том же свидетельствуют дипольные моменты аминов в бензоле, в котором практически не происходит сольватации. При этом также проявляется последовательность, соответствующая индуктивному эффекту  [c.60]

    Вопрос об относительной роли А у п Аз (пли, соответственно, структурного и сольватационного эффектов) в реакциях Меншуткина заслуживает специального рассмотрения. Хаманн [82] утверждает, что основным фактором, ответственным за ускорение реакций Меншуткина с повышением давления, является сжатие растворителя вокруг частично образовавшихся ионных зарядов (т. е. эффект сольватации активированного комплекса). В работах М. Г. Гоникберга с соавторами была показана ошибочность этого утверждения (путем приближенной оценки величин и A2V ). М. Г. Гоникберг и А. И. Китайгородский [239] вычислили А у для различных реакций Меншуткина, приведенных в табл. 50, на основании модели переходного состояния, показанной на схеме (рис, 17) [249]. Согласно этой схеме, связи С — Н, С — К" и С — Н " лежат в одной плоскости. Расположение же связей N — С (или N — Н) в амине относительно плоскости, проходящей через атом азота и параллельной плоскости С/ з, зависит от строения молекулы амина. Так, если [c.144]

    Более резко выраженная сольватация ароматическими углеводородами приводит к экранированию высокого дипольного момента мономерной ионной пары, стабилизации ее, что тем самым препятствует агрегации солей амина. В согласии с этим специфичес1 ие сольваты, образованные спиртами и ионными парами амина [484, 515—517. 543, 544], будут предотвращать молекулярную ассоциацию в полярных разбавителях. Возможно, молекулы спирта пли вообще [c.59]

    Приведенное объяснение, однако, несовместимо с относительными основностями первичных, вторичных и третичных аминов в апротонных растворителях [И, 12]. Другое объясне-нение предполагает [13], что введение третьей алкильной группы к азоту снижает сольватацию нминиевого иона в водных растворах, а следовательно, и его стабильность. [c.71]

    Существенную роль играет не только возникновение между компонентами устойчивых соединений, отвечающих определенному стёхиометрическому соотношению, но также возникновение между частицами компонентов различных сравнительно неустойчивых образований. Подобные комплексы не всегда могут быть выделены в виде чистого вещества и часто обладают переменным составом, как, например, гидраты ионов в растворах. Такие соединения частиц растворенного вещества с молекулами растворителя называются сольватами (процесс сольватации), а в частном случае водных растворов — гидратами (процесс гидратации), Межмолекулярные взаимодействия вызываются обьк яо или различием химического характера компонентов (основной или кислотный, например, в системе из амина и кислоты), или образованием между молекулами компонентов водородной связи, а также междипольным взаимодействием в случае, когда они обладают полярной структурой. Интенсивность таких взаимодействий может быть самой различной—от ничтожно малой до весьма сильной. [c.301]

    Ббльшая основность вторичных аминов по сравнению с первичными понятна, поскольку возрастание количества метильных групп у атома должно способствовать увеличению его электронодонорных свойств, падение же основности при переходе от вторичных аминов к третичным обусловливается, очевидно, какими-то другими факторами. Полагают, что меньшая основность третичных аминов по сравнению с вторичными связана со снижением эне гии сольватации ониевого иона водой [28, 31, 32]. В связи с этим большой интерес представляют другие методы определения основности аминов. V [c.233]

    Отклонение от предсказанных значений р/Са считается результатом пространственных эффектов, как, например, в случае три-нзобутилфосфина (см. рис. 10.2.1). Постоянство пространственных эффектов в первичных и вторичных фосфинах приписывается различной степени затрудненности. сольватации соответствующих фосфониевых ионов. Необходимо отметить, что фенилфосфины всегда располагаются примерно на 0,5 единицы р/Са ниже соответствующей прямой. Причиной этого явления могут быть, с одной стороны, большие пространственные требования фенильной группы по сравнению с алкильными, а с другой — наличие сопряжения неподеленной пары электронов фосфора с фенильной группой. В случае аминов этот эффект выражен гораздо ярче и составляет 2—4 единицы р/Са- [c.618]

