Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм числа валентных электронов

    Монооксид углерода представляет собой пример химического соединения, когда валентность элементов превышает число неспаренных электронов. Углерод и кислород трехвалентны, хотя атомы этих элементов имеют по два неспаренных электрона. Не следует думать, что монооксид углерода — исключение. Наоборот, подавляюш,ее большинство неорганических соединений образуется или на основе донорно-акцепторного механизма ковалентной связи, или одновременно сочетает в себе обменный и донорно-акцепторный механизмы. Рассмотрим сульфид цинка, кристаллохимическое строение которого показано на рис. 4. Каждый атом цинка связан с четырьмя атомами серы, и, наоборот, каждый атом серы — с четырьмя атомами цинка. Поэтому атомы цинка и серы проявляют одинаковую валент ность, равную четырем. Между тем атом цинка в нормальном состоянии не имеет ни одного неспаренного электрона, а атом серы характеризуется двумя одиночными электронами. При возбуждении атома цинка происходит промотирование 45-электрона на 4р-уровень и появляются два неспаренных электрона  [c.73]


    Элементы 2-го периода периодической системы имеют только 4 валентных АО (одна 2з- и три 2р-), поэтому их максимальная ковалентность равна 4. Число валентных электронов в атомах элементов, расположенных в периоде левее углерода, меньше числа АО, а в атомах элементов, расположенных правее, наоборот, больше. Поэтому первые могут быть акцепторами, а вторые — донорами электронных пар. В своем обычном валентном состоянии атом углерода имеет 4 неспаренных электрона, что совпадает с числом валентных АО, поэтому связей по донорно-акцептор-ному механизму он не образует. [c.115]

    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]

    Изложение курса органической химии в профессионально-техническом училище должно соответствовать современным теоретическим представлениям о природе химической связи и механизмах органических реакций. Развитие общества в настоящее время достигло такой степени, что электрон , ядро стали общеизвестными понятиями. Из курса средней школы, а также при изучении неорганической химии учащиеся должны были получить представление о валентных электронах и о связи между числом валентных электронов и валентностью данного элемента. На основе этих знаний необходимо дать учащимся понятие о роли электронов и заряда, имеющегося на углероде п других элементах, в образовании химической связи и в механизмах органических реакций. Эти сведения несложны п в то же время делают материал курса более живым и доходчивым, позволяют устанавливать логические связи между различными, на первый взгляд, реакциями. [c.8]


    Характер и механизм влияния примесей в терминах зонной модели (на примере германия). Атом германия имеет 4 валентных электрона и двухэлектронную связь (рис. IV. 14). Если в решетку германия попадает атом с числом валентных электронов, большим 4, например As (у которого 5 валентных электронов) (рис. IV. 14, Ь), то лишний электрон в силу принципа Паули не находит места в связях и в то же время для него существует много незанятых состояний в зоне проводимости. Возникает лишь вопрос, какова энергия активации для перескока этого электрона в зону проводимости с донорного уровня. [c.331]

    Ширина запрещенной зоны у полупроводников в большой степени зависит от температуры (что и является главной основой принадлежности того или иного простого вещества к классу полупроводников). Так, при температурах, близких к абсолютному нулю, ширина запрещенной зоны стремится к бесконечности. В этих условиях все электроны (в том числе и валентные) находятся на самом низком энергетическом уровне, зона проводимости пуста полупроводник приобретает свойства совершенного диэлектрика. Прн повышении температуры полупроводника (или при воздействии других возбуждающих факторов) валентные электроны, преодолевая запрещенную зону, в большей или меньшей степени заполняют зону проводимости . Таким путем создается электронный механизм переноса тока, [c.455]

    Соответственно валентность элементов согласно методу ВС определяется как числом неспаренных электронов у атома (обменный механизм), так и числом связей, которые атом образует по донорно-акцепторному механизму. В рассмотренных выше примерах атомы азота и бора в ионах и ВНГ имеют валентность, равную четырем. [c.41]

    Радиолизом называют химические превращения под действием радиоактивных излучений. Ионы, возбужденные молекулы и электроны, образующиеся при поглощении излучения, успевают претерпеть целую вереницу превращений, которые приводят к тому, что в облученном веществе появляются совершенно новые частицы— продукты радиолиза. Начальные значения радиационной энергии значительно превосходят энергию связи валентных электронов. Поэтому поглощение этой энергии происходит не только в области частот, отвечающих полосам поглощения вещества, но и за пределами этих полос, т. е. имеет неизбирательный характер. Конкретный механизм радиационно-химического процесса не зависит от вида излучения и с количественной стороны характеризуется величиной поглощенной энергии. Для оценки эффективности действия излучения вводят количественную характеристику — так называемый радиационный выход g). Радиационный выход — выход числа молекул, атомов, ионов и других продуктов реакции на ]00 эВ поглощенной энергии. Для большей части веществ радиационный выход составляет 4—10 частиц. Однако для ряда реакций разложения =0,1, а для развивающихся по цепному механизму может достигать 10 -=-10 . [c.408]

