Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные массы см Массы

    Атомные и молекулярные массы. Масса всех частиц вещества составляет массу вещества. В химии, как правило, под массой подразумевают массу покоя. Масса характеризует инерционные и гравитационные свойства вещества, которые для массы покоя равны друг другу. Различают относительные массы и просто массы (абсолютные). Для измерения относительной атомной массы введена атомная единица массы (а. е. м.)  [c.21]


    Относительная атомная и относительная молекулярная массы. Массы атомов и молекул выражают в относи-тс.льных единицах. За атомную единицу массы (а. е. м.) принимают /12 массы атома изотопа углерод-12 ( С), т, е. 1,66-10 кг. Относительная масса атома Аг будет равна [c.4]

    Среднечисленную молекулярную массу Мп полимера получают, если усреднение производят по численной доле макромолекул определенной молекулярной массы, т. е. каждой фракции полимера. Так, если в полимере содержится всего N макромолекул, из которых 1 с молекулярной массой М,, 2 — с молекулярной массой М2 и т. д., то численная доля каждой фракции будет = = ,/УУ, т. е. А 1 =п /М, N2 = Лг/Л и т. д., а среднечисленная.молекулярная масса составит  [c.16]

    Радикальный механизм реакции был также подтвержден образованием большего количества геля при пластикации полимера в инертной атмосфере (1,6 % в воздухе и 3,4 % в азоте) в течение 10 мин при 24 °С. Кривая изменения характеристической вязкости Б процессе пластикации имеет обычный вид (см. рис. 3.9). При низких температурах деструкция протекает более глубоко. На кривой имеется минимум в области температур 85—155 °С, поскольку при более высоких температурах преобладающим становится термоокисление и характеристическая вязкость пластицированных образцов круто падает. При низких температурах холодная пластикация представляет собой процесс деструкции, не подчиняющийся закону случая. Действительно, ММР сужается с падением молекулярной массы при пластикации при 20 °С. После 60 мин пластикации максимальное значение молекулярной массы снижается от 20,15-10 до 8,25-10 , в то время как содержание фракций с низкой молекулярной массой практически не изменяется (рис. 6.18 и табл. 6.6). При высоких температурах процесс подчиняется закону случая при температурах выше 180 °С пик молекулярно-массового распределения заметно смещается в сторону низкой молекулярной массы и ММР становится более широким. Однако вплоть до 250 °С некоторые из наиболее длинных молекул не разрушаются [45]. [c.223]

    С ПОМОЩЬЮ метода ГПХ можно оценивать закономерности изменения распределения компонентов сырья по молекулярным массам или по размерам молекул и частиц в продуктах каталитического гидро--облагораживания, полученных при фактическом режиме работы экспериментальной или промыщленной установки. Нанример (рис. 1.14),повышение температуры ведет к резкому снижению молекулярных масс, из распределения при 352 °С практически исчезают компоненты с молекулярной массой выше 10 ООО [33]. [c.40]


    Молекулярный масс-спектрометрический метод обеспечивает быстрый и точный анализ сложных смесей органических соединений, я В основе масс-спектрометрического метода лежит свойство положительных ионов отклоняться однородным магнитным полем по-разному, в зависимости от их массы, заряда и скорости. [c.259]

    Мольную массу веш,ества (а следовательно, и его относительную молекулярную массу) можно определить и другим способом, используя понятие о мольном объеме вещества в газообразном состоянии. Для этого находят объем, занимаемый при нормальных условиях определенной массой данного вещества в газообразном состоянии, а затем вычисляют массу 22,4 л этого вещества при тех же условиях. Полученная величина и выражает мольную массу вещества (в г/моль). [c.29]

    Молекулярные массы (в атомных единицах массы) большинства перечисленных веществ приведены в предыдущих примерах, а атомная масса неона указана в таблице на внутренней стороне обложки книги. 1 моль каждого из названных веществ имеет следующую массу  [c.28]

    Если молекулярный ион, который образовался в процессе, аналогичном процессу (16.6), стабилен, то молекулярную массу вещества можно определить непосредственно из пика с наибольшим массовым числом, интенсивность которого не зависит от давления. Например, молекулярную массу Ре(СО)4(Ср2 - Ср2 - СН2 - СРг) нельзя определить [19] обычными способами, однако из пика молекулярного иона в масс-спек-тре следует, что зто вещество представляет собой мономер с молекулярной массой 368. Для многих соединений молекулярный ион достаточно стабилен, чтобы пользоваться указанным методом определения молекулярной массы, но часто это не так. Главная проблема состоит в определении пика молекулярного иона. [c.325]

