Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геометрия адсорбции

    Роль геометрии адсорбции в катализе [c.11]

    Геометрия адсорбции октагидрофенантрена [111 а — кольцо А не взаимодействует с катализатором б — стерические препятствия при адсорбции кольца А на катализаторе. [c.11]

    В соответствии с рассмотренными особенностями геометрии адсорбции на платине в табл. 18 показано число связей, способных гидрироваться. С учетом этих связей становится понятно, почему ангулярные и симметричные (пери-конденсированные) углеводороды гидрируются медленнее линеарных. [c.156]


    Уравнение (4.89) использовано в работе [333] для интерпретации геометрии адсорбции азотсодержащих гетероциклов на Пор сиде. Полярным растворителем служил диметилсульфоксид. Найденные величины п сравнивали с расчетными параметрами для параллельного и перпендикулярного расположения молекул сорбатов по отношению к поверхности силикагеля. Полученные данные указывают на то, что молекулы сорбатов ориентированы преимущественно перпендикулярно поверхности сорбента. [c.133]

Рис. 4. Геометрия адсорбции бензола на ряде металлических поверхностей. Абсцисса представляет численное значение расстояния от ближайшего атома металла до атома водорода, связанного с ближайшим атомом углерода адсорбированного бензола. Наилучшие катализаторы гидрирования размещаются внутри квадрата, очерченного Баландиным [9]. Рис. 4. <a href="/info/1456944">Геометрия адсорбции</a> бензола на ряде <a href="/info/165049">металлических поверхностей</a>. Абсцисса представляет <a href="/info/91305">численное значение</a> расстояния от ближайшего атома металла до <a href="/info/1117693">атома водорода</a>, связанного с ближайшим атомом углерода адсорбированного бензола. Наилучшие <a href="/info/48892">катализаторы гидрирования</a> размещаются внутри квадрата, очерченного Баландиным [9].
    Действительно, в 1,3-диметилциклопентане метильные группы вступают в конформационные 1,2- и 1,3-взаимодействия друг с другом или с атомами водорода кольца. Если при образовании переходного состояния эти взаимодействия растут или уменьшаются, то соответственно изменяется и энергия активации. Секстетно-дублетный механизм гидрогенолиза циклопентанов на платине дает возможность хотя бы качественно рассмотреть геометрию образовавшегося переходного состояния, адсорбированного на поверхности катализатора. Согласно этому механизму [154], при адсорбции все пять атомов углерода кольца располагаются в междоузлиях грани (111) решетки платины, т, е. на правильном шестиугольнике. При этом длина четырех С—С-связей кольца практически не изменяется, но пятая связь по очевидным геометрическим соображениям оказывается растянутой. Именно по этой ослабленной связи и происходит гидрогенолиз. Такой подход дает возможность рассмотреть изменение конформационных взаимодействий [c.144]

    Можно думать, что на поверхности катализатора, относительно обедненной водородом, основная масса молекул н-гептана адсорбирована всеми семью атомами углерода. При этом геометрия конформаций А и Б такова, что их адсорбция сопровождается блокированием отмеченных междоузлий алкильными группами группами С-1 и С-7 в конформации А и С-6 в конформации Б. В последнем случае второе междоузлие в определенный момент может оказаться занятым свободным водородом, что по указанным ниже причинам создает относительно более благоприятную возможность для образования переходного состояния. Это обусловлено тем, что на поверхности металла продолжительность жизни адсорбированного углеводорода значительно больше, чем у адсорбированного водорода [102], в связи с чем междоузлия, занятые алкильными остатками, освобождаются значительно реже, чем места, занятые водородом. Поэтому в условиях недостатка водорода вероятность создания благоприятных условий для занятия обоих междоузлий атомами водорода из молекулы н-гептана, а следовательно, и для образования переходного состояния ниже для конформации А. [c.216]


    Геометрические теории уделяют особое внимание соответствию между геометрической конфигурацией активных атомов на поверхности катализатора и расположением атомов в той части реагирующей молекулы, которая ири адсорбции взаимодействует с катализатором и которую обычно называют индексной группой. Изучение скоростей реакций на различных кристаллических гранях металлов показало, что скорости действительно зависят от геометрии расположения атомов. Геометрический подход позволил установить следующий важный факт селективность в случае конкурирующих реакций может существенно меняться в зависимости от числа и расположения центров. Это привело к развитию представлений об ансамблях , или специфических группировках атомов на поверхности катализатора, и о структурной чувствительности реакций, скорости которых зависят от размера частиц катализатора, возможности образования сплавов и других факторов. [c.10]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]

