Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия в растворах электролитов и ионитах

    Каково должно быть соотношение концентраций ионов металла в растворах, один из которых содержит только ионы металла, а второй — ионы того же металла и индифферентный электролит, чтобы предельные токи диффузии при осаждении металла в этих электролитах были одинаковы . Коэффициенты диффузии ионов и толщину диффузионного слоя в этих растворах считать одинаковыми. [c.107]


    Доставка исходных веществ к поверхности электрода и отвод продуктов реакции могут осуществляться тремя путями миграцией, молекулярной диффузией и конвекцией. Миграция представляет собой передвижение ионов под действием градиента электрического поля, возникающего в электролите при прохождении тока. Молекулярная диффузия представляет собой перемещение частиц под действием градиента концентрации, возникающего в растворе при его качественной или количественной неоднородности. Конвекция представляет собой перенесение частиц растворенного вещества вместе с потоком движущейся жидкости, например при перемешивании. Отклонение потенциала под током от равновесного значения, вызванное замедленностью доставки и отвода участников реакции, называют концентрационной поляризацией. Концентрационная поляризация имеет важное значение для окислительно-восстановитель-ных процессов и меньшее значение — для разряда простых металлических ионов. Концентрационная поляризация не единственная причина отклонения потенциала электрода под током от его равновесного значения. Обычно изменение потенциала при наложении тока оказывается больше, чем концентрационная поляризация. Это является следствием торможения на стадии присоединения или отдачи электронов. Поляризация, вызванная замедленностью разряда или ионизации при протекании электрохимической реакции, называется химической поляризацией. Химическую поляризацию называют также перенапряжением. [c.204]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    Принцип работы электродиализатора прост. При прохождении постоянного тока через электролит ионы движутся, в зависимости от знака, к электродам — катоду и аноду. Катодное пространство обогащается катионами, но разряжаться на поверхности катода (на границе металл—раствор) будет тот катион, который имеет более положительный потенциал при данных условиях электролиза. Анодное пространство будет обогащаться анионами. Для предотвращения диффузии ионов в направлениях, обратных движению, которое они совершают под действием электрического тока, катодное и анодное пространства разделяются диафрагмами. Если для этой цели применять обычные инертные диафрагмы (керамика, асбест и др.), электропроводность которых определяется их пористостью и электропроводностью электролита, заполняющего поры диафрагмы, то ванны (ячейки) электродиализатора будут иметь большие омические сопротивления, что повлечет за собой значительные затраты электроэнергии. Кроме того, такие диафрагмы в малой степени препятствуют обратной диффузии ионов, и поэтому обогащение последними католита и анолита будет получаться не более чем в 10 раз. [c.174]

    Саморазряд может вызываться присутствием в электролите ионов более положительных металлов, чем металл электрода. В этом случае более благородный металл выделяется на электроде. Возникает местная пара — короткозамкнутый элемент, работа которого сопровождается дальнейшим растворением электрода. Присутствие в растворе или в металле, из которого сделан электрод, самых незначительных количеств упомянутых примесей более благородных металлов может привести к полному саморазряду элемента. К этой же группе явлений следует отнести диффузию в анодное пространство катионов, одноименных с металлом положительного электрода, например диффузию меди к цинку в медно-цинковом элементе. [c.35]

    Рассмотрим теперь некоторые простейшие примеры, когда уравнения диффузионной кинетики могут быть точно решены. Существенное упрощение достигается, если отсутствуют миграция и конвекция, а диффузия происходит в стационарных условиях, т. е. в условиях, когда распределение концентрации у поверхности электрода не зависит от времени с1(И=0. Миграцию можно исключить, если добавить в раствор избыток посторонней соли, ионы которой не участвуют в электродном процессе. Такой электролит называется индифферентным электролитом или электролитом фона. Чем выше концентрация фонового электролита, тем меньше сопротивление раствора и тем меньше при заданном I омическое падение потенциала в растворе, приводящее к явлениям миграции. [c.153]

