Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота ароматических соединений

    С термодинамической точки зрения большая прочность связи С — С в ароматических соединениях объясняется тем, что теплота их образования всегда выше рассчитанной по энергиям обычных алифатических двойных и одинарных связей. В результате большего выделения энергии при образовании ароматических соединений получаются связи с более коротким расстоянием между атомами С — С, с большей прочностью и большей термической стойкостью. В последние годы эта разница в энергиях получила название энергии резонанса [34] и объясняется распределением различных (Кекуле, Дьюар и др.) олефиновых структур, с помощью которых может быть изображено ароматическое ядро. Энергия резонанса является относительно большой величиной [32], доходящей почти до 40 калорий для бензола [13], 75 для нафталина, 105 для антрацена и т. д. Количество такой энергии можно грубо оценить по числу кольцевых связей в ароматической структуре и но характеру двойных связей [33], которые уменьшаются до половины в бензоле и до одной трети в графите. [c.93]


    Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах. Некоторым недостатком МТБЭ является более низкая, чем у углеводородов теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20 °С). [c.171]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Термодинамику крекинга следует изучать, во-первых, для предсказания возможных направлений реакций и наиболее благоприятных условий протекания их, во-вторых, для вычисления теплот реакций. Конечно, надо при этом подчеркнуть, что термодинамические расчеты крайне затруднены и малонадежны из-за огромного множества одновременно протекающих параллельных и последовательных реакций. Большинство из них условиях крекинга находится далеко от состояния равновесия, ибо равновесие для подобных систем — полное разложение углеводородов до углерода и водорода. Тем не менее для ряда реакций изомеризации олефиновых углеводородов, деалкилирования и изомеризации ароматических соединений наблюдается равновесное состояние. Весьма ценными [c.229]

    Оптимальный состав нитрующей смеси зависит от строения нитруемого вещества. Нитрующую смесь готовят прибавлением к азотной кислоте серной кислоты. При смешении азотной и серной кислот выделяется большое количество теплоты, поэтому приготовление нитрующей смеси нужно вести при перемешивании и охлаждении. При нитровании ароматических соединений, содержащих электроноакцепторные заместители, для приготовления нитрующей смеси приходится брать моногидрат или даже олеум. Вместо азотной кислоты в промышленности используют меланж , в котором кроме азотной кислоты содержится 7,5—9% серной кислоты и 4% воды. Для приготовления нитрующей смеси применяют также нитраты металлов. [c.172]


    Рассчитать при помощи уравнения (11,4) теплоту сгорания хлорбензола и сравнить ее с экспериментальным значением —735,20 ккал/моль 0,2, измеренным при постоянном объеме, если тепловая поправка на хлор для ароматических соединений равна —6,5 ккал. [c.27]

    Определение теплот образования по энергиям связей для ароматических соединений не дает удовлетворительных результатов. [c.40]

    Действительно, так как система выбирает коэффициенты в линейной комбинации функций таким образом, чтобы энергия была минимальна, привлечение нескольких состояний всегда снижает энергию. Поэтому соединения, в которых существует резонанс состояний, не укладываются в схему аддитивности энергии. Из отклонения величины энергии (например, теплоты сгорания) от аддитивности можно вычислить значение обменного интеграла между соседними р-электронами, определяющего величину энергии электронов ароматических соединений. [c.611]

    Термический крекинг является совокупностью таких различных по тепловому эффекту реакций, как эндотермические — расщепление и дегидрирование, экзотермические — полимеризация и мепее важное алкилирование ароматических соединений, а также почти не имеющая теплового эффекта изомеризация алкенов. В зависимости от условий процесса (характер сырья, глубина расщепления, давление, температура) эти реакции имеют различное удельное значение, вследствие чего теплота крекинга меняется. [c.379]

    Отвод теплоты экзотермической реакции алкилирования Ф олефинами можно регулировать скоростью подачи реакционной смеси через плотный слой СФК, поддерживая рост конверсии олефинов в пределах 1-4%, а повышение 1°С при этом < 1°С (Пат. США 3257467, 1960 г.). Реализация данного способа требует, однако, значительного увеличения объема Кт и, соответственно, размеров реактора. По своей сущности это предложение подобно другому (Авт. свид. 445639, 1973 г.), сочетающему проведение процесса в присутствии ароматических соединений. [c.18]