    И. Лэнгмюр в своей теории учитывал только энергетически неоднородную поверхность, считая, что поверхностные частицы с ненасыщенными валентностями создают элементарные участки с более высокими потенциалами. Однако такие молекулы не занимают особого положения с точки зрения геометрии и структуры поверхности. Теория Лэнгмюра сводится к трем постулатам 1) поверхность состоит из ограниченного числа идентичных участков, 2) нет взаимодействия между адсорбированными молекулами и 3) образование хемосорбированного монослоя. Такие условные ограничения значительно лимитируют понимание сути гетерогенного катализа . Хорошо известно, что чем более неоднородна поверхность, тем интенсивнее и с тем большим термическим эффектом протекают адсорбция и хемосорбция, неразрывно связанные с гетерогенным катализом. [c.107]

    В адсорбционной хроматографии следует рассматривать диффузию не только в подвижной фазе, но и на поверхности адсорбента, Вероятно, хотя и не доказано экспериментально, теплота адсорбции и геометрия адсорбента должны определять скорость поверхностной диффузии и, следовательно, влиять на размывание зоны. [c.71]

    В отличие от теории Лангмюра йт адсорбционная емкость насыщенного монослоя определяется только геометрией молекул адсорбтива — площадью 5о, которую занимает одна молекула в насыщенном монослое. В теории Лангмюра аналогичная константа Яоо есть предельное значение удельной адсорбции при заполнении всех активных центров, которое может быть меньше, чем йт. [c.42]

    Высокая чувствительность термодинамических характеристик адсорбции (удерживания) на ГТС м геометрии молекул [c.18]

    Твердый адсорбент фиксирует на своей поверхности положение реакционноспособной группы или центра адсорбции. Взаимодействие соответствуюш,их функциональных групп молекулы образца с этими центрами адсорбции меняется с геометрией молекулы, становясь сильнее тогда, когда положение группы и центра адсорбента примерно совпадают. В результате относительная адсорбция различных изомеров изменяется чаще, чем удерживание, напри-мер, в жидкостных системах (жидкостная распределительная хроматография). Ниже приведены коэффициенты селективности а при разделении некоторых изомеров ме- [c.60]

    Обработка палыгорскита известью, произведенная по первому способу, приводит к уменьшению тепловых эффектов, выделяющихся при смачивании образцов водой. Все образцы откачивали равное время при одинаковых условиях (табл. 7). Уменьшение теплот смачивания палыгорскита, обработанного известью, происходит за счет действия двух факторов — уменьшения доступной для адсорбции поверхности минерала (агрегация в пачки, частичное смыкание цеолитных каналов) и изменения природы поверхности минерала в результате взаимодействия с известью. Известно, что поверхность палыгорскита характеризуется энергетической гетерогенностью [321, 353, 354]. Неоднородность поверхности связана с наличием активных центров различной природы — октаэдрические катионы на боковых стенках каналов, обменные катионы, атомы кислорода на внутренней поверхности каналов и на внешней поверхнос-сти игольчатых частичек минерала, гидроксильные группы, специфика геометрии самой поверхности палыгорскита. Наиболее вероятно, что многие из этих адсорбционных центров, особенно кислотного характера, вначале поверхностного взаимодействия с гидроокисью кальция блокируются. При этом новообразования обладают меньшей энергетической активностью. Такой вывод кажется вполне закономерным, если учесть падение интенсивности эндоэффектов на термограммах палыгорскита обработанного известью. Эндоэффекты 120, 150, 280° и широкий максимум 470—500° появляются на кривых ДТА палыгорскита за счет удаления, соответственно, молекул воды, свободно размещенных в цеолитных каналах молекул воды, адсорбированной на поверхности кристаллов по наружным разорванным связям связанных с октаэдрическими катионами на боковых стенках каналов и постепенного исчезновения структурных гидроксилов [359]. Таким образом, снижение интенсивности перечисленных эндоэффектов, наряду с уменьшением теплот смачивания, свидетельствует о преимущественном взаимодействии Са(0Н)2, прежде всего, по энергетически наиболее выгодным центрам внешней и внутренней поверхности минерала. Очень интересно, что, несмотря на снижение энергетической активности поверхности палыгорскита, в результате частичного блокирования первичных центров неоднородности поверхности, общее количество связанной воды не уменьшается и выделение ее идет за счет дегидратации гидратных новообразований. Этот вывод можно сделать на основании сравнения потерь при прокаливании обработанных и не обработанных известью образцов и сопоставления нх с характером кривых ДТА. Как видно из табл. 7, потери веса в интервале 80—400° С у обработанных известью образцов не уменьшаются, а интенсивность присущих палыгорскиту эндоэффектов понижается. Общая протяженность [c.134]