    Положим, что электролизу в сосуде с постоянным сечением между анодом и катодом подвергается крепкий раствор поваренной соли, причем электролит остается неподвижным. На катоде образуются водород и щелочь, а на аноде хлор с небольшим количеством продуктов его взаимодействия с водой и некоторое количество кислоты от разряда ионов ОН. Допустим, что выделение водорода и хлора на электродах не создает перемешивания соседних частей электролита. Тогда, вследствие молекулярной диффузии и движения ионов ОН, щелочь постепенно потечет от катода через раствор по направлению к аноду, а кислота и растворенный хлор подобным же образом будут распространяться от анода к катоду. [c.73]

    Диффузионным потенциалом называется разность потенциалов, возникающая на поверхности раздела между двумя растворами, различающимися или по виду растворенного вещества, или по его концентрации. Эти скачки потенциала невелики они обычно не превышают 0,03 в и могут уменьшаться до нуля. Причиной их служит различие в подвижностях и, следовательно, в скоростях диффузии ионов различного вида. Рассмотрим только простейший случай, когда соприкасающиеся растворы содержат один и тот же электролит и различаются только по его концентрации. Обратимся к цепи (ХП1, 26). [c.438]

    Влияние состава электролита, примесей и добавок к нему. На ход процесса электросинтеза существенное влияние оказывает концентрация раствора. Если концентрация раствора будет небольшой, а процесс будет осуществляться при больших плотностях тока для достижения высокого потенциала, то в приэлектродном слое из-за недостаточной диффузии ионов, подлежащих разряду, могут насту-.пить условия выделения водорода или кислорода на соответствующих электродах, что уменьшит выход по току необходимого продукта. Особенное влияние оказывает присутствие в электролите [c.137]

    Электрохимические цепи могут содержать несколько электролитов, границам раздела которых соответствуют гальвани-потенциалы, называемые фазовыми жидкостными потенциалами. Для двух растворов с одинаковым растворителем такой потенциал называется диффузионным. В месте контакта двух растворов электролита КА, отличающихся друг от друга концентрацией, происходит диффузия ионов из раствора 1, более концентрированного, в раствор 2, более разбавленный. Обычно скорости диффузии катионов и анионов различны. Допустим, что скорость диффузии катионов больше скорости диффузии анионов. За некоторый промежуток времени из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор 2 получит избыток положительных зарядов, а раствор —отрицательных. Поскольку растворы приобретают электрические заряды, то скорость диффузии катионов уменьшается, анионов увеличивается, и с течением времени эти скорости становятся одинаковыми. В стационарном состоянии электролит диффундирует как единое целое. При этом каждый раствор имеет заряд, и разность потенциалов, установившаяся между, растворами, соответствует диффузионному потенциалу. Расчет диффузионного потенциала в общем случае затруднителен. С учетом некоторых допущений Планком и Гендерсоном выведены формулы для расчета срд. Так, например, при контакте двух растворов одного и того же электролита с различной активностью (а > ап) [c.472]


    Какова будет связь между силой тока и напряжением в условиях концентрационной поляризации Очевидно, сила тока, идущего через электролит, определится числом ионов Ag+i которые могут диффундировать в единицу времени из объема раствора к электроду. В простейшем случае, когда процесс электролиза становится стационарным, поток ионов Я может быть вычислен по уравнению диффузии (см. гл. XIV) [c.196]

    Уравнение Ильковича справедливо только в том случае, когда раствор содержит какой-либо посторонний невосстанавливающийся электролит в большой концентрации. Предельный ток определяется суммарной скоростью движения ионов в результате диффузии (диффузионный ток) и вследствие электростатического притяжения ионов к электроду противоположного заряда (миграционный ток). Для количественного полярографического анализа важна только диффузионная составляющая предельного тока, которая и описывается уравнением Ильковича. Миграционный ток элиминируют, вводя в раствор посторонний невосстанавливающийся электролит (фон) с концентрацией, значительно превышающей концентрацию определяемого иона. Фоном обычно служит раствор хлорида калия, нитрата аммония и др. [c.490]

