Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомный вес и строение атома

    При этом используются не только табличные данные атомных рефракций / ат и рефракций связей / св, но и дополнительные слагаемые (инкременты) для двойных, тройных связей и т. д. Сравнивая экспериментальную Rm с вычисленной по аддитивности, судят о строении молекулы. [c.253]

    Существенные различия в свойствах алмаза и графита обусловлены особенностями строения их кристаллов. Кристаллическая решетка алмаза атомная. Каждый атом углерода расположен в центре тетраэдра, четыре вершины которого заняты другими атомами углерода (рис. 84, а) Все атомы находятся на одинаковых расстояниях друг от друга (0,154 нм) и под воздействием очень больших ковалентных сил. Кристалл алмаза — это как бы единая макромолекула с очень плотной [c.319]


    Если для Ф взять форму потенциала, учитывающую атомное строение графита, а равновесное расстояние 2о оценивать на основании атом-атом-ных потенциальных функций межмолекулярного взаимодействия атомов адсорбата с атомом углерода графита, то определенное из значение 5 для сажи Р-33 практически не зависит от природы адсорбата и составляет около 11 м г [И]. Это значение совпадает со значением 8, определенным для зтой сажи методом БЭТ [12, 13], в пределах погрешности метода. [c.113]

    Томсон в 1904 г. математически разработал аналогичную модель атома. Его статья имеет очень выразительное заглавие О строении атома исследование устойчивости и периодов колебания совокупности корпускул, расположенных с равными интервалами по окружности круга с применением результатов к теории атомного строения [2]. Согласно Томсону, положительный заряд атома распределен равномерно по всему его объему, тогда как корпускулы (так Томсон называет электроны) занимают внутри атома некоторое определенное положение. Томсон показывает расчетом, что такая модель атома может быть устойчива лишь при расположении корпускул либо в серии концентрических колец (если корпускулы вынуждены двигаться в одной плоскости), либо в ряде концентрических сфер (если допустить, что они могут двигаться во всех направлениях). Стабильность кольца (или сферы) достигается только при определенном числе корпускул в них в этом случае атом не способен удерживать дополнительно ни положительный, ни отрицательный заряд. Распределив все атомы в ряд (следуя порядку увеличения числа корпускул), мы получим сначала систему, которая ведет себя подобно атому одновалентного электроположительного элемента следующая система ведет себя подобно атому двухвалентного электроположительного элемента, в то время как на другом конце ряда у нас имеется система, которая ведет себя подобно нульвалентному атому ей непосредственно предшествует система, которая ведет себя подобно атому одновалентного электроотрицательного элемента, тогда как ей в свою очередь предшествует система, ведущая себя подобно атому двухвалентного электроотрицательного элемента [там же, стр. 262]. С глубокой проницательностью Томсон проводит далее аналогию между таким накоплением корпускул и свойствами элементов в двух первых периодах от гелия до неона и от неона до аргона. [c.29]

    Существенные различия в свойствах алмаза и графита обусловлены особенностями строения их кристаллов. Кристаллическая решетка алмаза атомная. Каждый атом углерода расположен в центре тетраэдра, четыре вершины которого заняты другими атомами углерода (рис. 69). Все атомы находятся на одинаковых расстояниях друг [c.297]


    Из сказанного должно быть ясно, что непрерывный ряд твердых растворов могут образовывать вещества, имеющие одинаковый тип кристаллической решетки и довольно близкие по величине межплоскостные расстояния решетки, а также более или менее близкое атомное строение (т е. должны быть близко расположены в периодической системе Д. И. Менделеева). Последнее условие необходимо потому, что при растворении элементов, имеющих различную валентность, сильно меняется электронная концентрация (т. е. количество электронов на один атом), а это ведет к изменению самой решетки непрерывного ряда твердых растворов с одним и тем же строением решетки в этом случае не получается. [c.214]

    М. И. К о р с у н с к и й. Оптика. Строение ато.ма. Атомное ядро. Физматгиз, 1962. [c.253]

    Опишем с позиций атомного строения вещества твердые, жидкие и газообразные тела. Для примера рассмотрим каплю воды, диаметр которой составил бы несколько миллиметров. Если эту каплю увеличить в миллиард раз, то можно увидеть картину, представленную на рис. 1, а. К атому кислорода присоединены два атома водорода (рис. 1, б). Три атома образуют молекулу воды. [c.9]

