Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение воды без поглощения

    Химические свойства теплостойких пластмасс определялись по стандартам ГОСТ 4650—73 Пластмассы. Методы определения водо-поглощения ГОСТ 12020—72 Пластмассы. Методы определения стойкости к действию химических сред . [c.14]

    Использование ИК-техники для определения воды в масле основано на поглощении водой ИК-лучей с длиной волны 2 мкм. Во влагомерах применяют двухлучевую схему, при которой один луч проходит через анализируемое масло, а другой — через масло, не содержащее влаги. Разница энергий обоих лучей пропорциональна концентрации воды в масле. Источником излучения является керамический стержень, нагретый примерно до 1730°С, а энергию излучения измеряют фотоэлементом [c.38]


    Определение воды прямыми методами. Определение воды после поглощения высушивающим веществом. Для определения применяют прибор, схема которого показана на рис. 32. [c.186]

    Дж. Митчел, Д. Смит. Акваметрия (методы определения воды в различных материалах). Издатинлит, 1952, (427 стр.). Книга представляет собой обзор литературы по применению реактива Фишера в аналитической химии. В книге дается обзор различ. ных методов определения воды, описаны методы анализа с применением реактива Фишера, причем ряд прописей и методик экспериментально проверены авторами. Излагаются методы определения содержания воды в различных органических н неорганических соединениях и промышленных материалах. В последующих разделах авторы описывают реакции, протекающие с выделением или поглощением воды, которые могут быть использованы для определения ряда функциональных групп органических соединений. [c.492]

    Помимо непосредственного объемного определения можно использовать поглотители, содержащие определенное количество активного вещества. По окончании поглощения оттитровывают неизрасходованную часть поглотителя. В других случаях результат находят по привесу поглотительной системы (определение воды, пыли, смол в газах). Пропускаемое количество газа в зависимости от типа определяемого вещества измеряют либо сухим, либо жидкостным газовым счетчиком или реометром. [c.86]

    В газе, оставшемся после удаления всех способных поглощаться компонентов, могут содержаться еще водород, метан, азот и благородные газы. При фракционном сжигании на СиО при 270—290 С водород переходит в воду. При 850—900 °С метан сгорает до двуокиси углерода и воды. Сжигание может происходить в атмосфере кислорода или на платиновой спирали. Азот (+ благородные газы) обычно находят по разности между исходным объемом и суммой объемов компонентов, определенных при поглощении и сжигании. [c.86]

    Методы ИК-спектроскопии. Вода характеризуется максимумом поглощения в ближней области ИК-спек-тра 1,94 мкм, который используют для определения влаги в различных материалах. Так, при определении воды в пищевых продуктах навеску образца диспергируют в диметилсульфоксиде, который спустя 2—4 ч практически полностью экстрагирует воду. После окончания экстракции наливают экстракт в 1-сантиметровую кварцевую кювету и измеряют оптическую плотность экстракта. В интервале 0,00—0,70 мл воды в 100 мл раствора наблюдается линейная зависимость между оптической плотностью и содержанием воды. Точность определения соизмерима с точностью определения воды химическим методом Карла Фишера.. [c.638]


    Емкостный метод был применен и для определения количества поглощенной покрытием воды. Было установлено, что данные, полученные емкостным методом, имеют хорошую сходимость. [c.115]

    Оптические методы можно успешно применить для определения содержания воды. Поглощение группы ОН воды наблюдается в области, близкой ИК-области спектра (3760—3600 см ), а также при 1630—1600 м . Положение полос поглощения воды смещается в сторону меньших частот при образовании водородных связей с гетероорганическими соединениями. Таким образом, характеристическое поглощение групп ОН воды в ее смесях с углеводородами и реальными нефтепродуктами будет различным. Необходимо учитывать -также поглощение групп ОН, принадлежащих продуктам окисления углеводородов. В КР-спектрах характеристическое поглощение воды лежит около 3654—3600 м  [c.309]