    Скорости электродных процессов рассматриваются обычно с применением тех же приемов, что и скорость химических реакций. Но при этом, однако, нужно иметь в виду сложность протекания большинства электрохимических превращений по сравнению с химическими, а также то, что решающая роль здесь принадлежит плотности тока . Процесс разряда ионов, как известно, происходит на фазовой границе электрод — электролит. Таким образом, электродные реакции являются гетерогенными процессами, кинетика которых определяется многими специфическими затруднениями. Помимо собственно разряда, т. е. перехода ионов из одной фазы (раствора) в другую (газ, металл), процесс обычно включает в себя миграцию, диффузию и конвекцию частиц, совместный разряд ионов примесей, некоторое растворение (коррозию) уже осажденного ранее металла и другие, сопутствующие процессу разряда явления, которые осложняют суммарный эффект. Реальная электрохимическая система не может быть правильно истолкована без учета всех явлений, предшествующих элементарному акту разряда и сопровождающих его. Электродная реакция может быть представлена рядом последовательных стадий, через которые она проходит. Такими стадиями являются  [c.240]

    Разряд малыми токами щелочно-цинкового источника тока с порошковым отрицательным электродом сопровождается повышением концентрации цинката в электролите до величин, при которых раствор начинает стареть с выпадением твердой оксидно-цинковой фазы Г31. При наличии сепаратора, разделяющего электродные пространства, повышение содержания цинката наблюдается в большей степени в анолите. Возникший градиент концентрации цинката между анолитом и като-литом приводит к диффузии ионов цинката через сепаратор в катодное пространство, где раствор подвергается ускоренному старению под воздействием положительных электродов. [c.41]

    Подвижности различных ионов электролита неодинаковы, поэтому при одном и том же градиенте концентрации скорости диффузии катионов и анионов различны. Вследствие этого при независимой диффузии на границе раздела растворов происходит пространственное разделение зарядов и появляется диффузионный потенциал фд. Возникшее электрическое поле выравнивает скорости движения ионов, и электролит диффундирует как одно целое, подобно недиссоциированной молекуле. [c.143]

    Саморазряд первичных серебряно-цинковых элементов происходит вследствие того, что низший окисел серебра АдзО растворяется в щелочном электролите, разрушает материал сепараторов и восстанавливается на цинковом электроде. Сепараторы теряют механическую прочность, в них появляется металлическое серебро, возникают внутренние межэлектродные замыкания. Появление серебра на цинковом электроде приводит к образованию местных коррозионных микроэлементов и газовыделению. Для замедления саморазряда в серебряно-цинковом элементе используют пленочные сепараторы, затрудняющие диффузию ионов серебра к отрицательному электроду. [c.39]

    Миграционный ток представляет собой вклад в диффузионный ток, вызванный дополнительной диффузией ионов деполяризатора к поверхности ртутной капли за счет электростатического притяжения. Для его устранения в состав исследуемого раствора вводят посторонний электролит (поддерживающий электролит, фон), который должен восстанавливаться в значительно более отрицательной области потенциалов. В органических растворах миграционный ток не возникает фоновый электролит добавляется для уменьшения электрического сопротивления раствора (повышения его электропроводности). [c.313]

    При недостаточном напряжении ток практически не идет через электролит, т. е. электролиза нет. После достижения определенного напряжения сила тока увеличивается и кривая зависимости от Е круто поднимается вверх. В результате электролиза концентрация восстанавливающихся ионов вблизи поверхности микрокатода уменьшается. При небольшой силе тока эта убыль ионов пополняется за счет диффузии ионов из других, более отдаленных от поверхности микрокатода частей раствора. Поэтому вначале при увеличении напряжения сила тока продолжает возрастать, и кривая поднимается. Однако по достижении некоторой силы тока выделение металла идет так быстро, что процесс диффузии не обеспечивает подхода к поверхности электрода достаточного количества ионов восстанавливающегося металла. Поэтому, несмотря на дальнейшее увеличение напряжения, сила тока будет оставаться без изменения кривая зависимости силы тока от приложенного напряжения образует характерный горизонтальный перегиб (рис. 93, а). Сила тока, соответствующая высоте 1 (высоте волны), называется предельным током. Если поставить опыт в тех [c.212]