    Атомное строение многих металлов в твердом состоянии соответствует одной из трех структур кубической плотноупакованной (гранецентрированной), гексагональной плотноупакованной и кубической объемноцентрированной. В этих структурах каждый атом имеет большое число близлежащих соседей (их количество характеризуется координационным числом). Структуру того или иного элемента нельзя предопределить, исходя только из электронной конфигурации атома этого элемента. [c.82]

    Но, согласно новым представлениям о строении атома, атом имеет ядро, состоящее из протонов (и нейтронов). Протоны и нейтроны примерно равны по массе, и, следовательно, массы всех атомов должны быть кратными массе атома водорода (состоящего из одного протона). Гипотеза Праута возродилась, зато вновь возникли сомнения относительно того, какими должны быть атомные массы. [c.167]

    Рассмотрим теперь математическое представление реактантов, учитывающее явление геометрической изомерии. Отметим сразу, что современные формулы строения химических веществ непригодны для проведения расчетов на ЭВМ химических реакций, так как их нельзя непосредственно ввести в оперативную намять ЭВМ или записать на внешние носители информации. Далее, для этой цели нецелесообразно использовать и векторное представление молекул, которое строилось на основе их брутто-формул. Следовательно, требуются дальнейшие обобщения, связанные с представлением молекул в виде матриц определенной размерности, равной числу содержащихся в молекуле атомов. При формировании элементов этой матрицы, называемой В-матрицей, учитывается, что каждый атом состоит из атомного остова, составленного из ядра атома и внутренних электронов и имеющего некоторый формальный заряд, и электронов валентной оболочки. Последние менее сильно связаны с атомным остовом и участвуют в образовании химических связей. [c.174]

    Частицы и волны. Теория Бора, с основными положениями которой мы познакомились в 6 и 7, давая возможность определить положение линий в спектре водородного атома (и некоторых других простейших атомных систем), не могла, как это уже указывалось, объяснить ряд других явлений, например различия в интенсивности этих линий. Она оказалась недостаточной также для объяснения строения атомов более сложных, чем атом водорода, и, что особенно важно для химии, не могла объяснить в общем случае связь между атомами в молекулах, т. е. природу химической связи. [c.43]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    Как мы знаем, все твердые вещества как кристаллического, так и непериодического строения имеют остов, вид и мерность которого определяют строение вещества. Атом представляет собой систему, состоящую из валентных электронов и атомного остова. Атомное ядро отклоняется от положения равновесия весьма незначительно и практически локализовано внутри атома, тогда как валентные электроны совершают колебания с амплитудой, равной междуатомным расстояниям. Поэтому по местонахождению ядер можно определить, какое положение занимают данные атомы в молекулах и кристаллах. Зная, что степень перекрывания волновых функций достигает максимума при сближении атомов на определенное расстояние (речь идет о средних межатомных расстояниях в твердом теле, которые могут быть найдены, например, рентгеноструктурным методом) и резко уменьшается на несколько большем расстоянии, можно точно установить, какие атомы связаны между собой химическими связями. Химические связи между атомами в формулах химических соединений принято обозначать черточками. Например, хотя в молекуле дело- [c.60]


    В начале XIX в. Дж. Дальтон, опираясь на открытые к тому времени законы химии — кратных отношений, эквивалентов, постоянства состава, возродил атомистическую теорию. Главное отличие новых положений теории от представлений древнегреческих философов заключалось в том, что они опирались на строгие экспериментальные данные о строении вещества. Дальтон установил, что атомы одного и того же химического элемента имеют одинаковые свойства, а разным элементам соответствуют разные атомы. Была введена важнейшая характеристика атома — атомная масса, относительные значения которой были установлены для ряда элементов. Однако атом по-прежнему считался неделимой частицей. [c.37]

    Таким образом, зная структуру адсорбента (ГТС) и структуру адсорбирующейся молекулы, можно вычислить молекулярно-ста-тистическим путем константы Генри, уточнить параметры атом-атомных потенциалов и проанализировать влияние сделанных при определении этих потенциалов приближений и допущений. Используя этот метод, можно произвести идентификацию на хроматограмме веществ известного строения. На приведенной ниже схеме решению прямой задачи молекулярно-статистической теории адсорбции и удерживания соответствует движение слева направо  [c.184]