    Реакционной А. наз. методы функционального анализа, основанные па определении воды, выделившейся илп поглощенной в результате хим. р-ции с участием анализируемого в-ва в неводной среде. Эти методы примен. для определения неорг. н орг. в-в, в т. ч. оксидов н гидроксидов металлов, спиртов, сложных эфиров, к-т, аминов, элементо-орг. соед. для изучения состояния воды в твердых в-вах (гидратах глинозема, цеолитах, ионообменных смолах и др.), кинетики реакций орг. соед., гидратации биополимеров для установления основности гетерополикислот и др. [c.16]

    Учет собственного поглощения растворителей в области 3200—3800 см- при спектрофотометрических методах определения воды [162]. Наличие собственного поглощения растворителя значительно усложнило количественные определения воды по спектрам поглощения в области основных частот валентных колебаний ОН-групп. Из-за этого поглощения становится невозможным спектрофотометрическое определение ультрамалых количеств воды в растворителях. [c.154]

    Зависимость величины относительной ошибки определения следов воды при оптимальных условиях для ряда растворителей показана на рис. 68. Интервал концентраций воды, допускающих определения по поглощению в области основных частот валентных колебаний ОН-групп при неизменной величине АО/О, ограничен, с одной стороны, точностью изготовления кювет (большие концентрации воды), с другой — собственным поглощением растворителя (малые концентрации воды). Наиболее благоприятным для большинства растворителей является интервал концентраций 0,1—1,0%. Градуировочные графики для этого интервала, построенные в координатах оптическая плотность — содержание воды в растворе, прямолинейны. Результаты определения спектрофотометрическими методами хорошо совпадают с данными дру- [c.156]

    Для определения количества поглощенного при очистке воды загрязняющего вещества, характеризующего адсорбционные свойства сорбента, используют изотермы сорбции, описываемые уравнениями Ленгмюра или Фрейндлиха. Уравнение Ленгмюра описывает системы с однородными поверхностями и незначительными силами взаимодействия между адсорбированными молекулами, а уравнение Фрейндлиха описывает адсорбцию на неоднородной поверхности. Приведем уравнение Ленгмюра для случая сорбции из слабоконцентрированного раствора сточных вод  [c.151]

    Известно большое число методов определения воды. Так, воду определяют гравиметрически косвенным или прямым методом. В косвенном методе о содержании воды судят по потере массы анализируемой пробы при ее высушивании или прокаливании. Этот метод часто не дает правильных результатов, что связано с трудностью определения температуры, необходимой для полного выделения воды, и потерей с водой лету чих компонентов образца. Прямой гравиметрический метод основан на поглощении выделившейся из образца воды подходящим поглотителем, чаще всего безводным перхлоратом магния. О содержании воды судят по увеличению массы предварительно взвешенного поглотителя. [c.44]

    В некоторых вариантах метода высушивания предусматривается поглощение удаляемой влаги какими-либо высушивающими агентами. Предварительно высушенный азот, другой инертный газ или воздух проходит над пробой при повышенной температуре и далее направляется в тарированную поглотительную трубку (обычно с перхлоратом магния или с пентоксидом фосфора). Трубку взвешивают и определяют увеличение ее массы после поглощения влаги. Увеличение массы в конце опыта является мерой содержания воды в изучаемом образце. Такая техника эксперимента, по существу, повторяет метод определения содержания водорода (и углерода) путем сжигания вещества и поглощения продуктов сгорания. Описанную схему эксперимента удобно применять и для определения влажности различных инертных газов [60]. В целом данный метод определения воды более специфичен, чем методы, основанные на оценке потери массы. Однако здесь возможны ошибки такого же типа, как и в других методах. Кроме воды могут поглощаться и другие летучие вещества. С другой стороны, вода, образующаяся при термическом разложении анализируемой пробы, также будет поглощаться, что приведет к завышенным результатам. [c.171]