    Этот факт приводит к весьма важному заключению. Если бы скорость переноса ионов за счет диффузии была бы достаточной для поддержания концентрации ионов этих металлов в приэлектродных слоях такой же, как и во всем объеме раствора, то концентрационной поляризации не наблюдалось бы. Следовательно, концентрационная поляризация есть следствие того, что перемещение ионов в электролите за счет диффузии является замедленной стадией электрохимического процесса. [c.243]

    Одиночные электролиты. Полностью ионизированный электролит в растворе (например, Na l в воде) состоит из положительно и отрицательно заряженных ионов. При наличии единственного электролита в растворе содержится по одному виду положительных и отрицательных ионов, причем во избежание возникновения очень сильных электрических полей концентрации обоих видов ионов должны быть практически равны во всех точках. Поэтому при диффузии электролита скорость диффузии катионов и анионов должна быть одинакова. Однако собственные коэффициенты диффузии каждого из них могут отличаться (например, в растворе НС1 ион обладает гораздо более высоким собственным коэффициентом диффузии, чем ион С1"). В результате тенденции к более быстрой диффузии одного из ионов возникает небольшое разделение зарядов, приводящее к градиенту потенциала, который замедляет ионы и ускоряет ионы 1 по сравнению со скоростями, с которыми они должны были бы диффундировать. При расчете действительного эффекта необходимо знать собственный коэффициент диффузии каждого иона, а также его подвижность, т. е. скорость миграции при градиенте потенциала единичной силы. Обе эти величины в действительности пропорциональны одна другой, т. е. [c.26]

    Полярограммы получают при условии, что анализируемый раствор содержит индифферентный электролит, ионы которого не окисляются и не восстанавливаются на рабочем электроде. Такой электролит называют полярографическим фоном. Концентрация фона должна быть в 50—100 раз больше концентрации определяемого вещества. За счет фона снижается сопротивление раствора и подавляется миграция ионов. Перенос электролизующихся ионов осуществляется в основном за счет диффузии, что упрощает процесс электролиза. В качестве индифферентных электролитов часто применяют соли щелочных металлов и тетраэтиламмония. [c.210]

    Гальваностатические катодные измерения с включением, выполненные Делахеем и Маттаксом на ртути в растворе Кз[Ре(СК)в] в 1М растворе КС1, также показали преимущественно перенапряжение диффузии. Так как вначале в электролите ионов [Fe( N)e] " не содержится совсем, но он накапливается вблизи электрода при протекании тока, то справедливо уравнение для перенапряжения диффузии [c.531]

    Показано, что предельный ток диффузии разряжающихся ионов и выход металла по току резко возрастают при повышении концентрации кадмия в растворе и при достаточном содержании кадмия ( 30 г/л), почти не зависят от концентрации общего и свободного цианида. В соответствии с этим наводороживание стали при кадмировании в цианидном электролите уменьшается при повышении концентрации кадмия и мало изменяется при увеличении концентрации цианида. [c.289]

    Си, так как рассматривается катод гый -процесс). Таким образом, градиент концентрации, определяющий скорость диффузии, равен (с о—Ск)/б. Наконец, в этой теории принимается, что концентрации и активности совпадают (хотя это предположение и не делалось ее авторами, поскольку в те годы еще не существовало понятия активности) и что числа нерепоса не зависят от состава раствора. Последнее допущение оправдывается лищь в случае растворов, содержащих бинарный электролит, подвижности ионов которого почти одинаковы. Основные положения теории диффузионного перенапряжения Нернста—Бруннера целесообразно рассмотреть поэтому на примере системы [c.304]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    Фон. Для того чтобы ионы определяемого вещества перемещались к индикаторному электроду только вследствие диффузии, а не за счет диффузии и электростатической силы притяжения (миграционный ток), в исследуемый раствор добавляют какой-либо индифферентный электролит с катионом, восстанавливающимся гораздо труднее анализируемого катиона, например K I, KNO3, NH4 I, при концентрации в 100— 1000 раз превышающей концентрацию определяемого вещества. Такой электролит называется фоном. [c.148]