    На рис. 8 показано влияние формы, или геометрии, слоя на эффективность адсорбции водяного пара в динамической системе при различных [c.39]

    Обратноосмотические мембраны отличаются от других типов мембран (ионно-обменных, непористых, ультрафильтрационных) невысокой плотностью поверхностного заряда, малыми размерами пор (г 20 30 А) и отрицательной адсорбцией растворенного вещества, связанной с дальнодействием поверхностных сил. Поэтому в первом приближении можно использовать для расчетов модель незаряженных пор. Ввиду малости размеров пор и неопределенности их геометрии целесообразным упрощением является введение средних скоростей течения жидкости в порах и//и (где т — пористость мембраны), средних коэффициентов диффузии растворенного вещества в поровом пространстве а, также осредненных по сечению пор значений концентрации С и потенциала взаимодействия молекул с поверхностью пор Ф = i//k7. Расчет осредненных значений и Ф применительно к различным моделям пористой структуры (цилиндрические и щелевые поры) сделан в работах [28—30]. [c.300]

    Диаграмма для непористого, но очень тонко дисперсного объемистого кремнезема показывает отклонение от /-кривой стандартного вида. Этот факт, как полагают де Бур и др., обусловлен адсорбцией вещества вблизи точек контакта очень небольших частиц кремнезема. Авторы предложили уравнение адсорбции с учетом геометрии упаковки частиц. [c.642]

    Пористые материалы классифицируются не только по геометрии пор, но и по их размерам. Существует ряд классификаций именно по этому признаку 51 ]. Деление, предлагаемое тем или иным автором, является чисто условным. Так, М. М. Дубинин определяет три типа пор макропоры, для которых нижний предел радиуса кривизны можно принять 100—120 нм (1000—1200 А) переходные поры, у которых эффективный радиус кривизны лежит в пределах от 120 до 1,5 нм и, наконец, микропоры с радиусом менее 1,5 нм [68]. А. В. Киселев основными признаками для отнесения адсорбентов к тому или иному типу структуры считает характеризующие их изотермы адсорбции всего же выделено четыре типа [69]. И. Е. Неймарк расширяет классификацию Киселева до пяти типов, вводя уточнение в виде подгрупп с их характеристикой [51, 65]. [c.62]

    Предельная адсорбция выражается через площадь 5о, занимаемую в насыщенном слое одной молекулой (посадочную площадку молекулы). В сл чае простой геометрии адсорбированных молекул выражается через их размер. Если считать, что молекула — это сфера радиусом г, то о и тогда справедливы со- [c.548]

    Условия эксперимента не всегда позволяют довести адсорбцию до ее предельной величины Х , и поэтому последняя должна находиться экстраполяцией серии измеренных значений адсорбции к предельной величине. Обычно для этого измеряется адсорбция при различных концентрациях адсорбируемого компонента в дисперсионной среде. Чаще всего используется адсорбция газов с простой геометрией молекул (аргон, азот) при различных давлениях газа. В силу малой адсорбционной активности простых молекул опыты приходится проводить при низких температурах (порядка температуры кипения жидкого азота). Можно использовать адсорбцию более активных веществ (пары воды, спирта, растворенных веществ), но тогда снижается достоверность вычисленного значения посадочной площадки молекулы сорбированного вещества (сорбата), а главное — теряется уверенность в независимости этой величины от химической природы адсорбента (материала, на поверхности которого адсорбируются химически активные молекулы). [c.549]

    Однако геометрия адсорбции не является, по-видимому, единственным фактором, влияющим наряду с наличием укороченных связей на скорость гидрирования, в частности на платиновом катализаторе. Различия в геометрии, очевидно, недостаточны для объяснения значительной разницы в скоростях гидрирования бензола, дифенила и нафталина. Необходимо учитывать влияние продуктов гидрирования и соотношения между гидрируемым веществом и водородом на поверхности катализатора. В случае гидрирования на платиновом катализаторе в проточной установке бйли вычислены коэффициенты торможения (Р) по уравнению Фроста [c.156]

    При рассмотрении различных вариантов адсорбции циклоалкенов на поверхности разных катализаторов в обзоре [34] сделан вывод, что скорость миграции двойной связи зависит от геометрии переходного комплекса, обусловленного природой катализатора. В работах [1, 34, 35] приведены данные по стереоселективности гидрирования различных циклоалкенов над Pt, Pd и другими металлами VIII группы. Рассмотрение полученных [c.31]