    Особенностью образования соединений по обменному механизму является насыщаемость, которая показывает, что атом образует не любое, а ограниченное число связей. Оно зависит, в частности, от числа неспаренных валентных электронов. [c.98]

    Для объяснения поведения полупроводника при гамма-облучении Веселовский сделал предположение о наличии механизма, аналогичного принятому для действия окиси цинка при фотохимическом образовании перекиси водорода. Он считает, что гамма-энергия в значительной степени превращается в энергию электронов полупроводника. Он охарактеризовал это явление коэффициентом умножения , который определяет увеличение числа возбужденных электронов в полупроводнике в расчете на поглощенный гамма-квант. Веселовский рассчитал, что в случае окиси цинка энергия, поглощенная при гамма-излучении из Со ° (1,23 Мэе), должна соответствовать коэффициенту умножения 4-105, ак как возбуждение электрона от валентной зоны до зоны проводимости требует 3 эв. Эта величина соответствует полосе поглощения окиси цинка, расположенной приблизительно при 3850 А. [c.187]

    Выяснение механизма катализа не следует сводить к изучению самих каталитических реакций, а оно должно представлять исследование всех изменений, происходящих под влиянием катализатора. Такой подход найден в интерпретации явлений катализа на основании электронной теории. Согласно электронной теории химические соединения осуществляются с помощью электронов,, удерживаемых сообща двумя атомами. Постоянно происходит обмен энергией между свободно двигающимися электронами и атомами. Когда электрон подходит вплотную к атому и энергия этого свободного электрона превышает известный уровень, вся его энергия может перейти к валентным электронам, лежащим на поверхности атома. В сильно полярных соединениях электроны переходят с наружной оболочки электроположительных атомов на наружные оболочки электроотрицательных атомов, создавая устойчивые электронные группы. Первичные валентные отношения зависят от числа электронов, которые могут передаваться. [c.67]


    По радикальной теории катализа кристалл оказывает влияние на ход реакции по той же причине, по какой свободный радикал оказывает влияние на ход гомогенной реакции. При этом действуют те же два закона, что и в цепных гомогенных реакциях закон сохранения общего числа валентностей и закон стремления валентностей к насыщению. Радикальный механизм катализа непосредственно вытекает из электронной теории и является химическим аспектом электронного механизма катализа. [c.236]

    Для и, Ыр и Ри характерна большая склонность к образованию ионных ассоциатов в водных растворах по донорно-акцепторному механизму. Наблюдаемые многообразие и сложность состава этих ассоциатов обусловлены высокой координационной емкостью (14 и выше) актинидов вследствие наличия в структуре их электронных оболочек валентных электронов в состоянии 5/ и множества пустых 5/-орбит. Для изучения комплексообразования актинидов, в том числе и плутония в водных растворах, щироко применяются методы растворимости, ионного обмена, экстракции, спектрофотометрии и потенциометрии. [c.484]

    Максимальная ковалентность атомов определяется числом валентных одноэлектронных облаков (для образования связей по обменному механизму), а также числом свободных валентных орбиталей и двухэлектронных облаков (для образования связей по донорно-акцепторному механизму). Атомы элементов одного периода обладают одинаковой максимальной ковалентностью. Число неспаренных электронов в атоме в процессе образования связей может увеличиваться в результате возбуждения атома, при котором двухэлектронные облака распадаются на одноэлектронные. [c.82]

    Таким образом, суммарная валентность элемента равна числу неспаренных электронов (обменный механизм) плюс число связей, образованных по донорно-акцепторному механизму. [c.48]

    Следовательно, если элемент образует ковалентные связи и по обменному, и по донорно-акцепторному механизму, то его валентность больше числа неспаренных электронов и определяется общим числом орбиталей на внепшем электронном слое. К ним относятся а) орбитали с неспаренными электронами б) орбитали с неподеленными электронными парами в) свободные орбитали. [c.134]