    Наблюдения показывают, что ни ZnS04, ни медный стержень не являются обязательной составной частью подобного элемента. Металлическая медь осаждается на катоде из любого другого хорошего проводника, например на платиновой проволоке, а раствор сульфата цинка в анодном отделении можно заменить любой другой проводящей солью, которая не реагирует с цинковым анодом, как, например, хлорид натрия. Пористая перегородка оказывает значительное сопротивление диффузии ионов и поэтому создает довольно высокое электрическое сопротивление, препятствующее получению сильного тока от элемента. Лучший метод заключается в использовании соляного мостика, который представляет собой стеклянную U-образную трубку, содержащую какой-либо электролит типа KNO3, смешанный с агар-агаром или желатиной, чтобы удержать электролит в трубке (рис. 19-4,6). [c.164]

    В полярографии принимают меры по устранению конвективного (кроме особых, описанных далее случаев) и миграционного переносов. Для этого электролиз проводят в неперемешиваемом растворе в присутствии избытка так называемого фонового электролита, потенциалы восстановления п окисления ионов которого лежат вне области интересующих аналитика потенциалов. Этот электролит имеет концентрацию ikO,1 — 1,0 моль/л, намного превосходящую концентрацию электродноактивного вещества. При условии соблюдения этих мер единственным способом переноса электродноактивного вещества к границе раздела электрод — раствор оказывается диффузия. [c.274]

    Основными компонентами станнатных электролитов являются станнат N3280 (ОН)е и свободная щелочь. Олово в щелочном растворе может находиться в виде комплексного аниона в двухвалентном (станнит) состоянии 8п(ОН)2 и четырехвалентном (станнат) 5п(ОН) . Обычно в растворе преобладают четырехвалентные ионы. 5п(0Н) в отличие от 5п(0Н) восстанавливаются на катоде при незначительной поляризации и, следовательно, преимущественно перед ионами 5п(0Н) ". Поэтому, присутствуя в небольшом количестве в виде примесей к станнат-ному электролиту, поны 8п(ОН)2 разряжаются на предельном токе диффузии, что приводит к образованию губчатых осадков. В связи с этим необходимо избегать загрязнения раствора станнитом и в случае накопления ( 0,02 моль/дм ) окислять его в станнат добавлением пероксида водорода. Избыток щелочи в электролите необходим для предупреждения гидролиза стан-ната, а также для >странения пассивации анодов. Однако чрезмерный избыток щелочи может значительно снизить выход по току и предел допустимой плотности тока на катоде. [c.28]

    Рассмотрим теперь некоторые простейшие примеры, когда уравнения диффузионной кинетики могут быть точно решены. Существенное упрощение достигается, если отсутствуют миграция и конвекция, а диффузия происходит в стационарных условиях, т. е. в условиях, если распределение концентрации у поверхности электрода не зависит от времени йс1(И = 0. Миграцию можно исключить, если добавить в раствор избыток посторонней соли, ионы которой не участвуют в электродном процессе. Такой электролит называется индифферентным электролитом или электролитом фона. Чем ьыше концентрация фонового электролита, тем меньше сопротивление раствора и тем меньше при заданном I омическое падение потенциала в растворе, приводящее к явлениям миграции. Чтобы исключить влияние размешивания электролита, можно, например, проводить опыты, используя небольшие плотности тока в течение коротких промежутков времени, что позволяет избежать разогрева электролита и размешивания его при случайных вибрациях ячейки и т. п. [c.162]

    Для того чтобы оценить величину подобной поляризации, следует рассмотреть условия транспорта (переноса) ионов серебра из раствора к поверхности катода. Учтем, что на границе между металлом и раствором существует двойной электрический слой, о котором уже упоминалось в начале утой главы. Так как на катод наложен потенциал, обусловленный внешней э. д. с., то концентрация Ад+ в двойном слое Сп, т. е. у поверхности металла, отличается от концентрации этих ионов в объеме раствора Сп. Если на электрод наложен отрицательный потенциал, Сп<Со. Слой раствора, в котором происходит изменение концентрации от Со до Сп, называется диффузионным. Его толщина й зависит от условий перемешивания раствора. Наиример, при использовании пропеллерной мешалки величина б обратно пропорциональна квадрату числа оборотов мешалки в единицу времени. Так как ток через электролит переносится ионами, то его сила определяется числом ионов Ад+, которые могут переноситься диффузией за единицу времени из объема раствора с большей концентрацией к электроду, где концентрация меньше. [c.137]