    Хотя ранние работы по изучению атомных спектров и были шагом вперед, они тем не менее носили эмпирический характер. По большей части эти работы ограничивались классификацией и корреляцией наблюдаемых данных с помощью эмпирических соотношений, но совсем не объясняли механизма возникновения спектральных линий. Естественно было предположить, что спектральные серии испускаются атомами, но как атом может испускать такие линии, вряд ли стоило обсуждать, так как не существовало удовлетворительной теории строения атома. [c.27]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    О лас ает ли эта пара ос)инаковым строением (атом-атомной последовательностью связей)  [c.155]

    Среди мыслителей Древней Греции не было единства по вопросу о корпускулярной или непрерывной природе вещества. От них ведет происхождение привычное для нас слово атом, возникшее от древнегреческого атоцоа, что означает неделимый. Сторонники воззрения о бесконечной делимости вещества пользовались для выражения этого понятия термином гайл . Хотя в наше время представление об атомном строении веще- [c.56]

    Таким образом, пренебрежение атомным строением базисных плоскостей графита (приближение Крауэлла) при суммировании атом-атомного потенциала межмолекулярного взаимодействия слабо сказывается на рассчитанных значениях константы К для адсорбции одноатомных молекул на базисной грани графита. Пренебрежение же слоистым строением графита (приближение Лондона) приводит к сильно заниженным значениям этой константы. Поэтому суммирование атом-атомных потенциалов необходимо производить с учетом слоистого строения решетки графита. [c.288]

    С близкими формами (изоморфные), но и во всевозможных отношениях замеш,ать друг друга, почти не изменяя формы иначе изоморфные тела во всевозможных смеш,ениях способны образовать кристаллы с осями, близкими к осям обоих изоморфных тел. 3) Закон одинакового атомного строения. Изоморфы и изоморфные тела имеют равное число одинаковым образом расположенных атомов, т. е. одинаковое атомное строение. 4) Закон диморфности. При одинаковости атомного строения тела являются иногда в различных формах, по причине диморфности. Причиною изоморфности простых тел Mits herli h считал одинаковую форму их атомов, а причиною изоморфности сложных тел — изоморфность простых. Таким образом, из изоморфности известкового и железного шпатов можно заключить об изоморфности железа и кальция, закиси железа и извести. [c.14]

    Расчеты К для адсорбции благородных газов на ГТС описаны в ряде работ [140, 141, 193, 194]. Было установлено [193], что при заданных значениях параметров потенциальной функции ф значения К заметно зависят от формы ф. Поэтому при оценках параметров функции ф независимыми от адсорбционных данных способами для ф следует выбрать теоретически наиболее оправданную форму. Вместе с тем при фиксированных значениях параметров потенциальной функции Ф значения К мало чувствительны к форме ф. Поэтому при оценках параметров ф с использованием экспериментальных значений/С1 выбор формы ф не существен. Кроме того, было показано [193], что при фиксированных значениях параметров как потенциальной функции ф, так и потенциальной функции Ф, пренебрежение атомным строением базисных плоскостей графита при суммировании ф (приближение Крауэлла) слабо сказывается на рассчитанных значениях константы К, однако пренебрежение слоистым строением решетки графита (приближение Лондона) приводит к значениям этой константы, сильно отличающимся от соответствующих значений, получающихся при остальных более точных способах суммирования ф. Поэтому, чтобы правильно выбрать форму потенциала Ф, необходимо учесть слоистое строение графита как при определении Ф на основании атом-атомного потенциала ф при его суммировании, так и при определении Ф на основании значений К. - [c.115]

    ГерцбергГ., Атомные спектры и строение ато.мов, Издатинлит, 1948. Д а в т я н О. К-, Квантовая химия. Изд. Высшая школа , 1962. [c.39]

    Второе направление составляют те ученые, длл которых химия является не только наукой о составе веществ, но и — это главное — наукой об а т о м а х, об атомном строении веществ. Если для собирания и ближайшей обработки непосредственных данных о составе веществ вполне достаточно обычного метода эмпирического мышления, то вопросы строения вещества с точки зрения выяснения взаимной связи атомов между собой не могут быть разрешены без помоши теоретического мышления. А здесь волей-неволей приходится лгь сушгь— подчеркивает Энгельс — атом и молекулу и т. д. нельзя наблюдать в микроскоп, а только посредством мышления Представители второго направления, естественно, в центр внимания ставят не столько сам по себе количественный подход к химии, сколько те выводы, которые достигнуты при помощи теоретического мышления и для которых количественный подход служит лишь необходимой эмпирической основой. [c.255]

