Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

плотность скорость состав

    Вид термограммы исследуемого вещества зависит от свойств самого вещества (состав, структура, теплопроводность, теплоемкость, дисперсность и др.) и от условий снятия термограммы (скорость нагревания, величина навески, степень истирания образца, плотность набивки вещества в тигле, положение спая термопары в образце и эталоне, свойства эталона, чувствительность в цепи дифференциальной термопары и др.). Если теплофизические свойства эталона и исследуемого вещества совпадают и последнее при нагревании не испытывает никаких превращений, то разность температур АТ = О, и термограмма (рис. 150, линия 1) имеет вид прямой линии, совпадающей с осью абсцисс (нулевая линия). Если исследуемое вещество отличается от эталона своими теплофизическими свойствами, то термо- [c.414]


    Отклонение состава смеси от стехиометрического, соответствующего максимальной интенсивности излучения, приводит к снижению интенсивности и плотности излучения, приходящейся на единицу нормальной к излучению поверхности смеси в предпламенной зоне. Это обстоятельство вызывает уменьшение степени предпламенной подготовки смеси. Возрастает число многоатомных молекул, поступающих в зону пламени, увеличивается ширина светящейся зоны и уменьшается скорость распространения пламени (скорость горения). В тех случаях когда максимум интенсивности излучения приходится на смесь, состав которой отличается от стехиометрического (Нг, СО), соответственно смещается и максимум скорости распространения пламени. [c.124]

    Поэтому устройство и эксплуатация факельных трубопроводов должны осуществляться в соответствии с правилами техники безопасности для трубопроводов горючих, токсичных и сжиженных газов. Кроме того, при проектировании, строительстве и эксплуатации газопроводов необходимо руководствоваться строительными нормами и правилами (СНиП) и другими обязательными нормами п правилами. В зависимости от конкретных условий следует учитывать некоторые особенности обеспечения герметичности факельных трубопроводов. Несмотря на то, что сбрасываемые газы различаются по составу и параметрам и расход их колеблется в широких пределах, допустимая скорость их должна обеспечиваться. Поэтому при расчетах диаметров цеховых и общезаводских (межцеховых) трубопроводов и других элементов факельных установок должны учитываться максимальное (аварийное) и постоянное количество сбрасываемого на сжигание газа, его состав, плотность, давление, температура, молекулярная масса, теплота сгорания, длительность периода максимального сброса и др. [c.213]

    Известно, что энергия, затрачиваемая на разряд или растворение металла и выражаемая его электродным потенциалом, связана не только с равновесным потенциалом металла, но и с перенапряжением в данных конкретных условиях, на которое влияют плотность тока, состав раствора и температура. Точно так же реальные скорости разряда и растворения являются функциями не только равновесного тока обмена / , но и других параметров. В соответствии с этим протекает растворение отдельных составляющих многокомпонентного анода и выделение на катоде перешедших в раствор ионов. [c.245]

    Из сравнения установившегося значения тока в отсутствии и присутствии серной кис тоты видно, что скорость электрохимической реакции в последнем случае почти в пять раз меньше, чем без серной кислоты. Одной из возможных причин такого резкого снижения силы тока в процессе электролиза является образование пленки на поверхности катода и разрушение ее после выключения тока, как это видно из кривых. По всей вероятности, плотность и состав пленки зависят от концентрации серной кислоты и pH раствора в прикатодном слое. Пленка образуется, когда раствор в приэлектродном слое становится в процессе электролиза более щелочным, и разрушается при выключении тока, когда восстанавливается прежнее значение кислотности. Естественно, что скорость восстановления разряжающихся ионов будет определяться как скоростью проникновения этих ионов через пленку, так и взаимодействием между полем пленки и восстанавливающимися ионами. [c.22]


    Свойства топлива должны обеспечивать создание однородной топливовоздушной смеси необходимого состава при любых температурных условиях эксплуатации автомобиля, о требование регламентирует такие качества топлива, как испаряемость (фракционный состав и давление насыш,енных паров), элементарный состав, поверхностное натяжение, плотность, вязкость, скорость диффузии паров в воздух, теплота испарения (парообразования), теплоемкость, содержание смол и др. [c.6]