    Способность электролита снизить степень шероховатости на поверхности основного металла, т. е. его микрорассеивающая способность, является совершенно особым свойством, называемым выравниванием. Электролит с хорошими свойствами выравнивания создает осадок, который постепенно выравнивается на поверхности основного металла по мере увеличения толщины слоя покрытия. Считают, что разница в поляризации микропи-ков и микроуглублений на поверхности основного металла влияет на соотношение скоростей диффузии ионов и адсорбции на поверхности, локально изменяя скорость электроосаждения. Свойства выравнивания обычно контролируются введением специальных добавок в электролитическую ванну, представляющих собой органические соединения (например, кумарин в растворе для нанесения никелевого покрытия). Способность к микровыравниванию и рассеиванию часто сочетается в одном растворе, но это никоим образом не обязательно. Например, у цинка хорошая рассеивающая способность, но плохая способность к выравниванию. [c.88]

    Эта pa.-iHo Tb потенциалов (доннановский потенциал) противодействует стремлению ионов выровнять свои концентрации в ионите и растворс путем диффузии и предотвращает проникновение КОНОНОВ а значит и электролита в. зерна смолы. Поэтому ш разбавленных растворов ионит с высокой емкостью адсорбирует электролит в значительно меньн1ей степени, чем неэлектролит [1]. [c.195]

    Наконец, коррозия железного опорного скелета может быть вызвана солями, растворенными в щелочном электролите. В то время как анионы, образующие с железом труднорастворимые соединения (например, карбонат-ионы), являются анодными ингибиторами, другие анионы, образующие легко растворимые соединения железа (например, хлор-ионы), представляют большую коррозионную опасность, так как могут нарушить защитное действие пассивирующих слоев. Из-за высокого пептизирующего действия хлор-ионы могут, например, сделать защитные слои недостаточно плотными [30]. Уже Хойзлер, Вайль и Бонхёффер [28] установили, что коррозионный ток в области пассивности сильно зависит от анионов раствора на это указывает сравнение боратного и гликоколь-ного буферных растворов (pH = 9,3). Следовательно, нужно учитывать разрушительное действие анионов. Например, при применении каломельного электрода сравнения надо по возможности предотвращать диффузию хлор-ионов в измерительную ячейку. Для этого рекомендуется ставить промежуточный сосуд с раствором КОН. [c.372]

    Уравнение (VI, 2) справедливо только в том случае, когда раствор содержит какой-либо посторонний электролит в большой концентрации. Предельный ток определяется суммарной скоростью движения ионов в результате диффузии (диффузионный ток) и электростатического притяжения ионов к электроду противоположного заряда (миграционный ток). Для количественного полярографического анализа важна только диффузионная составляющая предельного тока, которая и описывается уравнением (VI, 2). Миграционный ток элиминируют, вводя в раствор посторонний невосстанайливающийся электролит (фон) с концентрацией, зна- [c.214]


Смотреть страницы где упоминается термин Диффузия в растворах электролитов и ионитах: [c.47]    [c.697]    [c.34]    [c.34]    [c.123]    [c.185]    [c.390]    [c.423]    [c.106]    [c.55]   
Смотреть главы в:

Методы физико-химической кинетики -> Диффузия в растворах электролитов и ионитах




ПОИСК





Смотрите так же термины и статьи:

Диффузия в растворах

Диффузия в растворах электролитов

Диффузия ионов в растворах

Диффузия электролитов

Диффузия, вязкость и числа переноса ионов в растворах электролитов

Общая характеристика неравновесных явлений в растворах электролитов 2 Диффузия и миграция ионов

Раствор ионный

Растворы электролитов

Растворы электролитов. pH растворов



© 2025 chem21.info Реклама на сайте