Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий методы отделения

    В последнее время начинают применяться радио активационные методы определения рения после предварительного отделения его от основных компонентов [53, 119]. Этот метод имеет то преимущество, что, используя селективные методы отделения, нет необходимости работать в горячих камерах или боксах. В некоторых случаях полученный концентрат либо непосредственно облучают в реакторе, либо сначала соосаждают рений на ложном носителе (висмут особой чистоты). Такого рода методы использовались при анализе пирита [119], пиролюзита и продуктов его переработки [53] и вод Тихого океана [1028, 1159]. Концентрирование во всех случаях проводилось экстракцией кетонами. [c.171]


    При использовании метода отделения группы компонентов все компоненты сначала упорядочиваются по температурам кипения, а затем рассматриваются все возможные варианты разделений вида (1, 2,. .. г +1, 1 + 2,. .., п) с проверкой условия связности. Затем рассматриваются парные перестановки и разделения вида (1, 2,. .., I—1, +1 , 1- -2,. .., п) и т. д. Такого рода перестановки целесообразно рассматривать только до тех пор, пока температура кипения состава, соответствующего устойчивому узлу области ректификации верхнего продукта будет ниже температуры кипения состава, соответствующего неустойчивому узлу области ректификации нижнего продукта. Следует иметь в виду, что при отделении группы компонентов ключевыми являются не компоненты, а узловые точки соответствующих областей ректификации. [c.116]

    Гидролитические методы отделения платины от родия, иридия и палладия в растворах комплексных хлоридов основаны на способности последних, в отличие от платины, образовывать нерастворимые продукты гидролиза в области значений pH 6—8. [c.224]

    Методы отделения- золота, платины и палладия от родия и иридия основаны на определенной последовательности восстановления благородных металлов из растворов их комп лексных хлоридов, отвечающей следующему ряду Аи, Pd, Pt, Rh, Ir. [c.225]

    I. КОЛИЧЕСТВЕННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ РОДИЯ 1. Отделение в виде металла [c.371]

    Далее описаны частные реакции, применяемые для качественного и количественного определений родия, приводятся наиболее известные методы отделения родия от других элементов, начиная с неблагородных металлов и кончая ближайшими аналогами родия. [c.212]

    Метод селективного восстановления микрограммовых количеств родия н отделение его от иридия мелкодисперсным порошком сурьмы дает точные количественные результаты [124]. Иридий при этом восстанавливается только до трехвалентного состояния. Осаждение можно вести в сернокислой или солянокислой среде. В фильтрате сурьму отделяют от иридия, отгоняя ее выпариванием с серной кислотой. Однако метод испытан только для таких количеств родия и иридия, которые меньше предела, допустимого для гравиметрического определения. Подробности описаны в методике И. [c.33]

    Тонкий порошок меди применяют для количественного выделения из растворов микро- и миллиграммовых количеств металлического родия. Хотя верхний предел концентраций не установлен, можно предполагать, что метод можно применять для граммовых количеств родия. Метод был предложен [122] для одновременного выделения родия и отделения его от иридия. Удаление избытка солей меди из раствора иридия легко осуществляется с помощью ионного обмена, так как медь присутствует в растворе в форме катионного, а иридий —в форме анионного комплекса. Разделение описано в методике 8. [c.33]


    Осаждение в виде гидроокиси нашло широкое применение. В более старых методах не удавалось выделить чистый осадок. Хороший метод количественного осаждения гидроокиси палладия (IV) предложен Гилкристом [192], который окислял палладий броматом калия, затем нейтрализовал раствор до pH 6 и, наконец, до pH 8. Это осаждение является составной частью метода отделения родия, иридия и палладия от платины и главной областью его применения. Осадок не представляет собой весовой формы, и, хотя гидроокись легко восстанавливается до металла прокаливанием в двуокиси углерода или в водороде, этот метод не следует рекомендовать, поскольку для палладия существует масса других осадителей. Описание гидролитического осаждения включено в методики 30, 81, 88 и др. [c.56]