    Схема Бренстеда отражает действительность только при условии, что концентрации промежуточных комплексов пренебрежимо малы. Однако это условие соблюдается далеко не во всех случаях. Строго говоря, для водных растворов кислот и оснований оно не соблюдается никогда, поскольку находящаяся в избытке вода, будучи одновременно кислотой и основанием, образует водородные связи с любььми центрами основности и кислотности, за исключением разве центров карбокислотности. Следовательно, в воде и подобных ей (по амфотерности) растворителях (спирты, карбоксильные кислоты, жидкий аммиак, первичные и вторичные амины) вообще исключено присутствие молекул или ионов свободных кислот и оснований. Вместо них присутствуют кислотно-основные комплексы типа А—Н ОНз, В—Н+ -.ОНз, А " И—ОН и В Н—ОН, в свою очередь гидратированные водой. Эти комплексы можно отнести в область специфической сольватации, так как в кислотно-основном взаимодействии, согласно схеме Бренстеда, участвуют гидратированные (или, в общем случае, сольватированные) кислоты и основания. Суть дела от этого не меняется. [c.259]

    В основе процессов фазового переноса лежит каталитический эффект четвертичных ониевых солей или соединений тида краун-эфиров, которые переводят в органические растворы анионные нуклеофилы и основания, иначе в них нерастворимые. Растворимость ионных пар зависит от липофильной сольватации аммониевого или фосфониевого катионов или комплексов с краун-эфирами и связанных с ними анионов, которые (не учитывая небольших количеств воды) сравнительно мало соль-ватированы. Поскольку анионы удалены от заряда катиона и относительно свободны от сольватации, они весьма реакцион- носпособны. Их повышенная реа-кционная способность и растворимость в неполярной среде позволяет проводить с ними многочисленные реакции в органических растворителях при температурах, близких к комнатной. Известны оба процесса межфазного переноса — в системах жидкость — жидкость и жидкость — твердая фаза в первых обычно используют в качестве катализаторов соли четвертичных ионов, а во вторых — краун-эфиры или криптаты. Последние можно использовать а в двухфазных жидких системах, однако гораздо меньше известно примеров успешного катализа солями четвертичных ионов в системах жидкость — твердое вещество. В большинстве случаев, где в качестве межфазных катализаторов использовались амины, доказано (или можно предположить) образование in situ четвертичных солей аммония. [c.31]

    Природа растворителя влияет не только на состояние веществ в растворе, но и на стабильность активированных комплексов, ЧТО также изменяет скорость реакции. Влияние сольватации переходных состояний прослеживается в реакциях между нейтральными полярными молекулами, сольватация которых меньше влияет на реакционную способность, чем в реакциях с участием ионов. Согласно качественной теории влияния растворителей Хьеоз а и Ингольда [72, с. 379], скорость реакции между незаряженными молекулами, протекающей через пере--ходное состояние с частичным разделением зарядов, возрастает с увеличением полярности среды. В соответствии с этим правилом реакции ароматического замещения, которые протераюг через переходное состояние, подобное по структуре биполярным 0-комплексам, ускоряются с увеличением полярности растворителя. Однако влияние растворителей зависит не только от их полярности. Наиболее обстоятельно это показано на примере )еакции ароматических галогенпроизводных с аминами [239], Лри близкой полярности растворители тем больше ускоряют реакцию с пиперидином (30)->(33), чем больше их основность диоКсан больше, чем бензол, пиридин больше, ем нитробензол,. и т.д. Это объясняют специфической сольватацией путем образования водородной связи в а-комплексе (31), облегчающей отрыв протона от атома азота (общий основный катализ). В значительной степени влияние основного растворителя зависит от природы замещаемого атома. Так, скорости реакции с пиперидином при 50 °С в таких растворителях, как бензол, этилацетат, метилэтилкетон, ацетонитрил, диметилформамид и диметилсульфоксид, составляют для п-нитрофторбензола соответственно 1, 11, 59, 300, 1950, 7200, а для /г-нитрохлорбен-зола они равны соответственно 1, 2, 15, 34, 142, 412 при отношении скоростей обмена атомов фтора и хлора в бензоле, равном 24 1 [240]. Большее влияние основных полярных растворителей (В) на скорость замещения атома фтора объясняют образованием более прочных водородных связей с сопряженными кислотами (ВН ) на стадии отрыва галогенид-аниона [формула (32)] (общий кислотный анализ).-Для растворителей (1), обладающих как основным, так и кислотным характером (например пиперидин), допускается возможность одновременного образо- [c.81]

