Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппаратура, применяемая в хроматографии

    В качестве примера приведем такие задания, как крекинг нефти, гидрогенизация жиров, алкилирование бензола и др. Студент получает сырую ефть, характеристику которой он должен определить. Затем следует разгонка иа фракции и характеристика нужной фракции й, групповой состав и др.). Следующим этапом является сборка аппаратуры для крекинга и приготовление катализатора. Сам процесс проводится в различных условиях (температура, объемная скорость и др.), чтобы найти оптимальные условия. Продукты реакции анализируются газы — на содержание непредельных углеводородов, жидкость — на содержание эро- матики, нафтенов и др. Для выделения ароматических углеводородов применяется хроматография. Таким образом, студент получает возможность ознакомиться со всеми методами исследования и в случае необходимости градуирует термопару и применяет электронные регулирующие приборы. После введения такого порядка прохождения практикума интерес студентов к курсу химической технологии очень повысился и вопросы катализа заняли большее место. [c.214]


    Для данной колонки можно считать объем неподвижной жидкости Уь (в более общем плане —неподвижной фазы) постоянным. Для того чтобы У н изменялся в приемлемых пределах, коэффициент распределения должен также находиться в некоторой определенной области значений. Если бы колонки использовались лишь при комнатной температуре, газовую хроматографию можно было бы применять для анализа ограниченного набора веществ. Однако число анализируемых веществ можно значительно расширить, воспользовавшись сильной температурной зависимостью коэффициента распределения. Температуру колонки нужно довести до такого значения, при котором коэффициенты распределения исследуемых веществ находятся в пределах, необходимых для осуществления газохроматографического разделения. Так как температуру колонки обычно варьируют от 20 до 300 °С (хотя, разумеется, температурные границы могут смещаться вверх и вниз в зависимости от применяемой аппаратуры), газовая хроматография представляет чрезвычайно широкое поле для различных практических применений. Установлено эмпирическое правило, согласно которому методом газовой хроматографии при заданной температуре можно исследовать все вещества с температурами кипения, отличными от температуры колонки не более чем на +60 К. [c.97]

    Аппаратура для хроматографии в потоке конденсирующихся газов мало отличается от обычных приборов. Такие газы, как аммиак, сернистый ангидрид, фреоны, шестифтористая сера, могут применяться в приборах с пламенно-ионизационным детектором [c.167]

    Состав элюента в жидкостной хроматографии имеет решающее значение. Проводя элюирование смесями различного состава, можно за короткое время элюировать из колонки в виде острых хорошо разделенных пиков не только легко элюируемые выбранным элюентом соединения, но и те компоненты пробы, которые таким элюентом постоянного состава элюировались бы с трудом. Градиентное элюирование позволяет значительно сократить продолжительность анализа и существенно улучшить его чувствительность. Разумеется, разрешение в большинстве случаев становится хуже. Все эти вопросы подробно обсуждаются в разд. VI.3.4, здесь же мы только рассмотрим, какая аппаратура применяется при градиентном элюировании. [c.57]

    Какую аппаратуру применяют в хроматографии  [c.139]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]


    Ввод пробы. В жидкостной хроматографии процесс идет в аппаратуре под давлением. Поэтому ввод пробы представляет собой довольно сложную операцию. Старые способы ввода пробы, при которых проба вводилась непосредственно в верхнюю часть насадки с остановкой потока элюента, в настоящее время не применяются. Проба вводится в систему без остановки потока и без снятия давления в системе. Существует два способа ввода посредством шприца и при помощи крана. [c.84]

    В ионообменной хроматографии применяют аппаратуру, аналогичную применяемой в жидкостно-адсорбционной хроматографии. [c.119]

    Это так называемая тонкослойная хроматография, получившая за последнее десятилетие широкое применение в химии и особенно Б биохимии благодаря значительно большей скорости выполнения анализа в сравнении с бумажной хроматографией. Вид хроматограммы и техника выполнения при этом аналогичны. Преимущество тонкослойной хроматографии перед бумажной, кроме значительно большей скорости анализа, состоит в значительно меньших размерах аппаратуры и Б возможности разделения примерно на порядок больших количеств смесей без существенного ухудшения качества разделения. Это преимущество позволяет применять тонкослойную хроматографию как препаративный метод выделения индивидуальных продуктов из сложной смеси в чистом виде с целью дальнейшего их исследования другими методами. [c.11]