    Образование бертоллидов в широком смысле слова, т. о. соединений переменного состава с дробными отношениями атомных концентраций, должно наблюдаться, как правило, в реальных кристаллах (особенно не имеющих молеку лярной или чисто ионной решётки). Степень колебания концентраций зависит от условий возникновения кристалла и характера связи в последнем (определяемой, в свою очередь, строением ато-мов-нартнёров и их способностью к возбуждению переменной валентности). [c.224]

    В КГ1Т0ПЫХ асимметрический атом углерода (оп в формуле помечем звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве они нот. строены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стерео изомерией, а соответствующие изомеры— зеркальными изомерами. Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме например, для приведенных на рнс. 130 зеркальных изомеров молочной кислоты  [c.462]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    Соединениями постоянного состава являются вещества молекулярного строения, поскольку состав молекул однозначно определяется строением их образующих aroMOFj. Ь сли же кристаллическое вещество имеет атомное или ионное строение, то оно характеризуется более или менее переменным составом. Причиной этого являются точечные дефекты в кристалле. В реальном кристалле возможны дефекты двух типов. Рассмотрим кристалл двухэлементного соединения АВ. В идеальном случае в кристал/ю заняты все узлы кристаллической решетки атомами (ионами) А и В (рис. 66, а). В реальном же кристалле могут быть не заняты узлы кристаллической решетки, отвечающие атому (иону) А и (или) атому (иону) В (рис. 66, в). Кроме того, в междоузлиях решетки могут располагаться избыточные атомы (ионы) А и (или) В (рис. 66, б). [c.105]

    Как известно, изоморфные вещества образуют друг с другом твердые растворы — гомогенные твердые вещества сложного состава, в структуре которых атомы распределены статистически. В твердых растворах ионных соединений, металлов, полимеров атомы соединены межатомными связями. Поэтому подобные вещества являются твердыми атомными соединениями. Каждому непрерывному твердому раствору соответствует ряд однотипных твердых химических соединений, в том числе соединений, обладающих равноценными статистическими структурами, и в ряде случаев интерметаллических соединений. Например, медь и золото образуют непрерывный ряд твердых растворов, но при концентрациях золота от 20 до 70 ат. % в сплавах, полученных отжигом (т. е. выдерживанием сплава при высокой температуре), проявляются интерметаллические соединения СизАи и СиАи, имеющие строго закономерную структуру. Следовательно, твердые растворы не всегда имеют неупорядоченное строение. Эта неупорядоченность — во многих случаях результат закрепления атомов при [c.44]

    Проведенные расчеты параметров ширины спектра дают значения 0,3—0,4 для у-процессов и 0,5—0,6 для р-процессов у МЭС и некоторых других полимеров ОЭА. Подобные значения параметров йх являются обычными для рассматриваемых форм молекулярного движения в полимерах. Параметры ат определяются обычно из диэлектрических измерений в широком частотном диапазоне. Описаный способ с использованием для этих целей данных по РТЛ упрощает задачу. Величина /акт Для - -процесса является, по-видимому, некоторой общей характеристикой мелкомасштабного локального движения (типа подвижности атомных групп), поскольку для всех полимеров ОЭА получается одинаковое значение 21—23 кДж/моль независимо от особенностей их химического строения. [c.250]

    Основы современных представлений о структуре материи были заложены в те далекие времена, когда люди только еще пытались вникнуть в сущность окружающих их вещей. Такие неотделимые от материи понятия, как движение и прерывность (дискретность), были уже предметом дискуссий древнегреческих натурфилософов. Понятие атом (от греческого атоцое — неделимый) восходит к Демокриту (V в. до н. э.). Изучающим химию полезно проследить историю развития атомистических представлений, а также основы кинетической теории. Ниже весьма кратко изложены наиболее важные экспериментальные доказательства, которые послужили краеугольным камнем атомно-молекулярной теории строения материи и так назы-. ваемой теоретической химии (именно так Нернст назвал одну из своих классических работ, снабдив ее подзаголовком Теоретическая химия с точки зрения правила Авогадро и термодинамики ). [c.11]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Значения атомных рефракций в таблицах даются с указанием, в какую группировку входит тот или иной атом. Например, имеются значения Ru для азота, находящегося в первичных, вторичных или третичных алифатических аминах, нитрилах, аммиаке и т. п. Различают атомные рефракции карбонильного, гидроксильного и эфирного кислорода. В справочниках также приводятся рефракции отдельных групп (СНг, NH2, NO2 и др.) и связей (С—Н, С = 0 и др.). Сравнением значений Ron и / теор относительно просто и надежно делают заключение о характере связей между атомами и устанавливают структуру молекулы. Прием сравнения Ron и / теор используют при исследовании органических соединений. Допустим необходимо установить вероятную изомерную структуру молекулы состава СвИю. Таким составом могут обладать три молекулы разного строения  [c.10]