    Укажем, что при записи реакций индивидуальных веществ коэффициенты V,- м характеризуют мольные массы. Для реакций со сложными смесями углеводородов материальные балансы получают в весовых (удельных) единицах, и перевод их в мольные единицы требует определения молекулярных масс для различных смесей (бензина, керосина и т. д.). Это обычно не оправдано, так как приходится переходить от точной величины массы в удельных единицах к приближенной величине (из-за приближенного определения молекулярной массы) в мольных единицах. Поэтому для сложных смесей удобнее записывать уравнения реакции для удельных единиц массы. [c.182]

    При температурах, непосредственно близких к КТ пропана, последовательно понижается растворимость углеводородов, что позволяет разделять сырье а фракции, различающиеся по структуре молекул их компонентов, а следовательно, по плотности, молекулярной массе и другим показателям. В пропане, в области его предкритического состояния, наиболее растворимы, как указано выше, парафино-нафтеновые компоненты, а наименьшей растворимостью обладают смолы. Остальные группы углеводородов в зависимости от структуры и молекулярной массы занимают промежуточное положение. Это создает условия для фракционировки пропаном компонентов деасфальтируемого продукта. Таким образом, сжиженные углеводородные растворители, находящиеся близко к критическому состоянию, в отличие от избирательных растворителей являются фракционирующими растворителями. [c.68]

    Учитывая высокую реакционную способность, полярность, окислительно-восстановительные свойства фенолов, исследовалось их содержание в нефтепродуктах. Из керосиновой фракции 140— 240°С нефтей Западной Сибири, содержавшей 0,05% общей и 0,03 % сульфидной серы, извлекали гетероатомные соединения комплексообразованием с хлоридом титана (IV). Обработка фракций производилась при комнатной температуре комплексообразователем (0,5 % от массы сырья). Выход концентрата со средней молекулярной массой 172 составил 0,25%. Для отделения кислот и фенолов концентрат обрабатывали 10 % раствором щелочи. Выход фенольного концентрата составил 0,05 % [364, с. 46]. Несмотря на то, что нефть и нефтепродукты содержат большие массы фенолов — ценного сырья для нефтехимии, экономически выгоднее пользоваться ненефтяными источниками для получения фенолов. Отрицательное влияние фенолов на эксплуатационные свойства нефтепродуктов должны учитываться как при разработке процессов очистки, так и при применении товарных топлив. [c.261]

    Введем в уравнение (3) молярную концентрацию с = п/и, тогда р = сНТ. При экспериментальном определении молекулярной массы (массы I моля) пользуются уравнением (3) обеспечивают постоянство двух или трех параметров, входящих в это уравнение, и измеряют остальные. Определение выполняют по методам Дюма Т, р и V постоянны, т — измеряемый параметр), Гей-Люссака — Гофмана Т к т постоянны, р и и —измеряемые параметры) и Мейера Т, р и т постоянны, и — измеряемый параметр). [c.15]


    Увеличение числа последовательно чередующихся звеньев в макромолекулах при полимеризации или поликонденсации приводит к постепенному изменению свойств полимера. Однако по достижении больших значений молекулярной массы показатели этих свойств стремятся к постоянному значению. Это относится к прочности, теплостойкости, твердости и ряду других физических свойств полимеров. Температура стеклования полимера также является функцией его молекулярной массы С увеличением молекулярной массы температура стеклования вначале быстро повышается, а затем стремится к постоянному значению, которое зависит от кинетической гибкости цепи полимера. В полимерах с гибкими цепями температура стеклования приобретает постоянное значение , начиная с молекулярной массы порядка 1000—5000. В полимерах о жесткими цепями температуры стеклования становятся постоянными при молекулярных массах порядка 10 000—20 000 1 Биверс определил зависимость температуры стеклования Тс полиакрилонитрила от среднечислового значения молекулярной массы Мп в интервале от 8240 до 3 260 ООО. [c.83]