    К сравнительно медленным реакциям со временем полупревращения порядка получаса и более можно применять спектроскопию, масс-спектрометрию и хроматографию. Для исследования скоростей очень быстрых реакций (с периодом полупревращения до 10- и даже 10 с) используются специально разработанные методы и особая аппаратура. [c.329]

    Применение колоночной распределительной хроматографии. Успехи, достигнутые в развитии современной жидкостной распределительной хроматографии, позволяют решать различные аналитические задачи. Ранее этот метод использовался редко, так как из-за малой эффективности колонок значительно увеличивалась длительность анализа, что способствовало сильному разбавлению образцов подвижной фазой. Эти недостатки, а также отсутствие эффективной аппаратуры препятствовали распространению метода. В последнее время в этой области достигнуты значительные успехи, и метод колоночной распределительной хроматографии стал применяться как стандартный при решении [c.68]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    Наконец, идентификацию первичных аминогрупп по методу ван Слайка можно значительно упростить, применяя газовую хроматографию (Гофман и Лысый, 1962). Решающим преимуществом газохроматографического метода по сравнению с волюмометрическим определением азота является то, что нет необходимости в проблематичном до сегодняшнего дня отделении окислов азота и в применяемой для этого аппаратуре. К пробе, помещенной в закрытый реакционный сосуд, который может быть присоединен к газохроматографической аппаратуре, добавляют азотистую кислоту. При этом газо- [c.254]

    Из культуральной жидкости витамин В12 вьщеляют экстракцией органическими растворителями, ионообменной хроматографией с последующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды. Усовершенствование технологического процесса идет в направлении удешевления компонентов питательных сред (замена глюкозы сульфитными щелоками) и перехода с периодического куль- [c.55]


    Крэг [6] показал, что диализ можно использовать и для фракционирования веществ. Для этой цели он применял маленькие приборчики, сходные с аппаратурой, применяемой для противоточного распределения (см. гл. XVI). Подбором мембран с соответствующим размером пор можно добиться очень хорошего разделения высокомолекулярных веществ. Однако в последнее время эта техника вытесняется методом хроматографии на колонках, наполненных сефадексом (см. ниже). [c.199]

    В остальном оборудование, необходимое для проточной хроматографии, не отличается от аппаратуры, применяемой при хроматографировании по методу Цвета. Для отбора элюата применяют колбы с пришлифованными пробками, из которых непосредственно можно отгонять растворители. Практически достаточно иметь две колбы — в одну отбирается элюат, в то время как из другой отгоняется растворитель. [c.363]

    Для проведения вытеснительной хроматографии необходима такая же сложная аппаратура, как и для фронтального анализа (стр. 369). При вытеснительной хроматографии легче, однако, добиться полного разделения компонентов смеси, благодаря чему ее можно использовать и для препаративного разделения. Методику, разработанную Тизелиусом, редко используют для препаративных целей, так как изотермы адсорбции компонентов смеси, как правило, не известны. Другой недостаток этого метода состоит в том, что нужно точно отделять очень близко расположенные адсорбционные зоны. Поэтому в данном случае необходимо применять более точные методы обнаружения, чем, например, при непрерывной элюционной хроматографии. [c.372]

    Большинство классов аппаратуры, используемой в лабораторных условиях, могут применяться и для промышленных измерений, однако они не удовлетворяют тем жестким требованиям, которые предъявляются к промышленным анализаторам. В качестве примеров можно привести абсорбционные спектрометры (для видимого, УФ- и ИК-диапазонов), рентгенофлуоресцентные спектрометры, а также газовые и жидкостные хроматографы. Зондовые сенсоры представлены рН-зондами, окислительно-восстановительными зондами (ОВЗ) и оптоволоконными датчиками. Последние разрабатываются для абсорбционных или люминесцентных измерений. [c.654]