    К физическим свойствам, определяющим скорость и полноту испарения бензина, относят фракционный состав, давление насыщенных паров, теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость и плотность. [c.18]

    Если в газовой фазе протекает химическая реакция, состав пузырьков и газа, занимающего основной объем реактора, различен, что приводит к возникновению массообмена между ними. Скорости проскока пузырьков, продольного перемешивания в основном объеме и переноса массы между этими фазами сильно зависят от плотности частиц, их среднего размера и особенно от распределения их размеров. [c.111]

    Основные эксплуатационные требования к топливу обеспечение надежного запуска и надежной работы двигателей, необходимой скорости и дальности полета, полноты сгорания топливовоздушной смеси. Наиболее существенное влияние на свойства топлива оказывают плотность, теплота сгорания, фракционный состав, вязкость, температура начала кристаллизации, содержание ароматических углеводородов, серы, активных сернистых соединений, смол. [c.433]

    Реактор идеального вытеснения. Для этого реактора действительное время пребывания равно фактическому времени присутствия каждого элемента жидкости в аппарате. Поскольку плотность жидкости, так же как и ее состав, изменяется по длине реактора, скорость потока веществ также меняется по мере прохождения через аппарат. Следовательно, для того чтобы определить скорость потока веществ в реакторе, надо найти величину действительного времени пребывания элемента жидкости в элементарном объеме аппарата йУ и затем полученное выражение проинтегрировать по длине реактора. [c.121]

    Поскольку многие свойства газовых смесей представляют собой усредненные характеристики составляющих их компонентов, то в основном нас будет интересовать состав газа, плотность, относительная молекулярная масса, теплота сгорания, температура пламени, скрытая теплота испарения и коэффициент сжимаемости, причем все эти величины приблизительно равны средневзвешенным значениям соответствующих параметров отдельных компонентов газа. Другие характеристики газовых смесей, например число Воббе, диапазон воспламеняемости, скорость сгорания, точку кипения, критическую температуру, нельзя определить просто как средневзвешенные значения. Здесь требуется более сложный подход. Общепризнано, чта для опре- [c.33]

    Конкретный ход цепной реакции определяется совокупностью различных ядерных процессов, которые могут происходить между свободными нейтронами и материалами, входящими в состав реакторной системы. Как и в химических цепных реакциях, относительная скорость отдельных процессов, входящих в состав цепи, прямо пропорциональна концентрации носителей цепной реакции, в данном случае плотности нейтронов. Поэтому для определения различных характеристик реактора достаточно знать распределение плотности нейтронов по объему системы. [c.7]

    Существенное влияние на структуру псевдоожиженного слоя оказывает размер, форма и полидисперсный состав частиц. Крупные монодисперсные частицы способствуют образованию крупных пузырей. Увеличение полидисперсности такого слоя добавками более мелких частиц способствует повышению однородности псевдоожиженного слоя. Слишком мелкие частицы, склонные к агрегатированию, образуют при малых числах нсевдоожижения сквозные каналы (рис. ХХ1-5, г), которые при больших скоростях газа могут исчезнуть или сохраняются вблизи газораспределительной решетки. Увеличение давления (плотности) газа способствует повышению однородности псевдоожиженного слоя. [c.362]

    Фракционный состав, дисперсность суспензии и вязкость жидкой фазы при прочих равных условиях влияют на скорость осаждения твердых частиц и определяют возможность использования различных конструкций фильтров. Совокупное влияние концентрации суспензии, фракционного состава и плотности частиц, вязкости, плотности жидкой фазы и ряда других факторов определяет фильтруемость суспензии, измеряемую толщиной осадка, полученного за единицу времени при определенной движущей силе фильтрования и отсутствии заметного проскока частиц. [c.214]