    М солянокислого раствора амилацетатом. Образующийся при этом желтый экстракт неустойчив. До настоящего времени удовлетворительного экстракционного метода отделения родия не предложено. [c.191]

    Четыреххлористый углерод был впервые применен для экстракции германия при его качественном открытии [241], а затем экстракция германия была изучена с количественной стороны [2421 и применена при определении следов германия в силикатных породах [103]. После этого экстракция германия четыреххлористым углеродом из соляной кислоты широко используется при определении малых количеств германия. Сравнение методов отделения германия дистилляцией и экстракцией четыреххлористым углеродом см. в [99, 121]. При экстракции германия четыреххлористым угле родом обычно применяется 9N ИС1. Из 5 N КС1 экстракция германия равна 2—3%, из б Л/ — 7—8%, из 8—ЮЛ — 100%. Влияние концентрации со- [c.413]

    Методы отделения металлов платиновой группы и их разделения рассматриваются в разделе Платина . Перед определением иридий часто следует отделять от родия. Методы разделения этих металлов описаны в разделе Родий . [c.191]

    МЕТОДЫ ОТДЕЛЕНИЯ РОДИЯ [c.327]

    Гель-хроматография, как представляется на первый взгляд, должна быть идеальным методом отделения полимеров и определения их характеристик. Однако большинство известных сорбентов, применяемых в гель-хроматографии, для решения зтой задачи не подходят. На поверхности гелей сефадекса имеются вицинальные гидроксильные группы, которые в нейтральной среде легко образуют комплексы с ионами большинства металлов (типичным соединением этого типа является глицерат железа Британской фармакопеи). Поэтому при применении в больших концентрациях эти ионы дают хвосты , а при малых концентрациях полностью адсорбируются. На поверхности пористых стекол и пористого силикагеля (и их производных) обычно располагается значительное число силанольных групп, которые также энергично взаимодействуют с мономерными и полимерными ионами металлов. Тем не менее методом гель-хроматографии удается разделить гидролизуемые полимерные соединения некоторых металлов, например рутения [12], родия (III) i[13], и растворимые ферроцианиды [14—16]. Характер перемещения небольших мономерных ио ов внутри сорбента, применяемого для гель-хроматографии, в значительной степени определяется ионным обменом с остаточными карбоксильными группами (благодаря которым происходит вытеснение ионов) и гидрофобной адсорбцией, особенно сильной на сефадексе LH-20, при использовании которого, кроме того, может наблюдаться эффект высаливания [17]. [c.328]

    Было показано, что синтезированные продукты взаимодействия сополимеров с элементарной серой проявляют селективность к некоторым металлам, например к платине. Данные табл. 3 показы-вают перспективность применения этих смол для разработки методов отделения платины от родия и иридия. [c.228]

    В концентрированных системах избытки солей ВХ и ВУ могут находиться в твердых фазах. Подобного рода реакции лежат в основе многих методов получения минеральных удобрений и других солей (кислотная переработка природных минералов). При добавке к си- стеме органического растворителя образуются две жидкие фазы — водная и неводная. Водная фаза будет представлять собой раствор солей Е Х и ВУ, а кислоты распределятся между обеими фазами. Но так как коэффициенты распределения кислот НУ и НХ между фазами различны, то в неводную фазу будет переходить преимущественно одна из кислот (например, НХ). Это сместит равновесие реакции в водной фазе в сторону образования соли (ВУ), которую можно выкристаллизовать из водного раствора после отделения его от органического растворителя. Последний может быть регенерирован промывкой водой (для извлечения растворенной в нем кислоты) и возвращен в процесс. [c.321]

    Было показано что палладий совместно с родием и рутением можно таким же образом отделить от серебра в сернокислом растворе. Выделение в виде гидроокисей имеет то преимущество перед осаждением сероводородом, что образующиеся соединения легко превращаются в галогениды, которые требуются для последующих операций. Поскольку этот метод наиболее применим для отделения платины от палладия, родия и иридия, он более детальна излагается в разделе Систематический ход. разделения и определения платиновых металлов (стр. 423). [c.414]