    Важность названных выше элементов IV группы для современной науки и техники не случайна. Она обусловлена специфическими особенностями структуры и заселенности электронных орбиталей их атомов и, как следствие этого, уникальными свойствами образуемых ими гомо- и гетероатомных соединений. Все элементы содержат по четыре валентных электрона независимо от их орбитального происхождения. Это число валентных электронов является оптимальным, например, для возникновения особо важных тетраэдрических связей по обменному механизму. И вообще число валентных электронов, равное четырем, определяет IV группу как середину Периодической системы, если не считать VIII группу — благородных элементов. Другими словами, для элементов I, II и III групп до четырех валентных электронов не хватает соответственно трех, двух и одного электрона, а для элементов V, VI и VII групп, наоборот, отмечается избыток электронов против четырех. Все это приводит к тому, что химию остальных элементов системы целесообразно рассматривать в сравнении с химией элементов IV группы, особенно ее типических элементов и подгруппы германия. И не случайно для элементов IVA-группы одновременно так типичны и характеристические оксиды, и характеристические летучие водородные соединения по Д.И. Менделееву. [c.356]

    В настоящее время цепная теория окисления углеводородов отвечает подавляющему большинству наблюдаемых в этой области фактов и, в частности, объясняет причину окисления при невысоких температурах не самой насыщенной молекулы, а радикала как промежуточного продукта, имеющего свободную валентность. Энергия активации реакций взаимодействия свободных радикалов с молекулами измеряется от 1 ккал1моль до 20 ккал1моль [98]. При реакции одновалентного свободного радикала с насыщенной молекулой его свободная валентность переходит к вновь образованному свободному радикалу. При реакции свободного радикала с валентно насыщенной молекулой образуется система с нечетным числом валентных электронов. Это число электронов не меняется при реакции и, следовательно, в продуктах реакции всегда присутствует по крайней мере одна частица со свободной валентностью, т. е. свободный радикал. Так, последовательные взаимодействия радикалов с насыщенной молекулой создают цепную реакцию. Цепь может оборваться, когда два радикала, взаимодействуя между собой, образуют насыщенную молекулу. Цепным механизмом хорошо объясняются большие выходы продуктов реакции при незначительных концентрациях исходных радикалов. [c.69]

    В развитие основных полол ений теории химического строения о связи реакционной способности органических веществ с их химическим строением в органичесгюй химии было выработано представление об ионном и радикальном течении химических реакций. К радикальным реакциям были отнесены такие реарщии, как присоединение свободных поблочных металлов к непредельным соединениям, реакции, катализируемые перекисями, реакции свободных радикалов и другие реакции, в которых принимают участие атомы или молекулы с нечетным числом валентных электронов или молекулы, находящиеся в триплетном состоянии (бирадикалы). К реакциям, текущим по ионному механизму, были отнесены такие реакции, как, например, присоединение синильной кислоты или бисульфита натрия к альдегидам, реакции, катализируемые кислотами и щелочами, и много других реакций, в которых принимают участие атомы и молекулы с четным числом валентных электронов. [c.59]

    Однако некоторые (З-электронные конфигурации при определенном числе валентных электронов могут приводить к комплексам с иной геометрией, что обусловлено электронными причинами. Наиболее распространенный случай — это конфигурация с1 с четырьмя лигандами и 16 валентными электронами. Такая комбинация приводит к комплексам с планарной геометрией, что обусловлено причинами, известными в координационной химии при планарной конфигурации энергия орбитали с1х2 у2 настолько высока (рис. 2.2), что она остается незанятой. (Однако наличие вакантной орбитали позволяет таким комплексам легко вступать в процессы J мещения, протекающие по ассоциативным механизмам.) Другим примером может служить комбинация конфигурации с1 с тремя лигандами и 14 валентными электронами, которая дает комплексы с Т-образной геометрией (например, [КН(РРЬз)з] [13] и АиКз [14]). [c.41]