    Молекулярную массу определяют траднционнымп способами, но для этих целей могут быть привлечены и другие методы. Недавно была установлена связь между молекулярной массой алканов и масел и данными термогравиметрического анализа [53]. Экспериментальное определение молекулярной массы — трудоемкая задача, поэтому на практике используют различные эмпирические формулы, связывающие молекулярную массу с одной или несколькими физико-химическими константами фракций, например плотностью. В общем случае прямой зависимости между молекулярной массой и плотностью нефтяных фракций нет, но тесная связь между этими показателями прослеживается для нефтей и нефтяных фракций сходного химического состава (одинакового основания) [54, 55]. При вычислении молекулярной массы фракций различного химического состава приходится привлекать большее число параметров. Для фракций н. к. 550°С можно воспользоваться уравнением, приведенным в [56], если известны средние температуры кипения, показатели преломления и плотности фракций. При тех же известных показателях молекулярная масса как прямогонных, так и вторичных фракций, перегоняющихся в пределах 77— 444 °С, может быть вычислена по уравнению, приведенному в [57], а для паров нефтей и их фракций может быть найдена по уравнению, приведенному в [58]. [c.20]

    При ступенчатой полимеризации и ноликопденсации и при цепной полимеризации затрачивается разное время для получения высокомолекулярного продукта, т. е. для завершения роста цепи макромолекулы. При поликонденсации, например, которая протекает по ступенчатой схеме, размер молекулы увеличивается с относительно низкой скоростью и сначала из мономеров образуется димер, тример, тетрамер и т. д. — до полимера. При цепной полимеризации почти сразу после начала реакции образуются молекулы с высокой молекулярной массой. В последнем случае на различных стадиях процесса в реакционной смеси всегда присутствуют только мономер и полимер и отсутствуют молекулы промежуточных размеров. С увеличением продолжительности реакции растет лишь число молекул полимера. Молекулярная масса полимера не зависит от степени завершенности реакции, которая влияет только на выход полимера. При поликонденсации же образование полимера происходит на стадии очень высокой степени завершенности реакции (более 98%), и выход и молекулярная масса полимера зависят от продолжительности реакции. [c.26]

    Заметим, что молекулярные массы выделенных нами продуктов хроматографического разделения смол и асфальтенов значительно ниже приведенных Филби [11] и не коррелируют с содержанием металлов. Это внешнее противоречие вполне объяснимо, если учесть, что результаты измерения молекулярных масс таких легко ассоциирующих веществ, как ВМС нефти, меняются в очень широких пределах в зависимости от условий и метода определения. В работе [11] пределы изменения молекулярных масс нефтяных фракций оценивались по объемам элюирования продуктов из колонок с сефадексом Ш-20 и главным образом стирагелем при использовании бензол-метанольной смеси в качестве элюентов и калибровки колонок по полистироль-ным стандартам. Однако установлено [95], что кривая зависимости молекулярных масс, измеренных осмометрическим методом от объемов элюирования асфальтовых фракций в сходных условиях, расходится с калибровочной кривой, построенной по таким же полистирольным стандартам, причем пользование последней приводит к завышенным и заниженным значениям молекулярных масс соответственно при больших и малых объемах. Фактическое расхождение должно быть еще более значительным, так как осмометрия в бензоле сама по себе дает завышенные результаты по сравнению с другими (криоскопическим, эбу-лиоскопическим) методами (например, [96, 97]). Бензол как [c.225]

    Одним из важнейших свойств вещества является его молекулярная масса. Так как абсолютные массы молекул очень малы, то в расчетах используют относительные. Под молекулярной массой вещества обычно понимают 01н0шение массы молекулы данного вещества к 1/12 массы атома углерода. Соответственно и массы атомов химических элементов также сравнивают с 1/12 массы атома углеродд. Тогда атомная масса углерода равна 12, других элементов (округленно) водорода — 1, кислорода—16, азота—14. Массу молекулы химического соединения определяют сложением атомных масс элементов, входящих в состав молекулы. Например, молекулярная масса углекислого газа СОг равна 12 + 2-16 = 44 (1 атом углерода с массой 12 и 2 атома кислорода с массой 16). Молекулярная масса метана СН равна 12 + 4-1 = 16. Молекулярная масса некоторых наиболее часто применяемых горючих газов и их продуктов горения приведена в табл. 1.1. [c.7]