    При механическом измельчении образца может выделяться количество тепла, достаточное для того, чтобы вызвать потерю значительных количеств воды. Обезвоживание при повышенных температурах может сопровождаться потерей других летучих компонентов, а также реакциями гидролиза, окисления и конденсации [221 ]. Однако при использовании метода дистилляции протекание реакции окисления менее вероятно, чем при сушке в воздушном сушильном шкафу наличие паров растворителя изолирует образец от кислорода. При использовании метода азеотропной отгонки упомянутые выше отрицательные факторы проявляются в меньшей степени, чем при сушке в сушильном шкафу и эксикаторе или поглощении влаги абсорбентами [221 ]. Дистилляцию рекомендуют [221 ] в качестве лучшего контрольного метода определения воды в пищевых продуктах. Была изучена [221 ] также термодинамика и кинетика азеотропной отгонки. В соответствии с термодинамическими представлениями при азеотропной отгонке система стремится прийти в стационарное состояние, а не в равновесное, в котором отсутствует перенос водяного пара. Было теоретически показано, что давление паров воды в перегонном аппарате обратно пропорционально растворимости воды в жидком органическом компоненте, применяемом в качестве перенос- [c.237]

    Для качественного определения воды, содержащейся в индивидуальных веществах, можно использовать различные реагенты. В частности, для измерения низких концентраций паров воды в газах можно использовать колориметрический метод определения аммиака, образующегося при реакции нитрида магния с водой (см. гл. 2). Использование реактива Несслера [76] позволяет определять содержание воды вплоть до концентраций 0,5 млн" В этом случае поглощение рекомендуется измерять при 470 нм. [c.354]

    Раствор этого соединения в абсолютном этаноле имеет максимум поглощения при 460 нм, в водном растворе максимум смещается к 535 нм. При определении воды в органических растворителях наилучшие результаты получены [8 ] при 520 нм. [c.359]

    Пух и Рао [198 ], изучая вращательную структуру спектров поглощения паров воды в области 3690 и 5160 см , измерили интенсивность полос VI, Уз, 2уз, Зуз, VI + V2 и Уа + Уз и обнаружили аномалии интенсивности полос, ранее отнесенных к у , V2 и 2Уа. Большое число вращательных полос наблюдается в спектрах поглощения паров воды в дальней ИК-области. Полосы воды в КР-спектрах являются слабыми однако их исследование способствовало отнесению основных частот при анализе различных экспериментально наблюдаемых полос поглощения. Полосы поглощения в области основных частот и в ближней ИК-области можно использовать для определения воды. Выбор полосы поглощения для аналитических целей зависит от типа изучаемой системы. [c.377]

    Измерение поглощения при 2,6 мкм было применено для непрерывного определения " воды (до 0,4%) в жидкой проточной системе диоксид серы—углеводород [125]. Для этого была использована специальная кювета, работающая при 10,2 атм для [c.389]

    ИК-Спектроскопия используется для анализа газов, жидкостей и твердых тел. Метод наиболее чувствителен при анализе газов. Однако и в жидкой фазе возможно определение воды, как это будет видно ниже, при ее содержании порядка 1 млн , особенно если анализ проводится в ближней ИК-области. Удобными неполярными растворителями являются четыреххлористый углерод и сероуглерод они не образуют водородных связей и в их ИК-спектрах имеются весьма широкие интервалы, свободные от полос поглощения, что можно использовать для определения воды. Однако часто предпочитают применять менее токсичные полярные растворители, способные к образованию водородных связей. [c.392]

    В табл. 7-4 приведены примеры определения воды с помощью ИК-спектроскопии, в том числе примеры прямого анализа в области основных частот и в ближней ИК-области. Дополнительные данные приводятся в следующих разделах. Интересно отметить, что измерения в ближней ИК-области были использованы для определения воды в верхних слоях атмосферы [143]. Сообщалось также об обнаружении полос поглощения водяных паров в области 0,8 мкм в атмосфере Марса [229]. [c.397]

    Эмпирический график зависимости поглощения от содержания воды по существу является градуировочным графиком, с помощью которого можно также оценить константу самодиссоциации азотной кислоты, приблизительно равную 5-10 . Неточность установки длины волны на 0,006 мкм вносит в определение воды ошибку 0,3 /о при содержании воды около 5%. [c.398]

    Для определения воды в солях щелочных и щелочноземельных металлов можно воспользоваться измерениями поглощения при 1,45 и 1,92 мкм [187]. Образцы для измерений приготовляют в форме прессованных таблеток или в виде суспензии в вазелиновом масле. Для анализа солей тяжелых металлов используют метод дейтерообмена, так как эти соли непрозрачны в используемой спектральной области. [c.403]

