Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения веществ азотистых

    Концентрация серы в легких циркулирующих крекинг-газойлях (50% выкипает при 260 °С) составляет около средней концентрации в суммарном крекинг-продукте, а в тяжелых (50% выкипает при 370 °С) приблизительно на /з больше. Имеются, однако, многие исключения. С увеличением степени превращения содержание серы в циркулирующем газойле снижается. Обычно почти 50% серы в сырье превращается в сероводород (рис. 16). При термических и каталитических процессах распределение серы по продуктам зависит также от углеводородного состава сырья и содержания в нем смолистых веществ, азотистых и металлоорганических соединений (последние особенно при каталитических процессах влияют на активность катализатора и его крекирующую [c.39]


    Микробы чрезвычайно широко распространены в природе — в почве, воде, воздухе —и принимают активное участие в различных изменениях и превращениях веществ в природе. Так, благодаря микробам осуществляется разложение целлюлозы, попадающей в почву с растительными остатками. Почвенные микробы осуществляют процесс образования почвенного гумуса, являющегося основой структуры почвы. Микробы производят разложение попадающих в почву органических азотистых [c.109]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Ученые доказали, что для превращения простых азотистых веществ в кормовой протеин можно исиользовать микроорганизмы пищеварительных органов, которых особенно много в рубце жвачных. Микроорганизмы рубца используют простые азотистые соединения для своего роста и образования белка собственного тела. Жизненный цикл у них очень короткий, они быстро погибают. Проходя через пищеварительный тракт животного, микроорганизмы перевариваются и используются им, как и протеин обычных кормов. [c.302]

    Ферментация—химическое превращение под каталитическим влиянием энзимов, которые представляют собой азотистые органические вещества, вырабатываемые живыми организмами (бактерии, плесневые грибки и дрожжи). Энзимы имеют коллоидную структуру и их молекулярная масса достигает 300 ООО. Каталитическое действие энзимов очень специфично, сильно зависит от pH и температуры и чувствительно к промотирующему или тормозящему действию многих веществ. Оптимальная температура для большинства энзимов лежит между 18 и 38 С. Энзимы называют по -их функции с прибавлением окончания аза . Катализатор гидролиза имеет название гидролаза, окислительно-восстановительные энзимы называют оксидазами. [c.329]

    Азот в форме разнообразных органических соединений входит в состав практически всех нефтей и в большинстве случаев по своей распространенности занимает второе или третье место среди гетероэлементов нефти. Знание химической природы азотистых соединений (АС) так же, как и других нефтяных компонентов, необходимо для решения фундаментальных вопросов, связанных с образованием и превращениями нефтей в условиях осадочной толщи, с поиском новых путей рационального использования нефтяного сырья. Постоянный интерес исследователей к нефтяным азотсодержащим веществам нашел отражение в ранее опубликованных обзорных работах [2, 10, 80, 683—685]. [c.119]

    Минеральные масла представляют собой сложную смесь парафиновых, нафтеновых, ароматических и нафтено-ароматических углеводородов, а также кислородных, сернистых и азотистых производных этих углеводородов. При работе двигателя масла подвергаются глубоким химическим превращениям окислению, полимеризации, алкилированию, разложению и т. д. при этом образуются кокс, смолистые, асфальтовые и другие вещества. Образо- [c.13]

    Содержание азота в нефтях значительно ниже, чем серы. Обычно оно колеблется от сотых до десятых долей процента и редко превышает 0,5—0,6%. Вероятно, низкое содержание в нефтях азота и его носителей — азоторганических соединений — объясняется тем обстоятельством, что единственным источником его попадания в нефть является нефтематеринское органическое вещество, которое в процессе своей геохимической истории на пути превращения в нефть медленно, но неуклонно обедняется азотом, Азоторганические соединения вполне справедливо поэтому рассматривать как остаточные или промежуточные соединения в длинной цепи геохимических превращений в нефть таких азотсодержащих органических веществ растительного и животного происхождения, как белки, алкалоиды и другие азотистые соединения. [c.349]