    Эти механизмы диффузии имеют место при росте защитных пленок первый — при образовании пленок ZnO, dO, ВеО, AI2O3 и др. (рис. 35, а), второй — при образовании пленок с пустыми катионными или анионными узлами в кристаллической решетке, например Си О, FeO, NiO, СоО (рис. 35, б), a-F aOg, Т1О2 (рис. 35, в) и др. Диффузия катионов в защитной пленке для соблюдения электронейтральности сопровождается одновременным перемещением в том же направлении эквивалентного числа электронов в междоузлиях при первом механизме и по электронным дыркам (катионам с более высокой валентностью) при втором механизме. [c.60]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Приведенных примеров достаточно для подтверждения так называемой спиновой теории валентности, согласно которой вапентность элемента определяется общим числом неспаренных электронов как в нормальном, так и в возбужденном состоянии. Способ образования ковалентной связи, когда к 1ждый из взаимодействующих атомов отдает по одному электрону для образования общей электронной пары, называется обменным. Но нередко валентность элемента превосходит число неспаренных электронов в его атомах. Происходит это потому, что помимо обменного механизма образования ковалентной связи существует и другой, заключающийся в том, что один атом отдает в общее пользование неподеленную пару электронов, а партнер предоставляет свободную орбиталь. Первый называется донором, а второй — акцептором. Ковалентную связь, образующуюся за счет неподеленной пары электронов донора и свободной орбитали акцептора, называют донорно-акцепторной связью. Схематически ее образование может быть показано так  [c.72]

    ГИИ этой зоны 11 11ос гедующей (пустой) зонами невелик. Поэтому уже при комнатных температурах некоторое количестао электронов аа счет теплового возбуждения перебрасывается в квантовые ячейки пустой зоны, где эти электроны ведут себя совершенно точно так же, как электроны проводимости в металлах (где понятие валентной лоны я зоны проводимости совпадают). Поэтому эта первая пустая зона в полупроводниках носит название зоны проводимости. Механизм электропроводности и электронной теплопроводности здесь такой же, как в металлах главное же различие заключается в том, что число таких электронов проводимости мало и эффект от них невелик роме того, эффект должен по определенной закономерности увеличиваться с температурой, связанной с увеличенным перебросом. Поэтому температурная зависимость ЭТИХ свойств у металлов и полупроводников резко различна. [c.204]

    С учетом сказанного можно дать теперь определение валентности. Это число электронных пар, соединяющих данный атом с другими в соединении. При обычном механизме образования ковалентной связи (может быть еще донорно-акцеп-торный механизм, который будет рассмотрен ниже) максимальная валентность элемента равна числу неспаренных электронов в атоме. Отсюда следует важное свойство ковалентной связи, а именно ее насыщаемость данный атом может быть связан ковалентном связью лищь с определенным числом других атомов, но не образует прочных связей со всеми близко к нему расположенными атомами. Например, в жидком кислороде атомы кислорода связаны попарно в молекулы О2, но не образуют прочных связей вне этих молекул, т. е. с атомами кислорода соседних молекул. [c.124]

    Рассмотрим механизм передачи влияния магнитного поля ядра по системе ковалентных связей в углеводородном фрагменте (рис. 5.21). Ориентация спина ядра в магнитном поле сопровождается преимущественно антипараллельной ориентацией спинов электронов того же ядра, участвующих в образовании ковалентных связей. Так, на рис. 5.21 ориентация спинов ядра Сд и электрона Нд преимущественно антипараллельна. В соответствии с принципом Паули электроны связи Нд—Сд должны иметь противоположные направления спинов. Поэтому ориентация спинов ядер Нд и Сд (если последнее представлено магнитным изотопом ) будет противоположной. Согласно правилу Хунда все спины валентных электронов, принадлежащих одному и тому же атому, должны быть параллельны, поэтому ориентация спина углерода С (если это магнитное ядро) должна быть преимущественно параллельна спину ядра Нд и антипараллельна спину ядра Нв. Принято считать, что константа J имеет положительный знак, если низкому энергетическому уровню соответствует антипараллельная ориентация спинов взаимодействующих ядер, и отрицательный знак, если ему соответствует параллельная ориентация спинов. Знак константы зависит от числа связей, разделяющих магнитные ядра. Абсолютная величина КССВ также зависит от числа связей, как правило, убывая по мере его возрастания. Число связей, разделяющих ядра, принято обозначать цифровым верхним индексом при 7 V- [c.296]

    Примеры, I, Формирование связей в молекуле триоксида сери ЗОз устанавлнвзетсл следующим обрааом. Принимается во внимание, что степень окисления (см. 6.13) центрального атома серы в этой молекуле равна -I-VI, и что его внешний энергетический уровень изображается с учетом потери числа электронов, равного степени окисления (для атома sVI потеря всех его валентных электронов 3s 3p - 3s°p°). Прн образовании молекулы SOa формируется нужное число о-связей по донорно-акцепторному механизму (см. 6.8), при этом йтоы sVI будет акцептором электронной пары, а атомы (2Л0 ) —донорами  [c.130]