    Описанные здесь методы анализа рассчитаны на получение наиболее точных результатов, но в тех случаях, когда можно ограничиться меньшей точностью определения, ход анализа может быть значительно сокращен. Так, например, в некоторых стадиях анализа можно исключить переосаждение осадков. В частности, можно ограничиться однократным гидролитическим осаждением палладия, родия и иридия нри отделении их от платины. Определение платины можно закончить непосредственным прокаливанием сульфида, пренебрегая незначительными количествами серы, которые при этом задерживаются в осадке. Можно исключить и вторичное восстановление родия хлоридом титана (И1), а также избежать осаждения титана купфероном, определив родий и иридий в аликвотных частях раствора. Необходимо, однако, иметь в виду, что при этом могут иметь место ошибки, величина которых зависит от относительного содержания металлов, находящихся в анализируемой пробе. [c.433]

    Метод пригоден для определения иридия после отделения от него родия нитритно-сульфидным методом (см. гл. V, стр. 229). [c.122]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]

    Отделение платины от родия, иридия и палладия методом гидролиза [c.224]

    Метод дает хорошие результаты для обычных количеств родия и иридия, которые встречаются в рудах и продуктах металлургического передела, но он непригоден для отделения малых количеств иридия от очень больших количеств родия. [c.227]

    Катионообменный метод отделения родия (III) от иридия (IV) разработан Бергом и Сенном [3 ]. Иридий переводят в анионный тио-мочевинный комплекс, который проходит через колонку. Поглощенный катионитом катионный комплекс родия элюируют %М НС1 при 74° С. По данным Н. К. Пшеницына, К. А. Гладышевской и Л. М Ря-ховой [32], аналогичный процесс разделения пиридиновых комплексов также может быть использован для аналитических целей. [c.375]

    Если родий после отделения прочих платиновых металлов имеется в виде хлористого родия, хлорородиата натрия или сернокислого родия (полученного сплавлением с кислым сернокислым калием), то рекомендуется непосредственно выделить его в виде металла. В качестве восстановителя обычно применяют металлы —цинк или магний — в мелкораздробленном виде или в опилках. Если берут магний, можно применять и слабые кислоты, как уксусную кислоту, или к слабо минеральнокислому раствору прибавлять уксуснокислого аммония (см. также гидразиновые соли, как восстановители). Металлическую губку во всех случаях промывают разбавленной кислотою, сушат и прокаливают в токе водорода. Более значительные количества родия можно выделить из чистых растворов электролитическим путем (см. Электроаналитические методы, т. И, [c.371]

    При систематическом анализе металлов платинсмвой группы сначала отделяют осмий и рутений в виде летучих четырехокисей, затем палладий, родий и иридий осаждают в виде гидратов окисей в присутствии бромата при определенной кислотности Гидролитическое осаждение родия происходит полностью при pH = 6. Для освобождения от платины гидрат окиси родия необходимо переосадить. Палладий отделяют в виде соединения с диметилглиоксимом, а затем для отделения от иридия родий осаждают в виде металла восстановлением хлоридом титана (III) в горячем сернокислом растворе. Осадок родия необходимо растворить и переосадить для отделения малых количеств иридия, который был увлечен осадком. До сих пор неизвестно, насколько пригодны такие методы отделения, если очень малые количества родия находятся в присутствии больших количеств других элементов платиновой группы. [c.405]

    Хлорид двухвалентного хрома (избыток 0,1 V СгСЬ) количественно восстанавливает трехвалеитный родий до металлического состояния в среде 10%-ной НС1. Трехвалеитный иридий при этом остается в растворе. Это позволило Н. К. Пшеницыну I180] разработать метод отделения родия от иридия. Родий выделяют в атмосфере СОг. В нейтральных растворах н льшая часть иридия восстанавливается до металла. Если иридий находится в четырехвалентном состоянии, то он восстанавливается до трехвалентного состояния. [c.154]