    В результате процесса коксования нефтяных остатков и дальнейших термодеструктивных процессов (облагораживания) в коксе концентрируются углерод, сернистые, азотистые, кислородные и металлоорганические соединения и еще больше снижается содержание водорода. Глубина и динамика изменения содержания этих веществ отражают степень протекания химических процессов и могут служить критерием оценки внутримолекулярных превращений, происходящих в массе кокса. [c.139]

    Вещества, содержащие серу, кислород и азот. Превращения сернистых, кислородных и азотистых соединений нефти в условиях гидрокрекинга и гидроочистки протекают в направлении выделения гетероатомов в виде сероводорода, воды и аммиака. Этим достигается освобождение конечных продуктов от вредных примесей, главным образом сернистых соединений. Углеводородная же часть молекул серу-, кислород- и азотсодержащих веществ претерпевает разнообразные описанные выше превращения, участвуя таким образом в накоплении целевых продуктов. Следовательно, гидрокрекинг гудронов и других продуктов, богатых смолистыми веществами, может привести к добавочному получению ценных топливных продуктов с хорошими выходами. [c.268]

    Гидрогенизация различных горючих веществ - твердых топлив, тяжелых нефтепродуктов, смол - является многоступенчатым процессом, включающим гидрирование исходного сырья и последующий крекинг сырья под давлением водорода. Поскольку молекулярный водород сам по себе мало активен, процесс осуществляют в присутствии катализаторов, при нагревании и высоких давлениях. Наличие указанных факторов и использование растворителя значительно облегчают переработку твердых топлив, представляющих собой высокополимерные вещества. На первой (начальной) стадии происходит растворение органической массы угля (ОМУ). Полученный угольный раствор является исходным сырьем для гидрогенизации. Проводимая в дальнейшем переработка угольного раствора аналогична осуществляемой при гидрогенизации тяжелых нефтепродуктов и смол. При этом получается преимущественно смесь насыщенных водородом соединений с меньшей молекулярной массой, чем у исходного топлива. В зависимости от условий проведения процесса и глубины превращения органической массы угля методом гидрогенизации можно получать высококачественные моторные топлива (бензины, дизельные, реактивные, котельные), сырье для химической промышленности (ароматические углеводороды, фенолы, азотистые основания), а также газы, содержащие водород и преимущественно насыщенные углеводороды С1-С4. [c.130]


    Наряду с превращениями азотистых веществ особый интерес представляют превращения безазотистых веществ — целлюлозы. Минерализацией целлюлозы занимался В. Л. Омелянский. Ему удалось показать, что в почве встречается обильная микрофлора, разрушающая целлюлозу в анаэробных условиях. [c.242]

    Карбамид (мочевина) играет большую роль при об-., мене веществ в животных организмах является конечным продуктом азотистого обмена, при котором азотистые вещества (например, белки), претерпев в организме ряд сложных превращений, выделяются с мочой в виде мочевины (откуда и произошло ее название). [c.185]

    Превращения азотистых, жировых и других веществ [c.85]

    Перспективным источником повышения чувствительности АРП является превращение определяемых веществ в более летучие и хуже растворимые производные. Такой способ применяется для определения реакционноспособных соединений, характеризующихся большими (> 10 ) значениями коэффициентов распределения,— органических кислот или спиртов в водных растворах, предел обнаружения которых прямым парофазным анализом ограничивается концентрациями 10 — 10-" %. Органические кислоты реакцией с диметилсульфатом превращают в метиловые эфиры, и предел обнаружения, например, трихлоруксусной кислоты снижается до 10 % [31]. Для определения спиртов используются галоформ-ная реакция (для трихлорэтанола [31]) или превращение их в эфиры азотистой кислоты [32,33]. Предел обнаружения и в этом случае не превышает 10 %. [c.70]

    Первую группу реакций, которые нужно рассмотреть в связи с реальными способами получения пиридинового цикла, составляют пирогенетические реакции, среди которых наиболее важной является сухая перегонка каменного угля. Действительный путь образования азотистых оснований при этом процессе неизвестен, и о нем имеются только догадки. Каменный уголь представляет собой материал сложного состава проичем состав его может изменяться в широких пределах. Так, антрацит может иметь до 88% углерода, тогда как битумный уголь, употребляемый чаще всего для получения побочных продуктов коксования, содержит около 75—80% углерода, 6% водорода, 3—5% кислорода, 5—7% золы и по 1—2% азота и серы. Углерод, равно как и другие элементы, не находится в свободном состоянии, а входит в состав сложного высокомолекулярного соединения. При 1000—1300° наступает разложение угля, в результате которого большая часть кислорода теряется в виде углекислого газа или окиси углерода, водород выделяется в свободном виде, азот выделяется либо в виде аммиака, либо в соединении с углеродом и водородом в виде азотистых оснований или веществ слабокислого характера—индола и карбазола. Образуются и другие соединения ароматического характера—бензол, толуол, тиофен и Др. При низкотемпературном коксовании (600—700°) образуется значительно больший процент алифатических и алициклических соединений, и это позволяет высказать предположение, что заключительной стадией образования веществ ароматического характера является дегидрирование. Во всяком случае, кажется очень правдоподобным, что пиридин и его гомологи образуются путем превращения [c.346]

    КИМ натром и, наконец, опять перевести в солевую форму с помощью раствора хлористого натрия. Таким способом удается освободиться от продуктов превращения азотистых веществ, оставшихся на смоле в процессе ее производства. Аналогичным образом следует подготавливать к работе и катиониты, несколько раз осуществляя перевод их из кислотной в солевую форму и обратно. [c.63]

    Механизм превращения исходного вещества в азотистые соединения ещё не известен. Полагают, что анаэробное брожение протеинов приводит к образованию амидов и других производных аминокислот и соединений, содержащих пиррольные кольца. При доступе воздуха дальнейшее изменение молекулы протекает до аммиака. [c.83]

    Следовательно, из таких веществ, как, например, нефть, смолы и т. п., которые условно рассматриваются как смеси отдельных групп соединений (алканов, алкенов, цикланов, ароматических, кислородных, азотистых и сернистых соединений), при расщеплении их без дополнительного присоединения водорода, т. е. при крекинге, будет получаться значительное количество крекинг-остатка, продуктов конденсации (карбоидов) и газа. Приведенные в табл. 3 данные по крекингу грозненского пара-финистого и сураханского мазутов, а также сланцевой смолы показывают, что полное превращение их в бензин при крекинге. [c.9]

    Особенно подходящими для окисления окиси углерода в двуокись углерода являются катализаторы [387], получаемые хлорированием водного раствора солей кобальта или железа с последующим подщелачиванием. Полученный осадок промывают водой и активируют нагреванием до 300°. Кобальтовый катализатор для окисления аммиака получается путем осаждения соли кобальта таким количеством щелочного осадителя, например, углекислого аммония, что осаждается лишь часть кобальта. Осадок отделяют и раствор используют для приготовления катализатора путем превращения кобальта в нитрат и разложения последнего нагревом [26]. Для окисления аммиака предложена в качестве катализатора смесь, состоящая из 85% окиси кобальта и 15% окиси алюминия, полученных путем нагревания в токе водорода, что Ведет к соединению реагирующих веществ, из которых получается гранулированный катализатор [27]. Указывалось, что окисление окиси углерода кислородом в виде сухой газовой смеси, при температуре ниже 20°, успешно проходит в течение длительного времени на катализаторе, полученном Фразером [162]. По этому способу соединения кобальта или никеля окисляют в присутствии воздуха или водяного пара при температуре несколько ниже 250°. Например, 211 г азотистого кобальта растворяют в 200 см холодной воды и обрабатывают при 10° 100 г едкого натра, к которому добавлено 34,5 г хлорноватистокислого натрия полученный осадок отфильтровывают, промывают, высушивают и нагревают. [c.278]

    Таким образом, разрешение неглавных противоречий не вызывает коренного превращения вещества. Основное качество его сохраняется, ибо оно определяется главным противоречием. Лишь разрешение последнего, связанное с полным уничтожением одной из противоположных его сторон, тенденций, приводит к качественному скачку, коренному изменению природы вещества, его превращению. В случае аминокислот это имеет место в реакции дезаминирования (соответственно, декарбоксилирова-ния), связанной с полной заменой аминогруппы, например гидроксилом под действием азотистой кислоты  [c.135]

    Действием №03 на N№ пользуются для того, чтобы амиды NH2R (где R есть элемент или сложная группа) превратить в гидраты RHO. При этом NH-RNHO образует №-)-Н -О-)-RHO NH- заменяется НО, остаток аммиака — остатком воды. Эта реакция употребляется для превращения многих азотистых органических веществ, имеющих свойства амидов, в соответственные гидраты. Так, анилин H- NH , получающийся из нитробензола 6H5N02, превращается с азотистым ангидридом в фенол С Н НО, находящийся в креозоте, извлекаемом из каменноугольного дегтя. Так, Н бензола заменяется последовательно NO , NH и НО — путь, который пригоден и для других случаев. С кислотными амидами из ряда ароматических (бен- [c.521]

    ФЕРМЕНТАЦИЯ. Биохимический процесс превращения веществ при переработке растительного и животного сырья. При Ф. главным образом формируются специфические свойства того или иного продукта, его вкус, цвет, аромат и др. Поэтому в пищевой, легкой и фармацевтической промышленности Ф.— основной технологический процесс. Примерами в этом отношении являются чайная, табачная, хлебопекарная отрасли промышленности. Предполагали, что Ф.—микробиологический процесс. Но в настоящее время благодаря исследованиям советских ученых окончательно установлен ферментативный характер этих превращений. Главную ро.иь в этом процессе играют ферменты, как ускорители процессов превращения веществ. Для нормального течения Ф. необходимо прежде всего разрушение тканей и клеток растительного и животного сырья, например помол зерна в мукомольно-хлебопекарном производстве, раздавливание виноградной ягоды в виноделии, томление и сушка табачного листа, скручивание завяленного чайного листа и т. д. Для нормального течения Ф. требуется также создание определенных условий — температура, относительная влажность воздуха и др. Чайный лист после завяливания подвергается скручиванию на специальных машинах — роллерах, где происходит разрушение тканей и клеток листа, содержимое которых подвергается биохимическим изменениям с участием ферментов. Листья чая содержат сложную смесь катехинов, которые при Ф. претерпевают окислительную конденсацию с образованием более сложных соединений. Катехины взаимодействуют не только между собой, но и с разными аминокислотами, образуя соединения, обладающие разными запахами, с сахарами, белками и другими соединениями. В результате сложных превращений при Ф. образуются цвет, вкус, аромат черного байхового чая. Ф. табака — автолитический процесс, происходящий в убитых тканях листьев после их томления и сушки. При этохм окончательно формируются характерные признаки качества табака, как сырья для получения табачных изделий. Изменяется химический состав табака, уменьшается содержание белкового азота и идет накопление растворимых азотистых соединений, ул1еньшается содержание никотина, идет распад углеводов, накопление ароматических со- [c.317]

    Реакции с реагентом. Примером такой реакции является взаимодействие нитрита и кислоты для превращения нитрита натрия в эффективное реагирующее вещество—азотистую кислоту. Взаимодействие смеси кислот и галогенид-ионов с такими окисляющими реагентами, как бромат, иодат, хлорамин Т или гипоталоге-нит приводит к образованию брома или иода. [c.22]

    При недостатке витами1юв у животных нарушаются процессы обмена веществ, нарушаются также превращения и азотистых веществ. При различных авитаминозах животные, несмотря на наличие в пищевых рационах достаточного количества полноценных белков, находятся в состоянии отрицательного азотистого баланса. Распад белков в тканях авитаминозных животных происходит в большей степени, чем их синтез. [c.433]