    Для отбора проб вытекающего из колонки раствора применяют специальную аппаратуру [12]. Как правило, в ионообменной хроматографии колонку заполняют и промывают сверху. При этом особо важно соблюдать строгую вертикальность колонки, равномерность набивки и отсутствие пылевых и воздушных подушек в слое ионита. [c.81]

    Хотя вычисленную таким образом величину можно применять для целей идентификации с помощью соответствующих таблиц, возникают существенные трудности при их составлении, а главное, при определении Уна стандартной хроматографической аппаратуре. Как видно из записанных формул, надо с большой точностью измерять расход элюента и температуру, давление на входе и выходе колонки, знать массу сорбента в колонке. Большинство стандартных аналитических хроматографов не имеет некоторых необходимых измерительных приборов, например точных манометров непосредственно на входе и выходе колонки, а термостат колонок может обладать значительными температурными градиентами, в результате чего измеряемая температура может несколько отличаться от эффективной. Не всегда можно точно установить и массу сорбента в колонке. Поэтому абсолютными величинами удерживания пользуются преимущественно при определении физико-химических констант, характеризующих адсорбцию и растворение, при этом измерения [c.51]

    Предлагаемые практические работы в подавляющем большинстве рассчитаны на использование хроматографов ЦВЕТ Дзержинского ОКБА. Однако можно применять и другие газовые хроматографы, не уступающие по своим возможностям рекомендуемым (например, современные модели приборов МПО Манометр ). Успешное выполнение практической работы предполагает обязательное усвоение теоретического материала в объеме программы лекционного курса по газожидкостной хроматографии, ознакомление с аппаратурой и неукоснительное соблюдение правил ее эксплуатации. Лишь при выполнении этих условий студенты не выйдут за рамки отпущенного им лимита времени (6-8 часов на каждую работу), а к концу практикума смогут приобрести необходимые навыки по проведению типовых хроматографических анализов. [c.119]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Элемент для измерения теплопроводности широко применяется не только в хроматографии, но и в промышленных целях. Аппаратура для измерения теплопроводности относительно проста, не имеет дви- [c.264]

    Весьма перспективным является сочетание ИКС с хроматографией, с помощью которой можно сравнительно легко и точно произвести предварительное разделение компонент смеси. Значительные трудности при прецизионных анализах представляет также учет искажений спектров, связанных с влиянием аппаратуры. Несмотря на подобные ограничения, молекулярный спектральный анализ по ИКС с большим успехом применяется в аналитической химии. Достаточно полный обзор различных методов анализа можно найти в монографии Кесслера [3]. [c.170]

    Для проявительного разделения на адсорбционной колонке — старейшего метода хроматографии — используется простейшая аппаратура. Адсорбент обычно помещают в стеклянную трубку с внутренним диаметром от нескольких миллиметров до нескольких сантиметров и рабочей высотой от 5 до 25 диаметров. Применяют также металлические и пластмассовые трубки [26]. Адсорбент удерживается в трубке пористой диафрагмой. Способ удерживания зависит от метода применения колонки. Если адсорбент необходимо выдавливать для того, чтобы его можно было разрезать на зоны, то лучше использовать подвижную плоскую диафрагму, удерживаемую на маленьких выступах или на небольшом сужении внутри трубки. На рис. 152, б схематически показаны типичные нижние части колонок. Применяют также трубки такого типа с небольшим конусом, что при наличии стеклянного шлифа облегчает выдавливание адсорбента. Если разделенный на фракции образец нужно собрать полностью, то нижнюю часть трубки можно сузить или соединить с короткой трубкой меньшего диаметра [c.310]

    Потери в-ва в препаративных колоннах малы, что позволяет широко использ. ПХ для разделения небольших кол-в сложных синт. и прир. смесей. Газовая ПХ использ. для получ. чистых углеводородов, спиртов, карбоновых к-т и др. орг. соед. (в т. ч. хлорсодержащих), жидкостная — для получ. лек. ср-в, полимеров с узким молекулярно-массовым распределением, аминокислот, белков и др. вСакоды некий К. И., Волков С. А., Препаративная газовая хроматография. М., 1972. К. И. Сакодынский. ХРОМАТОГРАФИЯ ПРОМЫШЛЕННАЯ, включает разработку и примен. хроматографич. методов и аппаратуры (пром. хроматографов) для контроля и автоматизации производств. процессов и науч. исследований. В отличие от лаб. хроматографов промышленные могут работать в автоматич. режиме во взрывоопасных условиях непрерывно в течение [c.669]