    Другое важное требование — высокие объемные теплоты сгорания топлив. Объемные теплоты сгорания зависят от массовой теплоты сгорания и плотности. Наибольшая массовая теплота сгорания у парафиновых углеводородов, наименьшая — у ароматических. При переходе к объемным теплотам ситуация противоположная, вследствие больших плотностей ароматических углеводородов их объемная теплота сгорания больше чем у парафинов. С другой стороны, слишком большое количество ароматических соединений в топливе ведет к увеличению нагарообразования, что снижает летные ресурсы двигателей. Основные характеристики современных отечественных и зарубежных реактивных топлив даны в табл. 4.41, 4.42. [c.402]

    С эмпирической точки зрения ароматическими соединениями являются соединения, молекулярная формула которых соответствует высокой степени ненасыщенности и которые тем не менее не вступают в реакции при соединения, характерные обычно для ненасыщенных соединений. Вместо реакций присоединения эти ароматические соединения часто наподобие бензола вступают в реакции электрофильного замещения. Наряду с инертностью в реакциях присоединения проявляется также необычная стабильность этих соединений — низкие значения теплот гидрирования и сгорания. Ароматические соединения имеют циклическую структуру — обычно содер жат пяти-, шести- или семичленные циклы — и ири их изучении физическими методами обнаруживается, что их молекулы плоские (или почти плоские). Протоны в этих соединениях имеют примерно такие же величины химических сдвигов в ЯМР-спектрах (разд. 13.18), как протоны в бензоле и его производных. [c.313]

    Нитрование ароматических соединений протекает необратимо с выделением большого количества теплоты (150-160 к Дж/моль) с участием, например, нитроний-катиона  [c.464]

    Ароматичность—совокупность свойств, отражающих структурные и энергетические особенности, а также реакционную способность плоских циклических систем, содержащих (4п + 2) л-электронов, которые вовлечены в замкнутую цепь сопряжения. Ароматичность характеризует повышенную термодинамическую устойчивость ароматического соединения, обусловленную делокализацией л-электронов. Мерой ароматичности является энергия резонанса (или энергия делокализации), которую необходимо дополнительно затратить на разрушение циклической системы делокализованных сопряженных двойных связей. Следовательно. энергия резонанса характеризует вклад циклического сопряжения в теплоту образования соединения. См. также Бензол. [c.36]

    Для оценки стабилизации ароматических соединений обычно используют два термохимических метода измерение стандартной энтальпии сгорания и стандартной энтальпии гидрирования. Теплота сгорания пиридина, например, представляет собой изменение энтальпии в соответствии с уравнением [c.32]


    Теплоты гидрирования ароматических соединений можно использовать для расчета эмпирических энергий резонанса путем сравнения с экспериментальными значениями для подходящих модельных соединений. Например, сравним теплоту гидрирования бензола [АН = -49,7 ккал/моль (-208 кДж/моль)] с таковой для 3 молей циклогексена [ДЯ = -28,4 ккал/моль (-П9 кДж/моль), ЗЛЯ = = -85,3 ккал/моль (-357 кДж/моль)]. Разница 35,6 ккал/моль (149 кДж/моль) соответствует эмпирической знергии резонанса бензола. Немного иное значение получают, если модельную систему выбирают другим способом. Так, значения теплот гидрирования первой и второй двойных связей 1,3-циклогексадиена экстраполируют и получают величину теплоты гидрирования при добавлении третьего моля водорода к гипотетическому циклогексатриену . Сумму трех значений затем принимают за величину для локализованной модели, как показано ниже (рассчитано экстраполяцией)  [c.33]

    Снижение энергозатрат на процесс дегидрирования может достигаться не только за счет эффективного теплообмена между входящими и выходящими потоками (см. рис. 8.2.), но и за счет использования вместо водяного пара (энергоноситель и разбавитель) инертного газа. В этом случае тепло должно подводиться между слоями катализатора с помощью встроенных теплообменников. Замена пара на инертный газ (азот, СО,) позволяет избежать многократного испарения и конденсации воды, обладающей высокой скрытой теплотой испарения. В этом случае также снизятся и затраты на очистку водного конденсата, загрязненного ароматическими соединениями, и в целом уменьшится суммарное потребление воды производством. [c.311]

    Существенно влияют на величину выхода и интенсивность люминесценции растворенные газы. Особенно это относится к кислороду его гасящее действие наиболее сильно проявляется в отношении ароматических соединений. Сравнима с кислородом по силе тушения окись азота. Азот, аргон и некоторые другие газы не влияют на люминесценцию и даже, напротив, предохраняют молекулу от нежелательного перехода энергии в теплоту. [c.148]