    Как показано в табл. 20.3, основность фосфинов и аминов по отношению к протонам весьма различна. Основность аминов относительно постоянна, в то время как основность фосфинов чрезвычайно сильно зависит от степени замещенности. Общую свободную энергию протонизации в водных растворах можно представить в виде трех составляющих 1) энергии вторичной гибридизации атомов Р или N, 2) энергии образования Р—Н-или N—Н-связи, 3) энергии сольватации. Если предположить, что в четвертичных ионах гибридизация близка к sp , что очевидно из табл. 20.3, то энергия вторичной гибридизации будет относительно мала и примерно одинакова для всех аминов, в то время как для фосфинов она будет вообще больше и будет возрастать при переходе от МедР к РНд. Грубые расчеты показывают, что энергии протонизации РНд и NHg в газовой фазе отличаются очень. мало, но энергия сольватации NH+ больше энергии сольватации PHj приблизительно на 20 ккал/моль. Так как [c.362]

    Кинетика и механизм сольволиза амин-боранов зависит от ряда факторов, таких, как тип и степень замещения у бора и азота, сольватации и т. д. [54]. Однако имеется очень мало подробных исследований. Как было показано, гидролиз метиламин-боранов протекает через замещение группы ВНз при атаке протоном аминного азота. В случае кислотного гидролиза показано, что это реакция первого порядка по амин-борану, и концентрация кислоты и скорость реакции растет с увеличением ионной силы раствора. При н-пропанолизе пиридин-борана СвНбК-ВНз стадией, определяющей скорость реакции, является разрыв бор-азотной связи, а пиридин вытесняется спиртом. Большое значение стерических факторов было проиллюстрировано на примере замещенных пириди-нов [55—57]. Третий тип реакции дает амин-бороние-вый катион при атаке протоном непосредственно связи В—Н. Это было обнаружено при изучении гидролиза пиридин-фенилборанов в ацетонитрильном растворе [58]. Эти результаты согласуются с существованием нелинейного переходного состояния, что влечет за собой электрофильную атаку протона воды в направлении электронов В—Н-связи. [c.36]

    Большая основность вторичных аминов по сравнению с первич- ьши понятна, поскольку возрастание количества метильных рупп у атома азота должно способствовать увеличению его элек-ронодонорных свойств падение же основности при переходе от торичных аминов к третичным обусловливается, очевидно, ка-ими-то другими факторами. Полагают, что меньшая основность ретичных аминов по сравнению с вторичными связана со сниже-[ием энергии сольватации ониевого иона водой [19, 22, 23]. В свя-и с этим большой интерес представляют другие методы опреде-ения основности аминов. [c.213]


Смотреть страницы где упоминается термин Амины, сольватация ионных пар: [c.139]    [c.128]    [c.163]    [c.60]    [c.60]    [c.299]    [c.29]    [c.216]    [c.129]    [c.193]    [c.53]    [c.110]    [c.70]    [c.348]    [c.304]    [c.40]    [c.1613]    [c.161]    [c.559]    [c.66]    [c.377]    [c.268]    [c.265]   
Ионы и ионные пары в органических реакциях (1975) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы сольватация,

Сольватация

Сольватация ионов



© 2024 chem21.info Реклама на сайте