    СакодынскиЗ К. И., Волков С. А., Препаративная газовая хроматография. М., 1972. К. И. СакодынааА ХРОМАТОГРАФИЯ ПРОМЫШЛЕННАЯ, включает раэ-работку и примен. хроматографич. методов и аппаратуры (пром. хроматографов) для контроля и автоматизации производств. процессов и науч. исследований. В отличие от лаб. хроматографов промьппленные могут работать в автоматич режиме во взрывоопасных условиях непрерывно в течение [c.669]

    Было найдено, что при исследованиях методом газовой хроматографии анализируемые компоненты удобно разделить на две группы первая включает кислород, закись азота, двуокись углерода и вторая — эфир, галотан, хлороформ, трихлорэтилен. Предварительная работа проводилась с адсорбционными колонками, однако скоро стало очевидным, что в связи с большей воспроизводимостью данных и более короткими временами удерживания желательно применение распределительных колонок. Оказалось, что лучшей колонкой для разделения смеси кислорода, закиси азота и двуокиси углерода является колонка длиной 6,1 ж и внутренним диаметром 6,3 мм, заполненная огнеупорным кирпичом (силосел, фракция 52—60 меш, свободная от тонких частиц) последний пропитывается диметил сульфоксидом в количестве 20% по весу. Некоторые газы — двуокись серы, аммиак, ацетилен, двуокись углерода, закись азота — хорошо растворяются в диметилсульфоксиде, тогда как для большинства газов, включая кислород и азот, растворимость в нем ничтожна. Колонка работает при комнатной температуре (20°), объем пробы может составлять 3 мл. Обычно в качестве газа-носителя используется водород, скорость потока которого равна 30 мл/мин. Если аппаратура применяется во время операции, то, чтобы устранить опасность взрыва, водород заменяют гелием. [c.442]

    В опытах применялся хроматограф для лотдкостей типа 0С012 с детектором по теплопроводности. Ток накала составляет 180 ма. В качестве регистрирующего аппарата применялся электронный компенсационный самописец со шкалой 2 мв завода измерительной аппаратуры и арматуры в Магдебурге. Скорость ленты подбиралась каждый раз по времени пребывания пробы в колонне (соответственно 600 или 200 м/ч). В качестве газа-носителя применялся технический водород, который подавался в колонну через вентиль тонкой регулировки. Проба вводилась при помощи микродозирующего устройства, причем для быстрого испарения ее применялся электрический обогрев. Количество вводимой пробы составляло 5 мкл. [c.182]

    Аппаратура и методика работы. Авторы применяли хроматограф, система ввода пробы на котором отличалась от описанной ранееНа рис. 1 представлена схема камеры для пиролиза, применявшейся при проведении эксперимента. С целью равномерного воздействия температуры на образец, предупреждения разбрызгивания при разложении, а также для количественного определения остатка 2—3 мг образца помещали во взвешенную лодочку из высококремнистого стекла Вайкор (наружный диаметр 3 мм, высота 4 м.м). Этот материал был выбран для предупреждения реакций разложения, которые могут катализироваться самим материалом лодочки. Вокруг лодочки наматывали в виде катушки платиновую нагревательную проволоку калибра № 34 с общим сопротивлением 0,2 ом. Концы катушки соединяли серебряным припоем с двумя медными проводниками, подсоединенными [c.233]

    Описана [1222] печь для пиролиза, позволяющая получать хорощо воспроизводимые количественные результаты для любых полимерных образцов. Эту аппаратуру применяли для исследования распределения двойных звеньев в сополимерах акрилонитрила с ж-хлорстиролом, акрилонитрила с /г-хлорсти-роотом, хлорстирола со стиролом, метилакрилата со стиролохм и акрилонитрила со стиролом. Методом пиролитической газовой хроматографии проведено [1223] определение содержания акрилонитрила в сополимерах со стиролом и метилметакрилатом с ошибкой примерно 2,2%. Этим же методом определяли содержание связанного метилметакрилата в метилметакрилат-бутадиеи-стирольном сополимере [1224]. [c.285]