    Блазиус и Вахтель [137] изучили поглощение хлоридных комплексов рутения, родия, палладия, иридия и платины сильноосновным анионитом пермутитом ЕЗ в ОН-, С1-, СНзСОО-формах. Показано, что все исследованные элементы наиболее прочно удерживаются анионитом в С1-форме и наименее прочно — в СНзСОО-форме. Анионит в гидроксильной форме занимает промежуточное положение, и на нем наиболее четко выявляются различия в устойчивости комплексов по отношению к гидролизу рутений и родий гидролизуются, палладий и трехвалентный иридий легко вымываются 1 N раствором едкого натра платина прочно удерживается анионитом и вымывается лишь 2,5 УУ раствором азотной кислоты. На этом основаны предложенные авторами хроматографические методы отделения платины от палладия или иридия через анионит в ОН-форме пропускают солянокислый раствор анализируемой смеси и колонку промывают 1 N раствором едкого натра палладий или иридий первыми переходят в фильтрат и содержат обычно не более 0,5 и 0,1 % платины, соответственно. Платину вымывают 2,Ъ N раствором азотной кислоты, нри этом в ней присутствует не более 0,01 % отделяемого от нее металла. Смесь родия и иридия разделяется не полностью. Платину можно отделить от железа, меди и никеля пропусканием солянокислого раствора через катионит (при небольшом содержании примесей) или сильноосновной анионит (при большом содержании примесей). В последнем случае для извлечения платины анионит сжигают. [c.215]

    Осгадительным методам отделения малых количеств платины от остальных металлов платиновой группы уделялось мало внимания. Для этой цели можно использовать общий ход анализа для разделения металлов платиновой группы-. В этом методе сначала отделяют осмий и рутений в виде летучих четырехокисей и оставшийся раствор кипятят в присутствии бромата при pH 8 для осаждения гидроокиси палладия, иридия и родия платина(1У) остается в растворе. Осадок следует растворить и осаждение повторить один или несколько раз. Се(1У) является подходящим носителем. [c.649]

    Если количественный перенос вещества не является необходимым, тонкие однородные образцы можно приготовить одним из методов, описанных в разделе, посвященном способам приготовления мишеней напылением в вакууме, электроосаждением, методами электрофореза или электрораспыления [1, 2, 26]. Напыление путем испарения с накаленной проволоки можно использовать для прдготовления образцов из большинства элементов. В некоторых случаях процесс можно проводить даже на воздухе например, при нагревании таких летучих элементов, как полоний или астатин, их можно сконденсировать непосредственно на подложке, расположенной над нагреваемым объектом. В большинстве случаев используют простые вакуумные установки. Применение установок с хорошо продуманной конструкцией испарителя и приемника позволяет производить перенос радиоактивного вещества преимущественно в заданном направлении и, таким образом, избежать потерь. Конденсацию вещества можно проводить даже на тонкой полимерной пленке, если в условиях напыления она не разрушается теплом, исходящим от накаленной проволоки. При использовании метода напыления желательно сначала нагреть проволоку до температуры несколько более низкой, чем необходимая для испарения наносимого материала. Таким образом избавляются от летучих примесей и только после этого помещают подложку образца в нужное положение и доводят температуру до необходимого уровня. Специальные методы получения тонких радиоактивных препаратов разработаны для тех случаев, когда соответствующий изотоп образуется в ходе радиоактивных превращений, в особенности при а-распаде. В этом случае энергию отдачи ядра, образующегося приа-распаде, используют для отделения дочернего продукта от исходного вещества и для его переноса на расположенную рядом пластину-коллектор. Аналогично энергию отдачи можно использовать для перенесения продуктов ядерной реакции из тонкой мишени на фольгу-коллектор, расположенную по ходу пучка, выходящего из облучаемой мишени. Такого рода методы особенно широко используются при исследовании короткоживущих изотопов трансурановых элементов, образующихся при облучениях на ускорителе. [c.411]