    Проведем в качестве примера идентификацию смеси неизвестного состава, масс-спектр которой приведен на рис. 4.2. По спектру, снятому при энергии ионизирующих электронов 14 эВ, установлено, что смесь состоит из четыре.х компонентов с молекулярными масса.ми 267, 281, 325 и 339. Первые два соединения относятся к К-(л-алкоксибензилиден)- г-алкиланилинам, а третье и четвертое — к К-(л-алкоксибепзилиден)-д-ацилоксианилинам. По пику метаста-бильного иона с массой 187,9 определяем, что осколочный ион с т/е 224 образован путем отрыва 43 атомных единиц массы (а. е. м.) от молекулярного иона с массой 287 по пику метастабильного иона с массой 201,5 устанавливаем, что ион с г/е 238 образовался при отрыве также 43 а. е. м. от молекулярного иона с массой 281. Учитывая тенденцию к разрыву С—С-связи в алкильном заместителе по Р-положению к ароматическому кольцу, заключаем, что оба соединения имеют бутильный радикал. Второй заместитель устанавлива- [c.94]

    Мас -сдектральный анализ как метод анализа смесей начал весьма интенсивно развиваться во время войны в США. Первые систематические работы по анализу углеводородных газов были выполнены там в 1940 г., а в 1943—1945 гг. начался серийный выпуск масс-спектрометров для молекулярного анализа. Масс-спектрометры в США выпускаются несколькими фирмами. Наиболее совершенным американским масс-спектрометром является, по-видимому, прибор, последний вариант которого именуется СЕС-103-А. Этот прибор предназначен для молекулярного анализа в широком диапазоне масс (вплоть до 700) и отвечает тем специфическим требованиям к масс-спектрометру для молекулярного анализа, о которых говорилось выше. Наряду с этим прибором, в США выпускаются также масс-спектральные анализаторы легких газов. Масс-спектрометры для анализа газов выпущены в самое последнее время также в Англии, ФРГ и Италии. [c.68]

    Наиболее склонны к формированию ассоциированных комплексов асфальтены и смолы. На склонность их к ассоциированию существенное влияние оказывает содержание в них ароглатизованных фрагментов, которое обычно оценивается показателем степени ароматичности. Ароматичность смол составляет 20-40%, асфальтенов 40—50%. Число конденсированных ароматических фрагментов у смоц достигает 1—4. С увеличением молекулярной массы и переходе к асфальтенам этот показатель возрастает, достигая 7,5 [22]. Наименее ароматизованные смолы преимущественно находятся в диспергированном состоянии в дисперсионной среде, а более ароматизованные, имеющие соответственно более высокие значения молекулярных масс, концентрируются в сольватном слое структурных единиц с ядром, состоящим из ассоциатов асфальтенов. При избыточном содержании асфальтенов и малой растворимости дисперсной среды (масел), они составляют в остатках дисперсную фазу. При низком содержании асфальтенов нефтяные остатки по свойствам [c.23]

    Атомные и молекулярные массы. Л1оль. На законе Авогадро основан важненшин метод определения молекулярных масс веществ, нахо.дящнхся в газообразном состоянии. По прежде чем говорить об этом методе, следует сказать, в каких единицах выражают молекулярные и атомные массы. [c.26]

    П тип — молекулярные коллоиды. Их называю также обратимыми, или л и о ф и л ь м ы м и (от греч. филио — льэблю) коллоидами. К ним относятся природные и синтетически высокомолекулярные вещества с молекулярной массой от десят ть[сяч до нескольких миллионов . Молекулы этих веществ имею1 размеры коллоидных частиц, поэтому такие молекулы называют м а к р о м о л е к л а м и. [c.314]

    Поскольку массы, указанные в решении примера 9, дают правильные относительные массы взвешиваемых молекул, указанная масса каждого из перечисленных веществ содержит одинаковое число молекул. Этим и удобно использование понятия моля. Нет даже необходимости знать, чему равно численное значение моля, хотя мы уже знаем, что оно составляет 6,022-10- эта величина называется числом Авогадро и обозначается символом N. Переход от индивидуальных молекул к молям означает увеличение шкалы измерения в 6,022 -10 раз. Число Авогадро представляет собой также множитель перевода атомных единиц массы в граммы 1 г = = 6,022 10 а.е.м. Если мы понимаем под молекулярной массой массу моля вещества, то ее следует измерять в граммах на моль если же мы действительно имеем в виду массу одной молекулы, то она численно совпадает с молекулярной массой вещества, но выражается в аюмных единицах массы на одну молекулу. Оба способа выражения молекулярной массы правильны. [c.28]

    Согласно классическому определению Аррениуса, кислота представляет собой вещество, которое при добавлении к воде повыщает в ней концентрацию ионов водорода, [Н" ], а основание-вещество, повышающее в воде концентрацию гидроксидных ионов, [ОН ]. 1 моль различных кислот может высвобождать при полной диссоциации 1, 2 или 3 моля ионов Н . Грамм-эквивалентом кислоты называется такое ее количество в граммах, которое способно при полной диссоциации высвободить 1 моль протонов Н" , поэтому грамм-эквив алент такой кислоты, как Н3РО4, равен одной трети ее молекулярной массы. Точно так же если какое-либо основание способно высвобождать при полной диссоциации в растворе 2 моля ионов ОН , как, например, Са(ОН)2, то грамм-эквивалент такого основания равен половине его молекулярной массы. [c.100]

    И совершенно иной, присущей только асфальтенам тип связывания имеется в том случае, если микроэлемент зафиксирован на полисопряженной, включающей гетероатомы конденсированной системе. К сожалению, в литературе нет прямых данных о количестве микроэлементов в асфальтенах, связанных по тому и другому типу. Однако тот факт, что смолы, обладая почти тем же гетероатомным составом (но 3, О, N), что и асфальтены, содержат, как правило, в 5—10 раз меньше микроэлементов 908], свидетельствует о весьма значительной роли полициклоароматических сопряженных систем в связывании металлов. Такой же вывод можно сделать и на основании изучения распределения микроэлементов по фракциям асфальтенов различного молекулярного веса [76]. Показано, что концентрация большинства микроэлементов возрастает с повышением молекулярной массы, а следовательно, и возможности реализации более развитых сопряженных конденспрованных систем. Исключение составляют лишь часть ванадия, никель и сурьма [76], причем первые два элемента концентрируются во фракциях с молекулярной массой, близкой к массе соответствующих порфириновых комплексов, а сурьма преобладает в низкомолекулярной части. [c.169]

    Спектральные, радиоспектросконпческие [12, 69, 395, 396 и др.] и масс-спектрометрические [379, 1013, 1045, 1052 и др.] данные свидетельствуют о сравнительно небольших средних размерах отдельных конденсированных полиароматических блоков в молекулах ВМС нефтей (3—4 бензольных цикла). Установлено, что фракции асфальтенов с различными молекулярными массами характеризуются весьма сходными электронными спектрами, содержащими широкую неразрешенную полосу поглощения с максимумом около 260 нм, п.лавно спадающую в длинноволновой области [69]. Отсутствие батохромного сдвига этого максимума поглощения по мере увеличения молекулярной массы асфальтеновых фракций указывает, что укрупнение молекул идет без повышения степени конденсированности ароматических систем, за счет роста числа связывающихся изолированных (не сопряженных) ароматических ядер. Еще ранее на примере ряда американских нефтей показано [1052], что с увеличением возраста вмещающих отложений и глубины катагенной превращениости нефти заметно повышается доля атомов С в ароматических циклах асфальтеновых молекул, особенно в пери-конденсированных структурах, но [c.194]

    Введение вязкостных присадок повышает вязкость масел, позволяет получить масла с более пологой температурной кривой вязкости. В качестве вязкостных присадок используются вещества, которые обладают высокой молекулярной массой, большой вязкостью и состоят из длинных молекул нитеобразного строения. Больше всего с этой целью используются полимеры двух типов полиизобутилены с молекулярной массой от 4000 до 25 000 и по-лиметакрнлаты с молекулярной массой от 3000 до 17 000. [c.352]

    В химии полимеров к классическим высокомолекулярным соединениям принято относить вещества с молекулярной массой 5000 и выше. Однако, как утверждают Стреинхеев и Деревицкая [118], между высокомолекулярными (ВМС) и низкомолекуляр-ньши соединениями (НМС) нельзя провести резкую границу. Так, к ВМС нефтяного происхождения относят вещества с молекулярной массой значительно меньшей, чем для обычных полимерных веществ. По мнению авторов [118], парафины с молекулярной массой около 1000 обладают всеми свойствами ВМС. В настоящей работе к ВМС принято относить гетероциклические соедиие-ния и углеводороды с молекулярной массой более 1000. В соответствии с современными взглядами, основанными на коллонд1ю-химических представлениях, нефть и нефтепродукты являются сложными смесями, различающимися качеством и от)юшеиием концентраций ВМС к НМС. [c.11]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    НЫХ цепях (рис. 25,а). Молекулярная масса этих гомологов подчиняется выражению 375 + 14л п —число групп СНг в алкиль ных заместителях, а 375—масса соответствует ванадилпорфину. Гомологи второго ряда (М-2) отличаются на две единицы в сторону уменьшения молекулярной массы и представляют собой, по-видимому, соединения, гомологичные дезоксофиллоэритроэтиопор- [c.303]

    Длд определения молекулярно-массового распределения (иМ ) и вычисления средней расчетной молекулярной массы асфальтенов хроматограммы разбивались на ряд отрезков (в основном, с учетом точек перегиба на выходной кривой), рассчитывалась массовая доля, каждого отрезка и по калиброво шой кривой - его средняя молекулярная масса.Полученные значения молекулярных масс приведены в ооот-ветствующнх точках хроматограмм (рис.4). На основании полученных [c.59]

    Высокомолекулярные соединения представляют собой вещества, состоящие из большого числа крупных молекул, связанных различным образом и имеющим высокое значение молекулярной массы. Однако, как правило, не фиксируют конкретЕ1ые пределы значений молекулярных масс веществ, по которым их следовало бы относить к ряду высокомолекулярных. Таким образом, понятие высокомолекулярный в большей степени условно и относительно. Относительная молекулярная масса высокомолекулярных соединений может составлять от нескольких тысяч до нескольких миллионов. Крупные молекулы высокомолекулярных соединений называют макромолекулами. Линейные размеры макромолекул отличаются значительными величинами. Так, длина макромолекулы может составлять, например, около ЗОООА, а поперечный размер — 7к. [c.28]

    Известно, что молекулярная масса характеризует степень ассоциации асфальтенов в растворах, поэтому становится понятным, почему точка минимума теплоты плавления лежит в области более низких значений концентрации асфальтенов в смеси в случае первичных асфальтенов. Исходя из значений молекулярной массы асфальтенов, выделенных из сырой нефти, можно предположить, что на первом этапе (до точки первичного минимума) формирование надмолекулярных структур первичных асфальтенов идет гораздо быстрее, чем вторичных. Однако сильная сОу ьватирующая способность вторичных асфальтенов вследствие их большей ароматичности выше, чем первичных. При этом теплота сольватации первичных асфальтенов меньше, чем для вторичных. Вторичные асфальтены формируют более плотные сольватные оболочки, и, следовательно, более интенсивно должны разрушать кристаллическую решетку нафталина. Также за счет более плотной сольватной оболочки и, очевидно, интенсивного сближения структурных образований возникает сильное коагуляционное взаимодействие между их внутренними областями [168], приводящее к появлению коагуляционного каркаса и дальнейшей аморфизации смеси. Таким образом, точка первичного минимума теплоты плавления характеризует активность асфальтенов или их склонность к структурообразованию. [c.151]

    Решение. Предварительно переведем температуру в единицы СИ Г = 20 °С + 273 = 293 К. Затем найдем в таблице Менделеева откоснтельную молекулярную массу гелия Лioтн не = 4,00260 у. е. Откуда молярная масса гелия равна Мне = 4,00260 ч 10" кг/моль. Принимая во внимание степень точности измерения температуры (три значащие цифры), округлим значение молярной массы до четырех значащих цифр Мне = 4,003-10-3 кг/моль. Подставив соответствующие значения в выражения (2) и (3), получим  [c.15]

    Анализ широкого набора экспериментальных данных позволил установить (см. 2), что у высокомолекулярных гибкоцепных полимеров наибольшая ньютоновская вязкость пропорциональна (Под высокомолекулярными полимерами понимают такие, у которых молекулярная масса в достаточной мере превышает /Икр, при котором завершается застройка флуктуационной сетки). Однако для возникновения в системе высокоэластических деформаций, т. е. для того чтобы система, находящаяся в вязкотекучем состоянии, проявила некоторое каучукоподобие, молекулярная масса должна превосходить М р в несколько раз [45]. При меньших М проявляются лишь признаки неньютоновского течения. Все это относится лишь к полимерам с узким молекулярно-массовым распределением. При широких молекулярно-массовых распределениях упомянутые закономерности сохраняются, но относить их нужно к средневязкостной молекулярной массе с усреднением по абсолютной вязкости [35, с. 24]. [c.176]


Смотреть страницы где упоминается термин Молекулярные массы см Массы: [c.96]    [c.540]    [c.35]    [c.38]    [c.39]    [c.501]    [c.82]    [c.119]    [c.173]    [c.222]    [c.9]    [c.34]    [c.281]    [c.58]   
Краткий химический справочник (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))



© 2025 chem21.info Реклама на сайте