    Сланцевые масла, получаемые при переработке сланцев в ретортах, обычно содержат больше азотистых оснований и сернистых соединений, чем большинство нефтей, в частности легких парафиновых нефтей [20]. Часто отмечается, что нефти с высоким содержавием асфальтовых веществ содер кат больше серы. Эти соотношения указывают на то, что в процессах, протекающих при образовании нефти, или точнее в процессах превращения тяжелого асфальтового вещества в легкие нефти теряется большая часть сернистых, а возмозкио, и азотистых соединений. Если использовать термин генетически старый или молодой вместо геологически старый или молодой , то эти соотношения становятся значительно более последовательными.  [c.83]

    Можно привести много примеров, иллюстрирующих такой прием. Очевидно, если примесь представляет собой реагент, можно применять рециркуляцию. Например, если после гидрогенизации присутствует значительное количество олефиновых примесей или после реакции дегидратации остается примесь спирта, то повторная обработка смеси может превратить всю массу примесей в желаемый продукт. Углеводородный продукт реакции, восстановленный по Вольфу-Кижнеру, может быть освобожден от загрязнений азотистыми соединениями при обработке кислотой. Любой непрореагировавший кетон реакции восстановления по Вольфу-Кижнеру, трудно отделимый от соответствующего углеводорода при помощи перегонки, может быть превращен в третичный спирт, содержащий шесть дополнительных атомов углерода, обработкой фенилмагнийброми-дом. Такое высокомолекулярное вещество перегонкой легко можно отделить от желаемого углеводорода. При получении нормальных алкилбро-мидов оставшийся спирт можно удалить экстракцией концентрироваиной серной кислотой на холоду. [c.501]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    В результате процессов получения нефтяного углерода и дальнейших термодеструктпвных процессов (например, прокаливания и обессеривания нефтяных коксов) в углероде концентрируются сернистые, азотистые, кислородные и металлоорганические соединения и еще больше снижается содержание водорода. Глубина и динамика изменения содержания этих веществ отражают степень протекания химических процессов и могут служить критерием оценки внутримолекулярных превращений, происходящих в структуре углерода. Например, прн коксовании происходит непрерывное перераспределение продуктов между остатком с низким значением Н С и дистиллятами и газом с высокими значениями Н С. В каждом отдельном случае ирн данном режиме для каждого вида остатка устанавливается равновеспе (Н Сцст)/(Н Сд ст.+газ), опреле-ляющее в конечном счете выход и качество различных нефтяных углеродов [110]. [c.117]

    По коксообразующей способности углеводороды можно расположить в такой йбследовательности парафиновые<нафтеновые< < ароматические. Наибольшее количество кокса образуется при превращении полициклических ароматических углеводородов [1, 101]. При этом кокс образуется быстрее при увеличении числа колец в ряду конденсированных ароматических соединений бензол— -нафталин— -антрацен, чем в ряду бензол— -дифенил— -— -терфенил. Выход кокса при крекинге азотистых оснований и углеводородов с аналогичным строением сходен. В целом для приведенных в табл. 4.10 веществ выход кокса на превращенный продукт составляет не менее 75% (масс.). [c.145]

    Необходимо также отсутствие в парафине веществ, тормозящих окисление (азотистых, сернистых веществ, фенолов). Содержание серы и фенолов не должно превышать 0,05%. Опыт показывает, что превращение парафина в кислоты не идет вышё [c.93]

    Соединение состава sHiiN(A) при действии азотистой кислоты дает наряду с алкеном вещество Б, имеющее состав СзНюО. При действии дихромата калия в разбавленной серной кислоте вещество Б превращается в вещество 8HsO(B), которое не дает реакции серебряного зеркала и при действии гидро (-силамина превращается в sHgNO (вещество Г). Последнее при действии натрия в спирте снова образует соединение А. Расшифруйте структуры веществ п схемы их превращений. [c.108]

    Стадия образования диазониевого иона является обязательной при реакциях любых первичных аминов с азотистой кислотой, в дальнейшем же могут происходить различные превращения. Если исходным веществом был алифатический первичный амин (К = Алкил), то отщепление азота происходит уже при температуре <0°С. Оставшийся карбкатион стабилизуется обычным образом (см. разд. Г, 2.1.1), т. е. путем нуклеофильного замещения при взаимодействии с растворителем (чаще всего водой) [схема (Г. 8.13)], частично путем отдачи протона он переходит в олефин. Перед этим карбкатион может изомеризоваться в более энергетически выгод- [c.228]