    Для определения Sb > I-I0 % в платине используют спектральный метод, позволяющий определять еще 18 других примесей [389а]. В сплавах платины с родием Sb (0,001—0,01%) определяют экстракционно-фотометрическим методом с применением родамина С после ее хроматографического отделения [482] или экстракции изопропиловым эфиром из 7,7 М HG1 [1648]. В продук- [c.143]

    Методом осаждения висмута в виде хлорокиси пользовались Гампе [6451 при определении небольших количеств висмута в технической меди, Роесслер -[1103] — для отделения висмута от платины и палладия и Велер и Мейц [1377] — для отделения висмута от родия. [c.47]

    В последние годы все большее распространение получает хроматографическое разделение веществ по их молекулярному весу, причем первое место среди таких вариантов хроматографии принадлежит гель-фильтрации на сефадексах . Сефадекс представляет собой полусинтетический -сорбент полисахаридной природы, гранулы которого обладают порами определенного размера, так что диффузия внутрь этих гранул возможна только для молекул, величина которых не превышает величину пор. Поэтому сефадекс работает как своего рода молекулярное сито , задерживающее проникающие внутрь гранул низкомолекулярные вещества и не задерживающее полимеры. Гель-фильтрация незаменима для быстрого отделения полимера от низкомолекулярных примесей (неорганических солей, мономеров и т. д.). Ее применяют и для разделения полимеров, причем одновременно можно приблизительно оценить их молек лярный вес, так как существует набор сефадексов, различающихся величиной пор. Есть все основания полагать, что в химии полисахаридов этот перспективный метод будет находить все большее применение. Особенно интересным является использование сефадексов для разделения высоко- и низкомолекулярных осколков, образующихся при расщеплении биополимеров различными реагентами , и для выделения полисахаридов из различных природных источников Хроматография на модифицированных сефадексах, обладаюш.их ионообменными свойствами, например на диэтиламиноэтилсефадексе, также может служить эффективным приемом фракционирования полисахаридов . [c.487]

    Анализ чистой платины и сплава ее с родием также выполняют с отделением основы методом ионообменной хроматографии. Платина и палладий в виде хлоридных анионных комплексов не сорбируется на катионите Дayэк -50WX8, на котором концентрируются примеси. Примеси определяют спектрально после элюирования 4 N HNOg 795]. [c.127]

    Метод основан на различии pH образования пиридинроданида никеля и кобальта. Комплекс никеля экстрагируют хлороформом при pH 4,6, и экстракт фотометрируют при 320 ммк-, комплекс кобальта (после отделения никеля) извлекают гексаном из раствора с pH 5,6. Экстракт фотометрируют при 620 ммк. Пиридинроданид-ный комплекс палладия экстрагируют из слабощелочных растворов различными органичными растворителями. Максимум светопоглощения комплекса в метилизобутилкетоне находится при 395 ммк. Комплекс рутения (1П) извлекают из кислых растворов и экстракт фотометрируют при 570 ммк. На этом основан метод определения палладия и рутения. Аналогичный вариант предложен для определения платины и родия [368]. [c.254]

    Если обе реакции находятся в условиях диффузионного контроля, то ситуация становится по существу такой же, как в исследованиях зависимости заряда от времени в случае адсорбции реагентов или в случае гомогенных реакций, в которых реакция (56) служит просто для измерения количества R, не вступающего в какие-либо побочные реакции (см. разд. VIII, Б, 1, б), Киммерли и Шевалье [2931 получили решение для случая, когда любая из реакций [(55) или (56) ] является скоростьопределяющей. Связь между измеряемым током и кинетическими параметрами переноса заряда на каждой стадии они вы разили в виде алгебраических функций и табулированных решений. Однако сообщений о практических измерениях пока не было. В такого рода исследованиях метод двойной ступеньки потенциала обладает практическими преимуществами по сравнению с аналогичным методом двойного импульса тока (разд. VIII, В,2) в том смысле, что он обычно допускает более легкое отделение фарадеевской емкостной составляющей от нефарадеевской. [c.203]