    Теплоты образования бензола и его производных, конечно, намного превосходили вычисленные значения этого следовало ожидать вследствие известного вырождения ароматических соединений . Следует [c.77]

    Токсикологические испытания показали, что метил-грег-бу-тиловый эфир не оказывает отрицательного действия на организм человека. Введение его в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах. Недостатком метил-грег-бутилового эфира является более низкая чем у углеводородов теплота сгорания (35200 кДж/кг) и способность растворяться в воде, хотя и в небольшом количестве — до 4,8 г в 100 г воды при 20 °С. Бензины, содержащие метил-грег-бутиловый эфир, прошли всесторонние испытания и показали высокие эксплуатационные свойства. [c.115]

    Энергия актпвацпп для реакций серной кислоты в водных растворах равна 27.4 ккал по сравнению с 18,0 ккал для реакций с олеумом. Основываясь иа том, что теплота реакции трехокиси серы с водой составлж т 20,0 ккал/моль, Кавдрей и Девис определили, что эпергия активации для реакции ароматических соединений с трехокисью серы в водных растворах серной кислоты равна только 7.4 ккал/моль, это значительно ниже значения для той же реакции в олеуме. [c.451]

    С увеличением молекулярного веса парафинов скрытая теплота плавления парафинов увеличивается от 15 кал1г для метана до 40 кал г для октана и при дальнейшем увеличении молекулярного веса асимптотически приближается к 55 кал г. Скрытая теплота Плавления у изопарафинов значительно ниже, чем у нормальных соединений, нафтенов и ароматических соединений того же молекулярного веса. У смеси парафинов скрытая теплота плавления 50 кал г. [c.196]

    Ниже будет рассмотрен метод расчета теплот гидроочист-ки — гидрокрекинга тяжелых нефтяных фракций, в которых содержание соединений серы значительное. В процессах гидроочистки — гидрокрекинга тяжелых нефтяных фракций протекают реакции гидрирования полициклических ароматических соединений, гидрокрекинга, гидрогенолиза С—5-связей и др. Получить надежные данные об изменении в ходе процесса индивидуальных структур обычно не удается. Поэтому использование данных о теплотах реакций индивидуальных структур оказывается затруднительным. [c.151]

    Метилтретбутиловый эфир — бесцветная жидкость с резким запахом, температура кипения 55°С. Введение МТБЭ снижает неравномерность распределения детонационной стойкости бензина по фракциям. МТБЭ обладает высокой детонационной стойкостью, октановые числа смешения его изменяются от 115 до 135 по исследовательскому методу или от 98 до ПО — по моторному (табл. 6.14). Токсикологические испытания показали, что МТБЭ не оказывает отрицательного действия на организм человека. Добавление МТБЭ в бензины снижает содержание оксида углерода, углеводородов и полициклических ароматических соединений в отработавших газах (см. ниже). Некоторым недостатком МТБЭ является более низкая, чем у углеводородов, теплота сгорания (35 200 кДж/кг) и способность растворяться в воде, хотя и в небольшой концентрации (до 4,8 г в 100 г воды при 20°С). При испытаниях отмечено, что применение МТБЭ ведет лишь к незначительному увеличению расхода бензина. [c.228]

    Для расчета теплот сгорания жидких углеводородов (предельных и непредельных, нафтенов, ароматических соединений, в том числе поликонденсированных) предложено следующее уравнение [c.28]

    ДВОЙНОЙ СВЯЗИ В структуре Кекуле. Можно сопоставить эту рассчитанную энергию делокализации с разностью между наблюдаемой теплотой сгорания и теплотой сгорания, предсказанной на основе аддитивности энергий связей для всех связей в простой структуре Кекуле с использованием наиболее точных значений этих величин [О (С—Н) = 226 О (С—С) = 206 и 0(С—С)= 507 кДж МОль ]. Если отложить экспериментальные значения энергии делокализации относительно рассчитанных значений (в единицах (3) для ряда ароматических соединений, снова пoлyч iм очень хорошую корреляцию (рис. 9,10), Из наклона кривой найдем численное значение р, однако эта величина, 71 кДж-моль- , очень сильно отличается от полученной из спектроскопических данных. [c.205]