    Перечисленные варианты ТСХ следует оценивать прежде всего с точки зрения целесообразности их применения для решения той или иной задачи. Если разделение смеси возможно несколькими методами, то следует выбрать тот из них, который позволит провести эксперимент наиболее быстро и с применением более простой аппаратуры. Для прицелочных опытов наиболее целесообразно применять круговую хроматографию, для решения сравнительно простых задач — восходящую хроматографию. И только в случае трудноразделяемых или многокомпонентных смесей применяют более сложную методику, в том числе градиентную хроматографию. [c.128]

    Принцип метода. Распределительная колоночная хроматография, называемая также жидкожидкостной хроматографией (ЖЖХ), получила признание как эффективный метод разделения с 1941 г., когда она была предложена А. Мартином и Р. Синджем. Однако для аналитических целей этот метод применяется реже, чем методы газовой, тонкослойной или бумажной хроматографии. После усовершенствования изготовления колонок и разработки более современной хроматографической аппаратуры возродился интерес к этому методу. [c.62]

    Хроматография на бумаге, под ред. И. Хайса, К. Мацека, пер. с чешек., М., 1962 В а р ш а л Г. М., Журнал аналитической химии , 1972, т. 27, в. 5, с. 904 — 22. Г. М. Варишл. ХРОМАТОГРАФИЯ ПРЕПАРАТИВНАЯ (ПХ), включает разработку и примен. хроматографич. методов и аппаратуры для получ. чистых в-в (содержащих ые более 0,1% примесей). Особенность ПХ — использ. хроматографич. колони большого диам. (1—30 см) и спец. устр-в для выделения и сбора компонентов. В лабораториях на колонках диам. [c.669]

    В пром. хроматографах примен. метод проявительной газовой хроматографии разделение осуществляют обычно в эффективных заполненных сорбентом колонках малого диаметра, обеспечивающих экспрессность анализа, высокую степень разделення, малое потребление газа-носителя и позволяющих создать компактную аппаратуру. Прн этом колонки работают преим. в изотермич. режиме. Особенность методик разделения состоит в том, что примен. несколько соединенных между собой колонок, автоматически переключаемых в ходе анализа. Использование в колонках разных сорбентов и переключение газовых потоков позволяет создать оптим. условия разделения отд. групп компонентов и благодаря этому анализировать смеси, кипящие в широком интервале т-р, а также существенно сократить продолжительность анализа. [c.669]

    Газо-жидкостная хроматография является очень гибким и перспективным методом, область применения которого значительно шире газо-адсорбционного. Он успешно применяется для разделения вы-сококипящих веществ, к которым относится большинство углеводородов. Дальнейшее изложение материала в основном базируется на газо-адсорбцнонной хроматографии. Однако то, что касается основных элементов аппаратуры н методики проведения анализа, применимо и к газо-жидкостной хроматографии. При этом следует иметь в виду, что метод газо-жидкостной хроматографии позволяет анализировать не только газы, но и жидкости. Поэтому для анализа жидких смесей могут применяться только приборы, снабженные, приспособлением для испарения введенных в колонку жидкостей и устройством для поддержания температуры колонки и детектора на уровне, исключающем конденсацию паров жидких компонентов анализируемой смеси. [c.94]

    Для разделения смеси соединений, характеризующихся широким интервалом т-р кипения, применяют газовую хроматографию с программированием температуры, когда в процессе хроматографирования в заданные промежутки времени повышают т-ру колонки со скоростью от неск. °С/мин до неск. десятков С/мин. Это создает дополнит, возможности расширения области применения ГХ (сравни хроматограммы иа рис.). Для улучшения разделения таких смесей используют также программирование скорости газового потока. При давл. 0,1-2,5 МПа роль газа-носителя сводится в осн. к перемещению исследуемых соед. вдоль колонки. Повышение давления приводит к изменению распределения в-в между подвижной и неподвижной фазами хроматографич. подвижность многих в-в увеличивается. ГХ при давлениях газа 10-50 МПа обладает рядом преимуществ по сравнению с жидкостной хроматографией 1) возможностью целенаправленного изменения объемов удерживания разделяемых соед. путем изменения давления в ширюких пределах 2) экспрессностью анализа вследствие меиьшей вязкости подвижной фазы и большего значения коэф. диффузии 3) возможностью использования универсальных высокочувствит. детекторов. Однако сложность аппаратуры и техники работы при повыш. давлении ограничивает широкое распространение этого метода. [c.468]