    Gross ошсал метод, в котором светильный газ, содержащий метан и этилен, подвергается действию электрического разряда при пропускании через реакционную камеру, представляющую собою кольцевое пространство между коническими ротором и статором. И на том и на другом по спирали расположены выступы, служащие элект родами. Образовавшийся газ компримируется для удаления смолистых примесей, а затем барботируется че рез абсорбент (например, ацетон) для отделения ацетилена. При таком методе, по имеющимся сведениям, из одной тонны светильного газа получается 280 л ацетилена. [c.286]

    Использование карбонилродий-З-фторацетилкамфо-рата в качестве активного компонента НЖФ имеет по сравнению с использованием для тех же целей солей серебра следующие преимущества 1) более сильное взаимодействие с разделяемыми соединениями, позволяющее получить лучшее отделение предельных углеводородов от непредельных 2) влияние структуры олефина на константу равновесия комплекса более выражено, 3) комплексы родия растворимы в неполярных фазах, на которых хорошо разделяются и предельные соединения. Недостатком этого метода хроматографического [c.173]

    В приводимых ниже методах анализа и разделения предполагается, если нет других указаний, что платиновые металлы и золото находятся в виде хлоридов или, точнее, в виде хлорокислот.. Платина, например, в растворах образует хлоре платиновую кислоту HaPt lg и в реакциях ведет себя как часть комплексного аниона. При анализе металлов платиновой группы и золота исходные растворы чаще всего содержат именно эти соединения. Поэтому в основе методов разделения обычно лежат реакции, свойственные этим комплексным анионам или ионам, образующимся в результате разложения таких комплексов. В отдельных случаях при анализе используются также и другие соединения этих металлов. Так, например, при отделении рутения дистилляцией или при отделении родия от иридия восстановлением солями титана (III) целесообразнее оперировать с растворами, в которых эти металлы находятся в виде сульфатов, а для успешного отделения многих неблагородных металлов от платиновой группы гидролитическим осаждением прибегают к предварительному переведению платиновых металлов в комплексные нитриты. [c.406]

    Для отделения палладия, родия и иридия от платины методом гидролитического разложения их. хлоро-комплексов в присутствии бромата раствор. рекомендуют нейтрализовать до pH = 8, главным образом для количественного выделения палладия и родия, что не препятствует также полному осаждению иридия. Если гидроокиси осаждаются в результате нейтрализации кислых растворов их можно полностью отмыть от щелочных солей, не переводя в коллоидную форму. Такие осадки очень легко отфильтровываются содержат настолько незначительные количества платины, что при выполнении рядовых анализов вполне достаточно однократного осаждения. Переосан дение осадка может понадобиться лишь в тех, случаях, когда требуется исключительно точное разделение. [c.410]

    Палладий количественно осаждается из раствора его хлорида в виде иодида, если не вводить слишком большой избыток реагента Другие платиновые металлы, за исключением родия не осаждаются в этих условиях. Палладий можно, осадить также в виде цианида введением в раствор цианида ртути (II). Однако этот метод, так же как и иодндный, редко предпочитают методу осаждения диметилглиоксимом. Описан способ отделения палладия от платины, основанный на осаждении этиленом Опубликованные результаты, однако, не дают возможности судить о точности этого способа. [c.411]


Смотреть страницы где упоминается термин Родий методы отделения: [c.243]    [c.230]    [c.197]    [c.631]    [c.359]    [c.291]    [c.226]    [c.738]    [c.1149]   
Колориметрические методы определения следов металлов (1964) -- [ c.691 , c.692 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2024 chem21.info Реклама на сайте