    При гидроформинге ароматические углеводороды обра зу-ются главным образом путем дегидрирования цикланов и по-глощен1 е тепла по сравнению с ароматизацией алканового сырья 1 ,есколько снижается. В зависимости от соотношения продуктов реакции (ароматические соединения и газ) и оперативных условии процесса (давление и температура) тепловой эффект колеблется в пределах от —62 до —174 ккал на 1 кг сырья. Повышение давления (в пределах 20— 40 ати), так же как и температуры (в границах 500—550° С), благоприятствует течению сопутствующей гидроформингу деструктивной гидрогенизации, благодаря чему суммарная теплота реакции уменьшается. [c.384]

    Нафталин считается ароматическим соединением, поскольку его свойства напоминают свойства бензола (разд. 10.14, ароматический характер). В соответствии с его молекулярной формулой СщНа можно было бы предположить наличие высокой степени ненасыщенности однако нафталин устойчив (хотя и в меньшей степени, чем бензол) к реакциям присоединения, характерным для ненасыщенных соединений. Вместо этого для него типичны реакции электрофильного замещения, в ходе которых водород вытесняется в виде иона водорода и система циклов нафталина сохраняется неизмененной. Нафталин, подобно бензолу, необычно устойчив его теплота сгорания на 61 ккал (255,39-10 Дж) меньше, чем вычисленная, исходя из предположения, что он является обычным непредельным соединением (задача 10.2, стр. 307). [c.985]

    Как уже отмечалось, в процессе каталитического крекинга алюмосиликатный катализатор быстро закоксовывается и теряет свою активность. Количество кокса, который отлагается на катализаторе, в зависимости от качества сырья, режима процесса и типа реактора составляет 0,8-2 %. Образование кокса имеет двойное значение. С одной стороны, блокировка активных центров и пор катализатора высокомолекулярными конденсированными ароматическими соединениями с больпшм содержанием углерода (кокс) приводит к быстрой дезактивации катализатора, а, с другой стороны, выжигание кокса является источником теплоты для эндотермического процесса крекинга. [c.765]

    Среди обычных количественных критериев, используемых для определения ароматичности ненасыщенного соединения, особое место занимает так называемая энергия резонанса (ЭР). Во-первых, это количественный признак, используемый для разделения ненасыщенных соединений на ароматические и неарОхма-тические во-вторых, энергии резонанса, скорее, определяемые, чем измеряемые величины, И их значения в значительной степени зависят от гипотетического эталонного состояния, по отношению к которому их определяют. Эта зависимость от эталонного состояния может служить источником всяких недоразумений. Например, в литературе часто встречается утверждение, чго различия в значениях энергий резонанса ароматических соединений, получаемые на основании теплот гидрирования или теплот сгорания, вызваны неточностью последних. Между тем легко показать, что различие в энергиях резонанса выходят далеко за пределы границ ошибок обоих экспериментальных методов и что они вызваны принятием различных эталонных состояний для свободных от резонанса молекул. [c.216]

    Виниловые эфиры и амины имеют малую склонность к сохранению структуры так, при действии электрофильного агента первоначально образующийся продукт реакщ1и взаимодействует с нуклеофильной группой и образует продукт присоединения (пример 207->210). Тиофен и пнррол имеют высокую степень ароматичности (энергия сопряжения 31 ккал1моль, как измерено по теплотам сгорания) и, следовательно, при взаимодействии с электрофильным агентом первоначальный продукт реакции отщепляет протон и в результате ароматизации дает продукт замещения (пример 211 214). Фуран имеет менее ароматический характер (энергия сопряжения 23 ккал/моль) и одинаково часто присоединяет реагент и взаимодействует по схеме замещения. Ароматичность бензольного ядра ослаблена в 3,4-бензопроизводных (215), которые нестойки и обычно наряду с замещением вступают в реакцию присоединения, тогда как 2,3-бензопроизводные (216) являются устойчиво ароматическими соединениями. Однако 3-замещенные индолы иногда взаимодействуют с электрофильными агентами в положении 3 с образованием индоленннов (217) (ср. стр. 173). [c.165]

    Для оценки теплоты сгорания органической массы рассчитаны удельные тепло-энергетические характеристики отдельных представителей ароматических гомологических рядов с разным числом бензольных колец. Удельные теплоты сгорания соединений изменяются в пределах 38,7 - 40,6 МДк/кг, уьЕньшаясь с ростом количества конденсированных колец. Если исключить из рассмотрения бензол, то средняя теплота сгорания ароштических соединений с числом колец два -четыре составит 39,6 МДж/кг, а наибольшее отклонение от средней величины - около 2 %. Молярная энтальпия сгорания на один атом углерода является величиной, отражающей особенности строения углеводородов. Так, для соединений с числом колец, равным двум, на один углерод близка к 518 кДж/моль и не зависит от вида боковых цепей. [c.86]