    Определение воды поглощением ее в абсорбционных трубках, заполненных водопоглощающим веществом, аналогично определению водорода в микроорганическом элементарном анализе - . [c.338]

    Кроме того, одной из причин, понижающих точность определения, является поглощение СОг из воздуха (или из воды, которой разбавляют раствор), вследствие чего часть NaOH превращается в Na2 03. Поэтому при анализе необходимо  [c.302]

    Кобальт-58 Желеао-59 Хром-51 Водород-3 (тритий) Стронций-85 Золото-198 Определение степени поглощения организмом витамина В (содержащего кобальт) Определение скорости образования эритроцитов (они содержат железо) Определение объема крови и продолжительности жизни эритроцитов Определение количества воды в организме определение усвоения меченого витамина О в организме исследования в химии клетки Получение снимка костей Получение снимка печени [c.350]

    Феноксиметилпенициллин — белый кристаллический порошок без запаха, кисловато-горького вкуса, негигроскопичен, т. пл. 118—120°, [а о = + 180—200° (с = 1,95 -ный спирт), мало растворим в воде, растворяется в метиловом и этиловом спиртах, ацетоне, хлоро< рме, бутилацетате, глицерине. Устойчив в слабокислой среде, но разлагается при кипячении со щелочами и в присутствии фермента пенициллиназы. К солнечному свету устойчив. При взаимодействин с растворами хлоргидрата гидроксиламина, едкого натра, а затем уксусной кислоты, а также нитрата меди выделяется зеленый осадок. Для определения удельного поглощения по ГФ1Х 0,09— 0,1 гпрепарата (точную навеску) растворяют в 4 5"о-ного раствора гидрокарбоната натрия, разбавляют водой до 500 мл и определяют оптическую плотность (D) ири длине волны 268 ммк и при 274 ммк в кювете с толщиной слоя 1 см. Контрольным раствором служат 4 л1/г5 о-ного раствора гидрокарбоната натрня, разведенные водой до 500 мл. Прп длине волны 268 чмк Е = 34,8. Отношение D при длине волны 268 ммк к D при длине волны 274 ммк должно быть не менее 1,21 и не более 1,24. [c.735]

    Определение воды в органических растворителях в присутствии солей [369]. При содержании воды в системе органический растворитель — вода — соль около 0,5— 0,8 М и концентрации Na 104 около 0,1 М в области основных частот валентных колебаний и в обертонной области полосы поглощения воды практически совпадают с соответствующими полосами воды в системе, не содержащей солей. Спектры же поглощения воды в присутствии Mg( 104)2 и А1(С104)з резко отличаются от спектров растворов, не содержащих солей (рис. 72). Изменения полос поглощения определяются только типом катионов. Иодиды с тем же катионом дают в аналогичной [c.163]

    Следовательно, присутствие различных солей по-разному сказывается на точности определений. Соли натрия (Na iOi, NaJ) при невысоком содержании воды в растворе (менее 3—5%) вызывают очень малые изменения в спектрах поглощения, и определение воды в растворах, содержащих эти соли, по полосе поглощения ассоциатов вода — органический растворитель (7080 см для кетонов) можно с достаточной точностью проводить по градуировочным графикам, построенным по эталонам, не содержащим солей. Возможно использование полосы ассоциатов вода —вода (6920 см- ). Однако при содержа- [c.163]

    В третьем методе анализа ассоциированных объектов их спектры записывают при условии полной ассоциации. Это можно сделать, используя в качестве растворителя либо основание Льюиса (или кислоту в зависимости от условий), либо само исследуемое вещество. Например, полипропиленгликоли можно проанализировать на гидрок-сидные группы in situ [22], так как группы ОН образуют внутри-, молекулярную водородную связь с кислородом простого эфира, и возникающая в результате этого полоса поглощения достаточно точно подчиняется закону Бугера — Бера. Для коррекции величины оптической плотности группы ОН может оказаться необходимым независимое определение воды. В ближней ИК-области в качестве ассоциирующего растворителя для связывания гвдроксвдных групп и гарантии воспроизводимости анализа часто используется хлороформ. Простые и сложные полиэфиры анализировались с целью определения гидроксидного числа в области 2—3,2 мкм, при этом в качестве растворителя применялся Q4, содержащий 10 % H I3 [54]. Смеси [c.269]