    Катализаторы приготовляют совместным и раздельным осаждением компонентов с последующей их промывкой, смешением и термической активацией. Можно вначале приготовить носитель, например а-АЬОз, а затем ввести в пего активные компоненты пропиткой растворами соответствующих солей. Никель в состав катализатора любым из указанных способов целесообразно вводить из раствора нитрата никеля, а не из раствора сульфата, так как в процессе термической активации он разлагается значительно легче с образованием закиси никеля [224]. Раздельное осаждение компонентов катализатора способствует улучшению его качества, так как при этом достигается более высокая чистота каждого из компонентов [225]. На свойства катализаторов (насыпная плотность, пористость, механическую прочность) существенно влияют условия осаждения компонентов pH среды, скорость слива растворов, температура осаждения. [c.88]

    НЫХ скоростей, умноженных на параметры физических свойств. Приведенная скорость определяется как плотность объемного расхода фазы, деленная на среднюю площадь поперечного сечения потока. Течения в реальных теплообменниках отличаются от идеализированного поперечного сечения, показанного на рис. 9, некоторыми эффектами, которые включают 1) сепарацию из-за изменений в направлении потока, поступающего в теплообменник, разделенный перегородками (например, газовые пузырьки могут образовываться на той стороне перегородки, которая расположена ниже по течению) 2) утечки жидкости через пространства между трубами и перегородками и оболочкой. Вокруг пучка возникает также обходное течеиие. В двухфазных течениях эти явления связываются с разделением фаз, так что двухфазный состав байпасных потоков и утечек жидкости обычно отличен от состава основных противоточных течений. [c.186]

    Температура в реакторе. Выход бензина при повышении температуры вначале увеличивается, достигая максимума, и при дальнейшем росте температуры уменьшается вследствие глубокого разложения ранее образовавшихся углеводородов, в том числе и входящих в состав бензина. С повышением температуры увеличивается скорость реакций распаду и вторичных реакций дегидрирования нафтеновых углеводородов в ароматические. Это приводит к увеличению содержа ния ароматических и непредельных углеводородов в газе и бензине. При этом в газе возрастает содержание углеводородов С)—Сз и снижается содержание С4. Плотность и октановое число бензина возрастают. В табл. 8 приведены данные об изменении выхода и углеводородного состава бензина при повышении температуры, каталитического крекинга [46]. [c.69]

    В качестве сырья использовали фракцию 230—350 °С (плотность 864,1 кг/м содержание серы—1,6%, металлов 9,6-10" % температура застывания. 6°С углеводородный состав (% масс.) парафиновые и нафтеновые — 85%, ароматические—11, олефиновые—4). Режим процесса температура 400—500 °С, объемная скорость подачи сырья 0,71 ч . Как видно из приведенных данных, выход бензина резко снижается при температурах выше 450 °С выход газа и кокса увеличивается, однако выход кокса ири наиболее высоких температурах (470— 500°С) остается практически постоянным — 6,5—7,2% (масс.). [c.69]

    Основными контролируемыми параметрами химико-технологического процесса в обш,ем случае являются температура, давление, количество и расход материала, состав и свойства вещества (концентрация, плотность, вязкость и т. п.). Методы измерения этих величин рассматривают в курсе Автоматизация производственных процессов . При исследованни процессов, протекаюш.их в машинах, возникает также необходимость измерения некоторых механических и энергетических параметров, определяющих, например, характер движения материала в рабочем пространстве агрегата, деформаций отдельных деталей и напряжения в них, расход энергии и т. д. Чаще всего подлежат измерению перелгещения (деформации), скорости, ускорения, силы (моменты сил), мощности. По этим величинам находят при необходимости расход энергии, коэффициент полезного действия (КПД), параметры вибрации и другие характеристики процесса или машины. [c.20]

    МПа (и даже 1,05 МПа) на катализаторах, содержащих 0,35 и 0,6% (масс.) платины. На них получают риформинг-бензин с октановым числом 100—105. При катализаторе НО-451 (сырье — фракция 70— 154 °С плотностью 736 кг/м углеводородный состав парафиновых —51, нафтеновых — 43 и ароматических —6% об. жесткость режима — получение катализата с октановым числом 100 по ИМ мольное соотношение водород сырье=6 1 массовая скорость подачи сырья 2,5 ч ) влияние рабочего давления характеризуется следующими показателями [125]  [c.186]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Таким образом, для эффективной работы двигателя применяемое топливо должно обеспечивать создание однородной топливовоздушной смеси необходимого состава при любых температурах окружающего воздуха. Это требование регламентируют такие свойства и показатели топлива, как испаряемость (фракционный состав и давление насыщенных паров), поверхностное натяжение, плотность, вязкость, скорость диффузии паров в воздух, теплота испарения, теплоемкость, содержание смол и др. Топливо с оптимальными значениями этих показателей обеспечивает экономичность двигателя, хорошие пусковые характе- [c.16]

    Опыты проводились при те.мпературе 460—465°С и весовой скорости подачи сырья 0,9 ч К Углеводородный состав крекинг-газа определялся хроматографичеоким методом. В жидких продуктах крекинга определяли плотность, фракционный состав по Энглеру, групповой углеводородный состав, йодное число, молекулярный вес, содержание серы и показатель преломления. [c.11]

    Характеристики сыпучих (порошкообразных и гранулированных) полимеров — насыпная плотность, гранулометрический состав, сыпучесть и др., — наоборот, определяются прежде-всего технологией и режимами получения материалов. В этом отношении показательны характеристики гранул — диаметр, отношение длины к диаметру и форма, которые можно регулировать, варьируя геометрические параметры фильер экструзионных головок, скорость и температуру экструзии (поскольку перечисленные параметры существенно влияют на коэффициент разбухания полимерной струи), скорость отбора выдавливаемых жгутов (прутков) и частоту вращения режущих (ножевых или фрезовых) инструментов [117]. [c.201]

    Для выбора и расчета внутризаводского транспортного оборудования и хранилищ, а также для конструирования туковысеваю-щих аппаратов, помимо таких свойств, ка1к (плотность, насыпная плотность, гранулометрический состав, углы покоя, требуется определение и механических показателей, суммарно характеризующих сыпучесть удобрений, например, коэффициенты внутреннего и внешнего трения, сопротивление сдвигу и прочие характеристики сцепления, коэффициенты парусности и скорости витания, многочисленные параметры пневматического перемещения и другие. [c.54]

    Программа исследования предусматривала определение исчерпывающих множеств входных (влияющих) и выходных (эксплуатационных) параметров и установление их всесторонних зависимостей. При капиллярном монодиспергировании учитывалось множество входных параметров кон-структивно-геометрические параметры пьезокерамического преобразователя, концентратора, форсунки, соплового элемента, корпуса, соединительных элементов, их размеры, точность и чистота обработки и физико-меха-нические свойства используемых материалов режимные параметры, охватывающие электрические (например, спектральный состав синхронизирующего сигнала) и гидродинамические физико-химические и реологические характеристики рабочих жидкостей, т. е. поверхностное натяжение, вязкость, плотность, скорость звука, кислотность, дисперсный состав, нагазо-ванность, летучесть, однородность, стабильность, прочность на разрыв и др. [c.11]

    С помощью контроля операционных параметров можно получать пленки SiOj и USG с различными химическими, механическими и электрическими свойствами, включая плотность и состав пленки, скорость ее травления, конформность покрытия ступенек топологического рельефа, чувствительность к материалу подложки, механическое напряжение и диэлектрическую прочность, которые могут использоваться в качестве  [c.120]

    Выщелачивание обычно осуществляют в непрерывном режиме в системе из последовательно соединенных реакторов. Очень важной особенностью чанового выщелачивания является то, что размеры установки мало влияют на кинетику и вынос металла. Поэтому пригодность высокосортных руд или концентратов к переработке методом чанового бактериально-химического выщелачивания определяют, используя малогабаритное лабораторное оборудование. Подробно этот вопрос рассматривается в главе 4. 11еобходимо, однако, отметить, что метод выщелачивания в колбах на качалках (см. раздел 3.1.2) очень важен как предварительный тест для этого типа выщелачивания. Он дает ценную информацию об оптимальных условиях бактериального выщелачивания (плотность пульпы, состав питательной среды, необходимость подачи газа) и о результатах выщелачивания (скорость растворения металлов и количество извлеченных металлов) даже тогда, когда используются небольшие количества выщелачиваемого твердого порядка десятков грамм. [c.104]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]