    Во многих источниках приведены энергии связей углерод — углерод и углерод—водород [3, 4, 10—13. Однако они основаны на неверном допущении, что энергии всех связей (С—С), (С=С) и (С = С), а также (С—Н) одинаковы, независимо от того, в каких соединениях они находятся. Расчет теплот сгорания и образования по этим энергиям связей в сравнительно небольшом количестве случаев дает близкие к экспериментальным данным результаты. Большие расхождения наблюдаются при расчете изоалканов и недопустимо большие расхождения — при расчете ароматических соединений, алкенов и соединений, содержащих больше одной двойной связи в молекуле. Причина, видимо, в том, что средние значения энергии связи (С—Н) в группах —СНз, >СНз и в (С—С) в метильной и метиленовой группах значительно отличаются. [c.5]

    В связи с этим представляло интерес исследовать экстракционные свойства цнанметилового эфира уксусной кислоты. Наличие сильной электроноакцепторной нитрильной группы в этом соединении обеспечивает высокий положительный заряд на электрофилъном центре молекулы, а следовательно, и высокую селективность по отнощению к ароматическим углеводородам. Высокая емкость этого растворителя обусловлена наличием в его Молекуле карбонильного фрагмента, вносящего низкий вклад в теплоту испарения соединений по сравнению с другими электроноакцепторными заместителями. [c.71]

    Косвенным доводом в пользу этого предположения может служить существование корреляции между теплотой смешения и сдвигом частоты. Регулярное соответствие между Агд дейтерометанола в основных растворителях и теплотой растворения АН хлороформа в этих же растворителях было установлено Горди и Станфордом [812] и позднее Тамресом с сотрудниками [1823, 1824, 1995, 1996] . На рис. 26 приведена большая часть данных, полученных Тамресом и др. Прямые, соответствующие трем различным типам оснований (ароматические соединения, эфиры и амины), пересекают ось ординат в разных точках, но их наклон почти одинаков. [c.78]

    Имеется множество данных, указывающих на существование какой-то ассоциации в системах, содержащих ароматические соединения, которая может быть объяснена Н-связью. К их числу относятся данные о растворимости НС1 в ароматических соединениях [298] и Н2О в бензоле [1935], а также диаграммы плавкости смесей НС1 [424, 1705] и H I3 [1705] с ароматикой. Коэффициенты распределения, приведенные в табл. 15, равно как и спектральные исследования в ИК-области ассоциации N-этилацетамида в различных растворителях [1117], показывают, что бензол является более сильным основанием, чем ССЦ. Данные о теплоте смешения H I3 с ароматическими соединениями согласуются с предположением о возникновении ассоциации через Н-связь [1995]. Согласно Туомикоски, измерения дипольного момента пиррола в растворах в бензоле также указывают на образование Н-связи [2059] (см. также [1814]). [c.176]

    Полтев и Сухорукое [23, 24] подобрали параметры потенциалов 6-ехр для расчета теплоты сублимации органических кристаллических веществ, включающих соединения гетероциклической ароматической структуры. Особенно следует упомянуть работу [24], где с помощью разработанной этими авторами методики использования атом-атомных потенциалов [23,25] проведен расчет энергии межмолекулярного взаимодействия в кристаллах ряда ароматических соединений, включая соединения с водородными связями. Эти расчеты, а также анализ экспериментальных данных и результатов других авторов позволили получить новые параметры атом-атомных потенциалов в форме 6—12 . Их использование дает возможность с большей, чем для других потенциалов, точностью воспроизводить экспериментальные данные по теплоте сублимации целого ряда кристаллических ароматических веществ. [c.204]


Библиография для Теплота ароматических соединений: [c.314]   
Смотреть страницы где упоминается термин Теплота ароматических соединений: [c.20]    [c.271]    [c.63]    [c.606]    [c.226]    [c.46]    [c.78]    [c.161]    [c.189]    [c.35]    [c.986]   
Теоретические основы органической химии (1973) -- [ c.187 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота соединения



© 2024 chem21.info Реклама на сайте