    Весьма вероятной схемой превращения высших сернистых соединений па окисных катализаторах является деструкция связи С—8 с образованием сульфида металла и ненасыщенного бпрадпкала, который присоединяет водород и превращается в насыщенный углеводород [2, с. 40]. Если водорода недостаточно или если скорость гидрирования снижена присутствием азотистых либо других блокирующих веществ (в том числе металлов), такой высокореакциопно-сиособпый бирадикал сможет вступать в реакции конденсации, давая начало коксообразованию. [c.42]

    З-Аминороданиц ошибочно рассматривался некоторыми авторами [о] как производное 1,3,4-тиадиазина, что было опровергнуто [6] превращением этого вещества в незамещенный роданин при действии азотистой кислоты. [c.13]

    Развитие ферментативных процессов при созревании мяса приводит к накоплению в нем веществ, влияющих на вкус и аромат готовых мясных продуктов. Этими соединениями являются продукты распада и пептидов (глютаминовая кислота, треонин, серосодержащие аминокислоты и др.), нуклеотидов (инозинмонофосфорная кислота, инозин, гипоксантин, рибоза), углеводов (глюкоза, фруктоза, молочная, пировиноградная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатин и другие азотистые экстрактивные вещества. Среди летучих компонентов, определяющих аромат продуктов из созревшего мяса, обнаружены жирные кислоты, карбонильные соединения, спирты, эфиры. Существенную роль в формировании запаха играют серосодержащие соединения, предшественниками которых являются цистеин, цистин и метионин. На вкус и аромат мясопродуктов значительно влияют сахароаминные реакции или реакции неферментативного потемнения при тепловой обработке мяса, в которых участвуют редуцирующие сахара, аминокислоты или белки, а также альдегиды, возникающие в результате превращения жирных кислот. [c.1131]

    Хиральность свойственна и белкам, и углеводам, и нуклеиновым кислотам, и ряду низкомолекулярных соединений в клетке. Углеводы в ДНК и РНК всегда фигурируют в D-форме, Азотистые основания имеют плоское строение и, следовательно, лишены х1фальности. В процессах метаболизма, происходящих без рацемизации, т. е. без превращений зеркальных антиподов друг в друга, клетка усваивает лишь те из них, которым отвечают структуры ее биологических молекул. Организм усваивает L-, но не / -аминокислоты. Попав в антимир , в котором растения и животные содержат молекулы с противоположными конфигурациями, земной организм погиб бы от голода Для организма D- и -антиподы разнятся. Известны вещества, ядовитые в одной форме и безвредные в зеркальной форме -аспарагиновая кислота безвкусна, ее антипод сладок. Еще Пастер установил, что некоторые бактерии питаются преимущественно одним антиподом данного вещества. [c.44]

    Мартинсен [8] при изучении нитрования фенола азотной кислотой различных концентраций нашел, что присутствие азотистой кислоты каталитически действует на процесс нитрования Дальнейшее исследование показало, что концентрация азотистой кислоты в растворе повышается по мере течения реакции вследствие частичного восстановления азотной Кислоты при побочных окислительных процессах Скорость Превращения азотной кислоты в азотистую значительно уменьшается в присутствии ртути, серебра или их солей Применением этих веществ удается регулировать процесс нитрования [191 Таким образом, нитрование фенбла является автокаталитиче-ским процессом, протекающим без внесения катализатора извне Мартинсен установил, что нитрование ускоряется с повы-шецием кошцентрации азотной кислоты И замедляется с повышением концентр ацйи фенола [c.93]


Смотреть страницы где упоминается термин Превращения веществ азотистых: [c.53]    [c.2]    [c.580]    [c.90]    [c.3]    [c.14]    [c.172]   
Биохимия Издание 2 (1962) -- [ c.493 , c.564 ]




ПОИСК







© 2025 chem21.info Реклама на сайте