    Исследование большого числа осколочных ионов в масс-спектрах слож ных молекул показало, что в большинстве случаев эти ионы образуются лишь с незначительной начальной кинетической энергией или совсем без нее. Этот и другие факты привели Розенстока и его соавторов к заключению, что различные продукты диссоциации не определяются различными электронными состояниями перед диссоциацией. Источником их образования является сильно возбужденный молекулярный ион, состояние которого можно уподобить термическому возбуждению. Они предположили, что в молекулярном ионе с его большим числом межатомных колебаний должен существовать механизм, при помощи которого некоторая слабая точка может перемещаться в молекуле диссоциация наступает тогда, когда электронная конфигурация позволяет сделать это. Другими словами, допускается, что молекулярный ион (или любой другой ион, образовавшийся из него) может перераспределить свою энергию между различными колебательными уровнями путем ряда быстрых нерадиационных переходов к различным электронным состояниям. Для осуществления этого необходимо наличие большого количества пересекающихся поверхностей потенциальной энергии. В классическом случае молекулы пропана, впервые рассмотренной с точки зрения статистической теории, в молекулярном ионе имеется 19 валентных электронов. Из 2 состояний, соответствующих этим электронам в основных состояниях, многие являются вырожденными число невырожденных состояний равно [c.253]

    Форма зависимости вероятности возбуждения (функции возбуждения), от энергии электронов для различных переходов различна. Например, для атомов с двумя валентными электронами функция возбуждения при переходах из синглетного в синглетное состояние имеет широкий максимум, соответствующий энергиям электронов, значительно большим, чем минимальная энергия возбуждения. Для переходов же с изменением мультиплетности, например синглет -> триплет, функция возбуждения имеет резкий максимум при энергии, близкой к энергии возбуждения. Причина этого различия заключается в том, что при переходе синглет синглет полное спиновое квантовое число не изменяется, т. е. векторы спинов двух валентных электронов остаются антнпараллельными. При переходе же синглет триплет ориентация векторов спинов меняется на параллельную (полное спиновое квантовое число изменяется с О на 1). Подобного рода изменение полного спинового квантового числа часто возможно только в результате электронного обмена, т. е. когда ударяющий электрон захватывается атомом, а один из атомных электронов покидает атом. Такой процесс может происходить, по-видимому, лишь в случае, если энергия ударяющего электрона близка к энергии возбуждения. Это и приводит к тому, что функция возбуждения при таком обменном механизме имеет острый максимум, лежащий вблизи критической энергии возбуждения. Например, при возбуждении атомов ртути электронным ударом происходит переход П5о 2 Р1(Е = 4,9 эв). Функция возбуждения этого процесса имеет максимум при энергии электронов 7 эв. Таким образом, различие составляет всего 2,1 эв [13]. Процесс может быть представлен следующим образом  [c.22]

    В современных взглядах на люминесценцию модельные представления о механизме свечения основаны преимущественно на случаях возбуждения светом. С изрест-ными поправками они могут быть распространены и на все остальные виды люминесценции. В основе всех моделей для кристаллолюминофоров лежит картина зонального распределения энергетического спектра кристалла, обусловленная существованием в нём периодического потенциального поля. В идеальном кристалле все атомы решётки кооперируют друг с другом. В результате взаимодействия с соседями энергетические уровни валентных электронов каждого атома расщеплены на соответствующее число подуровней. Последние энергетически расположены близко друг к другу и дают начало как бы непрерывным полосам разрешённых энергий. Вероятность распределения в них имеет периодический характер и ведёт к конечной вероятности нахождения электрона в любой точке решётки. Эти полосы разделены друг от друга областями запрещённых энергий, что придаёт энергетическому спектру кристалла зональный характер. [c.276]

    Валентность по обменному механизму метода ВС. Способность атома присоединять или замещать определенное число других атомов с образованием химических связей называется валентностью. Согласно обменному механизму метода ВС каждый атом отдает на образование общей электронной пары (ковалентной связи) по одному неспаренному электрону. Количественной мерой валентности в обменном механизме метода ВС считают число неспаренных электронов у атома в основном или возбужденном состоянии атома. Это неспаренные электроны внешних оболочек у 5- и / -элементов, внешних и предвнешних оболочек у й -элементов, внешних, предвнешннх и предпредвнешних оболочек у /-элементов. [c.42]


Смотреть страницы где упоминается термин Механизм числа валентных электронов: [c.180]    [c.67]    [c.137]    [c.242]    [c.242]    [c.46]    [c.388]    [c.389]    [c.52]   
Химия несовершенных кристаллов (1969) -- [ c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте