Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны пассивные

    По мнению ряда исследователей, пассивные пленки — тонкие защитные беспористые пленки типа поверхностных соединений с хорошей электронной, но очень плохой ионной проводимостью, которые избирательно тормозят процесс анодного растворения металла, не очень препятствуя протеканию анодного процесса выделения кислорода. [c.308]


    Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами -уровней, что переводит его в активное состояние. [c.309]

    Свойства металлов действительно зависят от внутреннего строения атомов, а следовательно, и от электронных конфигураций, но пассивность металлов является функцией не только внутренних, но и внешних факторов. Таким образом, пассивное состояние ме- [c.310]

    Эффект увеличения скорости растворения металла наблюдается, если скачок потенциала сосредоточен в ионном двойном слое. Эффект снижения скорости растворения металла (пассивность может наблюдаться, если скачок потенциала приходится на поверхностный слой металла анодная поляризация уменьшает кинетическую энергию поверхностных электронов (поверхностного уровня Ферми), что приводит к усилению их связи с поверхностными положительными ионами металла и, как следствие этого, к уменьшению свободной энергии и адсорбционной способности поверхности металла. [c.311]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]


    С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в -оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида. [c.81]

    V ат. % 2 дает прямую с положительным наклоном. Подобный обобщенный график дан на рис. 5.16. Чтобы прямая с наклоном. равным 1 проходила через начало координат, пришлось принять, что передано не 100,,% валентных электронов, а 80 %. Это означает, что большинство, но не все валентные электроны меди и других непереходных элементов заимствуются никелем. Принимая, что атом меди в медно-никелевом сплаве отдает атому никеля 0,8 электрона, получаем критическое содержание никеля, ниже которого -оболочка заполнена, 35 ат. % вместо 41 ат. %, как рассчитано ранее . Это значение согласуется с составом, при котором /пас И / рит пересекаются на рис. 5.14. До сих пор не внесена ясность в вопрос, относится ли эта цифра — 80 % до-норных электронов — только к взаимодействию электронов поверхностных атомов металла-, на которых образуются пассивные пленки, или ко всему сплаву. [c.96]

    Хорошее соответствие между наблюдаемым и предсказанным критическим составом сплава свидетельствует не только о влиянии электронной конфигурации на пассивность, но и об адсорбционной структуре пассивной пленки .  [c.97]

    Как уже отмечалось в разд. 5.4, некоторые металлы (например, железо и нержавеющие стали) могут быть надежно защищены, если их потенциал сдвинуть в положительную сторону до значений, лежащих в пассивной области анодной поляризационной кривой (см. рис. 5.1). Это значение потенциала обычно поддерживают автоматически с помощью электронного прибора, называемого потенциостатом. Практическое использование анодной защиты и применение для этих целей потенциостата впервые было предложено Эделеану [26]. [c.229]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    Одной из причин пассивности пиридина в реакциях электрофильного замещения и ориентации заместителя в -положение является то, что из-за большей электроотрицательности азота по сравнению с углеродом и высокой поляризуемости п-связей электронная плотность в пиридине распределена неравномерно  [c.544]


    Насыщение восемью электронами (электронным октетом) второго уровня соответствует образованию последнего в периоде элемента — пассивного в химическом отношении газа неона. [c.43]

    Для пассивного металла, ионы которого энергично захватывают электроны, наблюдается обратный переход, т. е. процесс восстановления  [c.182]

    Цинк — активный металл, дающий амфотерный оксид кадмий не обладает амфотерностью и как металл менее активен. Ртуть пассивна и напоминает благородный металл. Для ртути характерно образование ионов Hgi" , что говорит о высоком сродстве к электрону (1,54 эВ) и большой электроотрицательности. При вступлении в химические реакции атома ртути электроны подуровня. s возбуж- [c.393]

    Самым низким потенциалом ионизации обладает первый элемент каждого периода (щелочные металлы) убывают они от лития к францию, что определяет и нарастание восстановительной активности металлов в том же направлении. Эти закономерности характерны для всех элементов главных подгрупп. В побочных подгруппах ( -элементы), наоборот, возрастает потенциал ионизации у нижних элементов, стоящих за лантаноидами (от гафния к ртути). В связи с этим они весьма пассивные металлы, обладающие очень слабыми восстановительными свойствами, более слабыми, чем у вышестоящих элементов в той же подгруппе. Это — следствие так называемого лантаноидного сжатия. Оно заключается в том, что 14 электронов, застраивающих 4/-подуровень, не могут полностью экранировать действие возрастающего заряда ядра на внешние валентные 6з-электроны. Поэтому прочность связи б5-электронов с ядром постепенно возрастает, радиусы [c.80]

    По многим свойствам эти элементы тяготеют к побочным (переходным) элементам, однако их сходство с главными элементами второй группы значительно больше, чем сходство элементов подгруппы меди со щелочными металлами. На ртути продолжает сказываться лантаноидное сжатие, из всех элементов подгруппы ИВ она самый пас--сивный элемент и гораздо сильнее отличается по свойствам от кадмия, чем кадмий от цинка. В связи с малым радиусом атомов, с завершенным (п—1) -подуровнем, с двумя спаренными s-электронами во внешнем уровне атомов эти элементы имеют высокий потенциал ионизации, поэтому гораздо пассивнее щелочноземельных элементов. [c.361]

    Образование фазовых окисных слоев в стационарном пассивном состоянии не обязательно может служить причиной пассивации. Такой механизм вполне вероятен для металлов, окисные пленки которых обладают ничтожной электронной проводимостью. Для них процесс миграции ионов металла через окисную пленку требует меньших потенциалов, чем, например, разложение воды с выделением кислорода по реакции [c.202]

    Существование свободных электронов в металлическом катализаторе не всегда может служить объяснением каталитического действия металлов. Каталитическая активность может быть связана с явлением электронной изомерии . Свинне [249] утверждает, что металлическая поверхность образована разлиЧ ными группами электронов, каждая группа имеет одинаковое общее число элеК тронов и соответствующее ей атомное ядро. В зависимости от того, принадлежат ли эти электроны атомам, способным диссоциациировать на ионы и электроны или неспособным диссоциировать, возникают активные или пассивные изомеры. В то время как активный изомер диссоциирует на ионы и электроны, пассивный изомер не обладает настоящими валентными электронами, способными переходить в свободное состояние. Различные вещества, в том числе и катализаторы, могут быть причиной превращения одного электронного изомера в другой, сопровождающегося межмолекулярными переходами электронов. [c.79]

    П, Д. Данков применил более тонкий электронографический метод исследования. Благодаря тому, что электроны не проникают внутрь металла, а рассеиваются поверхностными слоями, этот метод позволяет получить представление о состоянии поверхностного слоя. Электронограммы показали явное различие между строением поверхностей активного и пассивного металлов. В частности, было установлено, что при пассивировании йикеля на нем образуется NiO, железа-у-РеаОз, алюминия — AI2O3. Толщина окисных слоев составляет всего несколько десятков ангстрем. [c.636]

    Наличие пленки как причины пассивности не выс-ывает сомнений, Однако существуют различные взгляды на строение и действие этой пленки. Наиболее распространенным является. представление о сплошной пленке, полностью экранирующей поверхность и тем самым изолирующей металл от внешней среды. Ионы металла и электроны медленно диффун .ируют через пленку, а потому скорость взаимодействия делается очень малой и лимитируется скоростью диффузии. В ряде случаев образование таких сплошных пленок доказано (АЬОз), и для этих случаев механическая теория пассивирующего дейсгвия правильна. [c.637]

    В. К. Опарой, Н. И. Медведевой и Г. В. Левенковой на кафедре коррозии металлов МИСиС, получена сложная кривая с двумя максимумами (рис. 94), первый из которых с повышением температуры окисления смещается в область более низких значений ро, с примерно неизменяющейся максимальной скоростью окисления меди, а второй существенно увеличивается с повышением температуры при неизменном критическом давлении ро, = 16 мм рт. ст. Наступление высокотемпературной пассивности при первом максимуме может быть обусловлено взаимодействием дефектов в окисле СпаО с образованием устд-йчивых комплексов типа /СиЦ /Си2 /СиЦ7, что приводит к уменьшению эффективной концентрации катионных вакансий и электронных дырок в окисле, а это в свою очередь ведет к уменьшению скорости окисления вследствие торможения процесса Си —> Си +е. При дальнейшем увеличении ро, объединение дефектов в упорядоченные агрегаты облегчает появление новой фазы СиО и усиление окислительного действия [c.134]

    Теория электронных конфигураций (Рассел, Улиг) связывает большую легкость возникновения пассивного состояния с неукомплектованностью электронами внутренних оболочек переходных металлов, занимающих средние участки больших периодов периодической системы элементов — Сг, Ni, Со, Ре, Мо, W, имеющих незаполненные d-уровни в металлическом состоянии. [c.309]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    В пассивном состоянии электродный потенциал алюминия облагораживается. Так, нормальный равновесный потенциал алюминия равен — 1,67В, а в 0,5 н. МаС1 его потенциал становится равным —0,57 В, т. е. сдвигается в положительную сторону более чем на 1 В. Удаление окисной пленки зачисткой уменьшает потенциал до —1,221 В. Пассивная пленка большей частью состоит из А12О3 или ЛЬОз-пНаО и имеет в зависимости от условий образования толщину от 5 до 100 нм. Однако состав пленки может быть также другим в зависимости от веществ, содержащихся в окислителе. Толщина защитной пленки неодинакова, и в ней имеются поры. В порах протекает анодный процесс растворения алюминия, а катодный процесс протекает на тонких участках пленки, порядка 5—10 нм, которые обладают достаточно малым электрическим сопротивлением. Участки пленки большей толщины практически совсем не пропускают ни ионов алюминия, ни электронов, поэтому эти участки изолируют металл от внешней среды. Обычно поры составляют. малую часть всей поверхности, в связи с этим в гальванической паре пленка— пора алюминий в порах значительно поляризуется. При этом установившийся стационарный потенциал существенно отличается от нормального. [c.54]

    Это справедливо, когда металлы после травления находятся на воздухе. Если их шлифуют, лойальные высокие температуры, возникающие на поверхности, приводят к образованию заметных количеств оксида, но это не пассивная пленка. Для обнаружения адсорбционных пленок, в том числе и пассивирующих, используют метод дифракции медленных электронов. — Примеч. авт. [c.80]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    Электронная конфигурация сплавов, состоящих из двух и более переходных металлов, и их пассивация не столь хорошо изучены, как в случае медно-никелевых систем тем не менее можно принять несколько полезных упрощающих допущений. Например, принимают, что наиболее пассивный компонент сплава является акцептором электронов, стремясь заимствовать электроны у менее пассивного компонента. Следовательно, в нержавеющих сталях -электронные вакансии хрома заполняются электронами, заимствованными от атомов железа [461. При критическом составе сплава (менее 12 % Сг) все вакансии хрома заполнёны, и коррозионное поведение сплава подобно поведению железа. При содержании Сг выше 12 % его -электронные вакансии не заполнены и сплав по коррозионному поведению подобер хрому. [c.97]

    При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии -уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены -уровни. [c.98]

    Пассивность пиридина в реакциях электрофильного замещения обусловлена тем, что реакции этого типа обычно протекают в сильнокислой среде, а у атома азота пиридина имеется неподеленная пара р-электронов, не входящая в ароматическую систему. Поэтому в условиях проведения реакций сначала происходит протонирование атома азота с образованием солей пи-ридиния, что приводит к еще большему уменьшению электронной плотности в ароматическом кольце. [c.354]

    Рост пленок, обладаюш их низкой электронной проводимостью, но относительно хорошо растворяюш ихся в электролите, протека.ет при значительно более низких напряжениях. Примером такого процесса может слуншть оксидирование алюминия в серной, хромовой или щавелевой кислотах. При оксидировании на поверхности алюминия вначале образуется тонкая пассивная пленка AI2O3 — барьерный слой. Образовавшийся в начальный момент барьерный слой начинает растворяться на отдельных участках. В результате сплошная пленка превращается в пористую. Плотная часть пленки непрерывно [)астет, причем рост происходит с ее внутренней стороны. Под воздействием электролита пленка с наружной поверхности и отчасти в порах (с боковой их поверхности) непрерывно растворяется, что в итоге ограничивает ее рост в TOJUUHHy. [c.369]

    Наличие пассивных пленок, образующихся в атмосфере иа поверхности таких металлов, как алюминий, титан, хром, никель, значительно повышает их коррозионную стойкость. Защитная способность этих пленок зависит от их сплошности и электронной проводимости. Пассивные пленки наносят искусственно на такие металлы, как алюминий, железо ( воронение железа), медь, магний. Такие искусственно созданные пленки по сравнению с пленками, образующимися в естественных условиях, имеют значительно большую толщину и обладают большей механической и противокоррозионной стойкостью. При нарушении сплошности пассивных пленок, обладающих электронной проводимостью, в их поры (трещины) может попасть влага. В результате образуется мккрогальвано-элемент металл —пленка (рис. 89). Пленка играет роль катода, ускоряя коррозию. Поэтому после формирования пленок металл обрабатывают в специальных средах. Например, оксидированное ( вороненое ) железо обрабатывают в минеральном [c.374]

    Из рассмотрения электронных конфигураций атомов видно, что элементы УША-группы (Не, Не, Аг и др.) имеют завершенные и / -подуровни одновременно (5 р ), такие конфигурации обладают высокой устойчивостью и обеспечивают химическую пассивность, благородных газов. В атомах остальш,1х элементов внешние 5- и /1-подуровни-незавершенные, они и показаны в сокращенных электронных конфигурациях, например 17С1 = [1(,Не]3. 3/1 (символ благородного газа отвечает сумме заполненных предыдущих подуровней, т.е. юНе = 15 25 2/ ). Незавершенные подуровни и электроны на них иначе называются валентными, так как именно они могут участвовать в образовании химических связей между атомами. [c.38]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]

    Проявление свободными металлами только восстановительных свойств объясняется способностью их атомов терять полностью или частично валентные электроны. При этом образуются ионные связи или ковалентные полярные связи в соединениях, где атомы металлов имеют положительные значения о. ч. Восстановительная активность металлов проявляется по-разному. Мера ее для свободных атомов металлов — потенциал ионизации / (гл. II, 2), а в водных растворах— электродный потенциал ф (см. гл. VIII, 1). Самыми энергичными восстановителями в соответствии со значениями / и ф являются щелочные металлы, самыми пассивными — переходные металлы VI периода. [c.181]

    К этой же категории окислителей относятся вещества, содержащие катионы металлов, внешние электронные слои которых лишены валентных электронов. Однако катионы активных металлов (Na , К, Са , А1 и др.) весьма слабо проявляют себя окислителями. Поэтому восстановить их удается преимущественно из расплавов оксидов, гидроксидов, солей катодным действием тока и действием еще более активных металлов. В отличие от упомянутых катионы пассивных металлов (В1 , Аи , Си , Hg + и др.) восстанавливаются довольно легко. 0 свойство их используется в качественном анализе, для металлизации поверхностей и в других целях. Например, технология изготовления печатных схем офсетноэлектрохимическим методом включает процесс химического меднения плат, который основан на способности Си восстанавливаться из растворов комплексных солей при действии формальдегида. [c.182]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]


Смотреть страницы где упоминается термин Электроны пассивные: [c.133]    [c.310]    [c.310]    [c.310]    [c.94]    [c.249]    [c.314]   
Метод молекулярных орбиталей (1980) -- [ c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2025 chem21.info Реклама на сайте