    Экстракционные процессы проводятся чаще всего при цостоян-ных давлении и температуре. В связи с этим свойства жидкостей (вязкость, плотность) и коэффициенты диффузии для рассматриваемой экстракционной системы можно считать постоянными. При постоянных размерах аппарата переменными величинами остаются, таким образом, скорости потоков фаз, входящие в состав критериев Рейнольдса. [c.305]

    Пример 15. В реакторе со взвешенным слоем серебряного катализатора (нанесенного на алюмосиликатный носитель) ведется процесс неполного окисления метана природного газа с целью получения формальдегида. Начальный состав газовой смеси [природный газ, содержащий 97,17о (об.) СН4, с добавлением воздуха], % (об.) СН4 — 26,5 О2—14,8 N2 — 58,7. Конечный состав газовой смеси (после извлечения растворимых продуктов реакций), %(об.) СН4 — 25,8 О2—11,8 СО2 — 0,2 СО — 0,4 С Нт — 0,2 Нг—1,0 N2 — 60,5. Объемная скорость газа Уоб = = 3000 ч температура в зоне реакции 750°С. На 1 м природного газа получается 30 г СНгО и 3,4 г СН3ОН. Диаметр реактора 1 м. Частицы катализатора сферические, средний диаметр ер = 1,5 мм. Плотность катализатора рт= 1200 кг/м Плотность газа рг = 1,215 кг/м (в рабочих условиях). Вязкость газа Хг = 1,835-10-5 Па-с (в рабочих условиях). [c.135]

    Провести анализ состава продукции пласта непосредственно в пласте невозможно. Посредством замера давления и скорости потока можно определить плотность ее в стволе скважины. Однако в скважине содержится только то, что поступает в нее. Значит любой состав (рассчитанный или измеренный) по своей природе является случайным (вероятностным). Иначе говоря нет,, способа определения состава пласта с высокой степенью надежности, т. е. нельзя получить данные по вероятному составу пласта и использовать их при проектировании модулей системы переработки. Признание этого факта — первый шаг в проведении анализа модуля Месторождение с целью получения исходных данных для проектирования других модулей системы. Лучшее, что моншо сделать — это установить приемлемое распределение значений, близких к вероятному пределу основных параметров. Это задача промысловиков и тех, кто отбирает пробы. Полученные данные — основа для определения частоты распределения и чувствительности анализов. Последующие модули рассчитываются и работают в зависимости от этих данных. Рассчитанная (а потому и оптимальная) гибкость будет компенсировать принятые коэффициенты наденшости . Последующий анализ проб, выполняемый в ходе эксплуатации пласта, позволит модифицировать систему с целью получения максимальной прибыли. [c.11]

    Пример П-7. ЭкспериментальнЬ1Й реактор полунепрерывного (полупериоди-ческого) действия. Реакция должна быть проведена в растворе, содержащем катализатор. Для определения скорости превращения применяют экспериментальный реактор периодического действия, в котором в начале эксперимента (г = 0) находятся только растворитель и катализатор начальный реакционный объем начальная плотность рр. Реагенты поступают в реактор непрерывно с постоянной массовой скоростью и смешиваются с содержимым аппарата очень быстро. Состав и плотность реакционной смеси в ходе опыта определяются как функции времени. Используя эти данные, надо найтп выражение для скорости превращения. [c.55]

    Состав и схема БКН зависят от типа применяемых преобразователей расхода и перечня параметров качества продукта, которые необходимо измерять. Технологическая схема БКН для УУН с турбинными и объемными счетчиками (рис. 1.6), предназначенными для измерения массы продукта, плотности и отбора объединенной пробы, включает датчики плотности со встроенными датчиками температуры 1 или 2 шт. (по требованиям потребителя), датчик давления, манометр показывающий, датчик температуры, автоматический пробоотборник - 1 или 2 шт. (по требованию потребителя), индикатор (расхода) скорости продукта через БКН, отводы и клапаны для подключения пикнометра, вискозиметр - устанавливается в том случае, если в УУН используются ТПР с коррекцией по вязкости продукта, циркуляционные насосы (1 или 2 шт.). Кроме того, на узлах учета нефти в состав БКН могут входить такие анализаторы качества, как поточные влагомер, солемер, серомер, прибор для измерения объема свободного газа в нефти. [c.14]