    В аналитической химии брома применяют газовую и газожидкостную хроматографию. В первой из них пользуются твердыми сорбентами, во второй — нелетучим, так называемым неподвиж-пым, растворителем, нанесенным на поверхность зерен неактивного носителя, заполняющего колонку. Анализируемую смесь в количестве нескольких микролитров вводят через самоуплотняющуюся диафрагму в обогреваемый испаритель, и образовавшиеся пары переносятся потоком инертного газа-носителя (Аг, Не, Hj, Ng) в верхнюю часть колонки с сорбентом. Перемещаясь по высоте слоя, смесь делится па компоненты, которые попадают в детектор, преобразующий изменения концентрации в потоке в электрические сигналы, регистрируемые самопишущим потенциометром. Узлы хроматографа, соприкасающиеся с анализируемой смесью в случае непосредственного определения галогенов или их водородных соединений, должны быть изготовлены из коррозионноустойчивого материала, чаще всего из стекла. Это требование отпадает, если анализ ведут методами реакционной хроматографии, сочетающими химическое превращение этих компонентов реакционной смеси с хроматографическим разделением полученных менее активных продуктов. Органические бромпроизводные обычно определяют непосредственно в типовой хроматографической аппаратуре, но иногда они подвергаются химическим изменениям до или после разделения на колонке. [c.141]

    В то же время простота аппаратуры и быстрота определений летучих соединений различных металлов методом газовой хроматографии могут оказать значительную помощь в производстве редких элементов. Так, например, метод газовой хроматографии мон ет использоваться в качестве контроля при ректификационном разделении хлоридов некоторых металлов. В то же время можно ожидать, что использование принципов газовой хроматографии сможет привести к препаративному (а для ряда элементов, возможно, и к промышленному) получению весьма чистых соединений, в частности галидов, сумма примесей в которых не будет превышать 10 —10 % после одного цикла очистки. По-видимому, применяя методы обогащения и рециклы (повторение циклов очистки), указанное количество примесей можно будет снизить на несколько порядков. Как пзвестно, получение соединений такой высокой степени чистоты само по себе представляет известный интерес. [c.238]

    Хроматография иа бумаге, под ред. И. Хайса, К. Мацека, пер. о чешек.. М., 1962 В а р ш а л Г. М., Журнал аналитической химии , 1972, т. 27, в. 5, с. 904— 22. Г. М. Вариюл. ХРОМАТОГРАФИЯ ПРЕПАРАТИВНАЯ (ПХ), включает разработку и примен. хроматографич. методов и аппаратуры для получ. чистых в-в (содержащих не более 0,1% примесей). Особенность ПХ — использ. хроматографич. колонн ба гьшого диам. (1—30 см) и спец. устр-в для выделения и сбора компонентов. В лабораториях на колонках диам. 8—15 мм выделяют 0,1—10 г в-ва, на полупромышленных установках с колоннами диам. 10—20 см — неск. кг. Созданы уникальные пром. приборы с колоннами диам. ок. 0,5 м для получ. неск. т в-ва. [c.669]


Смотреть страницы где упоминается термин Аппаратура, применяемая в хроматографии: [c.113]    [c.112]    [c.187]    [c.172]    [c.73]    [c.136]    [c.121]    [c.7]    [c.284]   
Смотреть главы в:

Основы аналитической химии -> Аппаратура, применяемая в хроматографии

Основы аналитической химии Кн 3 Издание 2 -> Аппаратура, применяемая в хроматографии




ПОИСК







© 2025 chem21.info Реклама на сайте