    При замене дифенилового эфира на водную среду длинноволновая полоса поглощения этого бетаинового красителя сдвигается на 9730 см (357 нм). Его растворы в метаноле, этаноле, изоамиловом спирте, ацетоне и анизоле имеют красный, фиолетовый, синий, зеленый и желтый цвет соответственно и, таким образом, охватывают весь диапазон видимого света. Чрезвычайно большой индуцированный растворителем сдвиг полосы поглощения, отвечающей переходу п- п с внутримолекулярным переносом заряда, был положен в основу эмпирического параметра полярности растворителей, так называемого параметра т(30) [10,29,294] (см. также разд. 7.4). Проявляемый этим соединением мощный сольватохромный эффект можно также использовать для спектроскопического определения воды и других полярных растворителей в бинарных смесях растворителей различной полярности [30, 31, 295, 296]. Опубликован обзор, посвященный применению сольватохром-ного красителя Ы-феноксипиридиниевого бетаина в аналитической химии [297]. [c.408]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Аналогично порошкообразному железу реагирует и окись кальция. Для наиболее эффективного поглощения мышьяка и сурьмы были применены слой медных опилок и MgO. Дистилляцию небольших количеств ртути удобно проводить в стеклянных трубках, используемых для гравиметрического определения воды по способу Пенфильда. Можно успешно применять разложение неорганических веществ в токе газа [93J, Чаще этот метод термического разложения выполняют в токе кислорода, который вызывает повышение температуры и очень эффектививно реагирует с рядом элементов. Прокаливанием в токе кислорода в кварцевой или стеклянной трубке отгоняют ртуть в элементном виде и конденсируют ее на охлаждаемой поверхности трубки. Окислы серы поглощают раствором брома в 3 Af H l, где они окисляются до серной кислоты. [c.139]

    Для определения общей влажности каменного угля Даланти [122] использует высушивание до постоянной массы в токе сухого азота при 105 °С. Его интересовала, главным образом, вну-трикапиллярная влага, в отличие от адсорбированной, находящейся на поверхности угля в трещинах и полостях, которые также составляют значительную часть структуры угля (см. разд. 3.1.1). Внутрикапиллярная влага имеет пониженное давление паров по сравнению с поверхностной влагой. Даланти приводит обзор ранних методов определения максимально поглощенной углем влаги а) построение изотерм адсорбции паров воды образцом каменного угля вплоть до относительного давления паров, соответствующего 90%-ной влажности, и экстраполяция полученных изотерм к 100%-ной влажности б) выдерживание воздушно-сухого образца каменного угля в атмосфере, насыщенной парами воды  [c.112]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]

    Соли кобальта могут взаимодействовать и с другими веществами, например с аминами, спиртами, кето-намн, тетрагидрофураном, каждое из которых способно влиять на максимум поглощения раствора. Поэтому для точного определения максимума поглощения любым колориметрическим методом определения воды необходимо построение градуировочного графика с использованием системы, в которой будет проведенХанализ. Метод может быть применен только в том случае, если концентрации всех компонентов раствора, за исключением воды, совершенно не изменяются. Необходимость выполнения этого требования станет понятной из дальнейшего [c.346]

    Кумой и сотр. [51 ] разработали новый спектрофотометрический метод определения воды в растворителях, основанный на использовании ряда красителей-бетаинов. Они установили, что значение максимума поглощения растворов красителей и длина волны, при которой наблюдается этот максимум, зависят от полярности растворителей. Это явление получило название сольватохромизма. В свою очередь, полярность многих органических растворителей зависит от содержания в них воды. [c.352]

    Поглощение протонированной формы в случае незамещенного производного (Н = Н) измеряли при 645 нм, а при К—ОСНд — при 685 нм. В интервале концентраций воды 0,2—3,2% при использовании незамещенного производного относительная ошибка определения воды в диоксане составляла 5%, а в ацетоне при использовании метоксипроизводного — 3%. В случае К = ОН определение воды оказалось возможным в более широком интервале ее концентраций — до —10%. Концентрацию воды определяли по градуировочному графику, используя растворы с известным содержанием воды. [c.358]