    Свойства и получение. Внешняя электронная оболочка атома углерода в основном и возбужденном состоянии имеет строение 2s 2p и s2pxPfPi. Таким образом, в валентном состоянии атом углерода имеет четыре неспарениых электрона и во внешнем электронном слое отсутствуют как свободные атомные орбитали, так и неподеленные электронные пары (только для одного элемента, кроме углерода, - водорода характерно подобное состояние атома). Такое электронное строение атома углерода обусловливает две характерных его особенности возможность образовывать четыре ковалентные связи и неспособность к донорно-акцепторному взаимодействию. [c.363]

    Вскоре появляется работа, результаты которой привели к мысли об определенном строении молекул. В 1852 г. английский исследователь Франкланд на основании изучения образования некоторых металл-органических соединений [СНдЫз, (СНз)2Н , (СНз)дА1, (СНз)45п и, ф.] ввел понятие об атомности валентности), численно выражающей способность атома данного элемента вступать в соединение с определенным числом атомов другого элемента. Приняв валентность водорода равной единице, можно считать, что валентность других элементов является числом, показывающим, со сколькими атомами водорода (или иного одновалентного элемента) может соединиться атом данного элемента. [c.104]

    Проблемы, существовавшие в то время в теории строения атома, не были проблемами, касающимися исключительно расположения электронов и ядра в атоме. Следовало еще выяснить, как атом может дать дискретный спектр, если этот спектр испускается атомом как таковым. Ни Томсон, ни Резерфорд не могли дать удовлетворительного ответа на этот вопрос. Важный вклад был сделан в 1907 г. Конвэем, который впервые попытался объяснить это явление в плане квантовых идей. Не используя никакой атомной модели, Конвэй сделал заключение о том, что атом испускает энергию, соответствующую спектральной линии, и что появление полного спектра объясняется очень большим числом атомов, в каждом из которых один электрон находится в возбужденном состоянии. [c.29]

    Мультиплетная теория, предложенная А. А. Баландиным, исходит из принципа структурного (или геометрического) соответствия между расположением атомов на активных участках поверхности катализатора и строением молекул реагирующего вещества. Таким образом, теория рассматривает не просто взаимодействие молекул в целом с поверхностью катализатора, а взаимодействие отдельных ато-люв или атомных групп в молекуле реагирующего вещества (так называемых индексных групп) с определенными геометрически правиль-нылш группировками атомов или ионов поверхностного слоя катализатора. Согласно этой теории активными центрами на поверхности катализатора являются мультиплеты, Мультиплеты — это небольшие, [c.276]

    Атом углерода, имеющий во внешней оболочке 4 электрона, отличается от других атомов постоянной валентностью, так как он не вносит в электронную структуру молекулы ни неподеленных пар электронбв, йи вакантных низколежащих орбиталей. Поэтому молекулы его соединений не способны к образованию донорно-акцепторных связей с другими молекулами через атом углерода В то же время между атомами С могут возникать прочные связи, так как малые размеры электронной оболочки благоприятствуют хорошему перекрыванию атомных орбита-лей углерода. Благодаря этому углерод обладает уникальной способностью образовывать из одинаковых атомов длинные цепочки, составляющие углеродный скелет бесчисленных молекул органических веществ. Указанные свойства углеродного атома привели к выделению химии его соединений в особую науку — органическую химию. Рассмотрим особенности строения молекул и электронной структуры некоторых родоначальников важнейших классов органических соединений. [c.204]


Смотреть страницы где упоминается термин Атомный вес и строение атома: [c.286]    [c.17]    [c.38]    [c.28]    [c.60]    [c.10]    [c.91]    [c.179]    [c.179]   
Смотреть главы в:

Родий -> Атомный вес и строение атома




ПОИСК





Смотрите так же термины и статьи:

Атомов строение



© 2024 chem21.info Реклама на сайте