    На Ново-Горьковском нефтеперерабатывающем заводе предложен способ восстановления изношенных штоков [38]. Шлифовкой на круглошлифовальном станке по всей рабочей длине штока снимают неравномерность износа. Предельно допустимое уменьшение диаметра рабочей части - не более 1,5 мм. Экономически целесообразно не допускат . износа свыше 0,5 - 1,0 мм. Затем шток обезжиривают бензином и раствором каустической соды в стальной ванне. После этого проводят твердое хромирование в специальной ванне. Состав электролита хромовый ангидрид - 150 серная кислота - 1,5 - 5,0 г/л температура процесса 55 - 60 °С плотность тока 45 - 60 А/ДМ скорость нанесения покрытия 0,025 - 0,007 мм/ч длительность - 6 - 8 ч. [c.165]

    Реакторы Синтол . Как уже упоминалось, реакторы Синтол являются реакторами с циркулирующим кипящим слоем. Общая высота реакторов около 50 м. Как показано на рис. 3, в нижнюю часть реактора подается рециркулируемый и свежий газ, где он смешивается с потоком горячего катализатора, спускающегося по стояку. При этом газ нагревается до температуры возгорания. Затем смесь газа с катализатором подается наверх в расположенные справа от стояка зоны реакции. Значительная часть теила реакции поглощается в двух батареях в теплообменниках, расположенных внутри реактора, а остальная— образующимися и рециркулируемыми газами. Катализатор отделяется от газа в бункере-отстойнике и, спускаясь по стояку, возвращается в цик 1. Скорость потока катализатора регулируется задвижкой у основания стояка. Непрореагировавший газ вместе с парами образовавшихся углеводородов выводится нз реактора через циклоиы, в которых отделяются захваченные потоком более мелкие частицы катализатора, возвращаемые в бункер. На выходе из реактора температура обычно составляет около 340°С. Важно, чтобы условия процесса и состав катализатора ограничивали образование тяжелых углеводородов, которые при конденсации на катализаторе могут затруднять образование кипящего слоя. Так как используемый железный катализатор имеет высокую плотность, то создать его кипящий слой существенно труднее, чем, например, при использовании алюмосиликатных катализаторов, которые применяются в установках каталитического крекинга с циркулирующим кипящим слоем. Размер частиц катализатора выбирают в таких узких пределах, чтобы удовлетворялись условия кипения и соблюдались необходимые потоки катализатора вниз по стояку и вверх по реактору. [c.168]

    J. Провести каталитический риформинг фракции бспзипа при атмосферном давлении на платиновом катализаторе при температуре 480 С и двух объемных скоростях подачи сырья 1 и 2 ч" . Сопоставить материальные балансы, составы газа и следующие показатели качества катализаторов плотность, показатель преломления, йодное число, фракционный состав по ГОСТ. [c.164]

    По( ле анализа результатов установки силикатной ванны в СКВ. 11006 и в других скважинах и при учете указанных выше факторов рекомендуемый автором для условий Татарии (девонские отложения) состав силикатных ванн следующий 3—5% -ный водны11 раствор жидкого стекла (30 —50 л товарного жидкого стекла плотностью 1,40—1,50 г/см на 1м рабочей смеси), до 0,2—0,4% КМЦ-500 или КМЦ-600 и остальное вода. Назначение КМЦ — частичное снижение скорости фильтрации рабочей смеси через торошо проницаемые глинистые корки, а также замедление образования кристаллических продуктов взаимодействия. [c.251]


Смотреть страницы где упоминается термин плотность скорость состав: [c.157]    [c.467]    [c.482]    [c.122]    [c.190]    [c.27]    [c.92]    [c.96]    [c.223]   
Коррозия металлов Книга 1,2 (1952) -- [ c.47 , c.83 , c.88 ]

Коррозия металлов Книга 2 (1952) -- [ c.47 , c.83 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

плотность скорость



© 2025 chem21.info Реклама на сайте