    Люфт и Герен [160] описывают газовый анализатор с рабочей и сравнительной кюветами для определения паров воды в различных газах, имеющих малое поглощение в области 5,5—7,5 мкм. Для других систем в кювете поддерживается заданное давление определяемого компонента, а само определение основано на измерении нарушений баланса в пневматическом детекторе диафраг-менного типа вследствие неодинакового поглощения ИК-излучения в известном и анализируемом веществе. Использование водяных паров в качестве стандарта для сравнения невозможно из-за их неконтролируемой конденсации. Вместо воды для этой цели можно использовать аммиак, поскольку в этой области его поглощение и поглощение воды почти одинаковы. При содержании от О до 2% (объемн.) концентрацию паров воды можно определить с правильностью 2% в таких газах, как азот, кислород, воздух, оксиды углерода и водород. В обзоре по аналитическим приборам для автоматического определения воды Карасек [124] отмечает ИК-анализатор, позволяющий определять до 500 млн" воды. Для определения воды и других соединений по поглощению в ИК-области спектра в ряде патентов описаны приборы, работающие непрерывно или с отбором проб. [c.390]

    При использовании таблеток с КВг возможно несколько источников ошибок. Иногда имеет место обмен ионов. Небольшие количества воды в КВг могут присоединяться к гидратирующимся соединениям, что может приводить к смещению во времени некоторых полос поглощения. Это наблюдалось при анализе углеводов [21 ]. Для полного обезвоживания порошка КВг его необходимо прогреть при 650 °С. Томпсоном [244] было показано, что интенсивность полос поглощения воды в таблетках с КВг пропорциональна ее содержанию только при полной прозрачности таблеток. Обычно наблюдается два типа воды, присутствующей в разных количествах а) адсорбированная пленка толщиной в несколько молекул и б) агрегированные молекулы воды. Таблетки из КВг, приготовленные при относительной влажности атмосферы О—10%, остаются прозрачными более трех месяцев. Таблетки, приготовленные при относительной влажности 10—16%, мутнеют через 7 дней. Равновесие устанавливается через 22 дня, когда таблетки становятся совершенно непрозрачными. Таблетки, приготовленные при относительной влажности 20%, очень сильно рассеивают свет в интервале длин волн 2—5 мкм полосы поглощения воды при этом становятся настолько малоинтенсивными, что полоса при 6,1 мкм едва различима. Сообщают также о явлениях переноса воды в таблетках [244 ]. Так, в ИК-спектре таблетки, приготовленной из КВг, выдержанного в течение 1 ч в атмосфере насыщенного водяного пара и растертого затем с ЫазНР04, обнаружили полосу поглощения, соответствующую NaaHPOi-2Н2О. Брегер и Чендлер [34] использовали этот метод для определения воды в горных породах, кроме глинистых минералов. Поглощение при 2,96 мкм соответствует количеству связанной воды относительное стандартное отклонение составляет 0,0026. [c.393]

    Галогеноводородные кислоты. Для определения воды во фтористом водороде измеряют поглощение при 1,92 мкм, используя кювету из полихлортрифторэтилена [115]. Измеренное значение экстинкции водного НР при 1,92 мкм почти в два раза превышает экстинкцию чистой воды при 1,9 мкм. Это увеличение интенсивности поглощения обусловленно, очевидно, проявлением обертона гидратированного иона Р при 4 мкм. [c.398]

    Бром. Прямое определение воды в броме проводится путем измерения интенсивности поглощения при 2,67 мкм [64]. Спектры образцов, содержащих от О до 100% воды, регистрировались в интервале длин волн 2,5—3,0 мкм при толщине поглощающего слоя в кювете, равной 1 см. Для построения градуировочного графика использовали растворы, приготовленные путем прибавления известного количества воды к жидкому брому, предварительно высушенному над PaOg. [c.399]


Смотреть страницы где упоминается термин Определение воды без поглощения: [c.201]    [c.269]    [c.357]    [c.392]    [c.407]    [c.410]    [c.417]   
Смотреть главы в:

Количественный микрохимический анализ минералов и руд -> Определение воды без поглощения




ПОИСК





Смотрите так же термины и статьи:

Вода поглощение

Поглощение воды



© 2025 chem21.info Реклама на сайте