    Основные положения я-комплексной адсорбции были развиты в работах [15, 18, 99] и сводятся к следующему. Насыщенные углеводороды и алкены могут реагировать путем превращений диадсорбированных частиц, а-связанных с поверхностными атомами металла и сохраняющих тетраэдрическую геометрию углеродных связей. Но если в молекуле имеется цепь из трех и более нечетвертичных углеродных атомов, то маловероятно, чтобы диссоциативная адсорбция такого соединения происходила путем образования а-связей с тремя и более атомами металла. Диссоциативная адсорбция таких мо- [c.52]

    В процессах адсорбции также важны стерические факторы — геометрия поверхности адсорбента и адсорбированной молекулы, однако при адсорбции размер молекул играет бэльшую роль, чем их форма. [c.76]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Расчет адсорбционных процессов в неподвижном слое адсорбентов предлагается осуществлять с учетом двух основных факторов, влияющих на характер развития процесса нелинейности изотермы адсорбции и кинетики, определяемой внутренней и продольной диффузией. Представлены аналитические решения вну-тридиффузионных процессов адсорбции на зернах различной геометрии для произвольной нелинейной изотермы с постоянным и переменным эффективными коэффициентами диффузии, функционально зависимыми от степени заполнения адсорбционного пространства адсорбатом. Установлена связь между кинетическими и равновесными характеристиками процесса. [c.5]

    Среднестатистическая сдвинутость адсорбционного слоя внутрь фазы по сравнению с поверхностью раздела чистых жидкостей подтверждается исследованием энергетики процесса адсорбции в системах жидкость — жидкость [14]. Приведенное объяснение показывает влияние и растворимости, и геометрии молекул ПАВ на тип эмульсии. [c.421]

    Химия поверхности твердых тел и изменение адсорбционных свойств адсорбционным и химическим модифицированием поверхности. Межмолекулярные взаимодействия с твердым телом и возможность их изучения с помощью хроматографии. Простейший неспецифический адсорбент с однородной поверхностью — графитированная термическая сажа высокая чувствительность адсорбции к геометрии молекул и разделение структурных изомеров. Возможность определения структурных параметров молекул с помощью адсорбционной хроматографии (хроматоструктурный анализ, хроматоскопия). Применение углеродных адсорбентов как накопителей вредных примесей из окружающей среды. [c.5]

    На рис. 9.11 показаны (для одной и той же температуры) зависимости К1 от числа атомов углерода в молекуле полиметилбензолов и моно-н-алкилбензолов. Основной причиной различия термодинамических характеристик адсорбции изомерных полиметил- и моно-н-алкилбензолов на ГТС является различие геометрии их молекул. Плоские молекулы полиметилбензолов могут выгоднее располагаться на плоской поверхности ГТС по сравнению с молекулами моно-н-алкилбензолов. В последнем случае внутреннее вращение в алкильной цепи приводит к тому, что расстояния между атомами молекулы и базисной гранью графита увеличиваются и энер- [c.179]

    При уточнении экспериментальных значений констант Генри и атом-атомных потенциалов межмолекулярного взаимодействия при адсорбции хроматоскопический метод из-за его высокой чувствительности к некоторым структурным параметрам молекул сможет стать важным дополнением к ряду других методов изучения структуры молекул, в частности молекул множества биологически активных веществ и их метаболитов, достаточно сильно различающихся по геометрии. [c.204]

    Природа адсорбц. сил м. б. весьма различной. Если это ван-дер-ваальсовы силы, то А. наз. физической, если валентные (т.е. А. сопровождается образованием поверхностных хим. соединений),-химической, или хемосорбцией. Отличит, черты хемосорбции-необратимость, высокие тепловые эффекты (сотни кДж/моль), активированный хараггер. Между физ. и хим. А. существует множество промежут. случаев (напр.. А., обусловленная образованием водородных связей). Возможны также разл. типы физ. А. Наиб. универсально проявление дисперсионных межмол. сил притяжения, т. к. они приблизительно постоянны для адсорбентов с пов-стью любой хим, природы (т.иаз. неспеци-ф и ч. А.). Физ. А. может быть вызвана электростатич. силами (взаимод. между ионами, диполями или квадруполями) при этом А. определяется хим. природой молекул адсорб-тива (т. наз. специфич. А.). Значит, роль при А. играет также геометрия пов-сти раздела в случае плоской пов-сти говорят об А. на открытой пов-сти, в случае слабо или сильно искривленной пов-сти-об А. в порах адсорбента. [c.39]

    С// = С(1// т+1//С/ т) где / —доза при концентрации С действующего вещества, / т —максимальная доза при насыщенных рецепторах, К — константа, характеризующая действие вещества иа рецепторы. В результате адсорбции изменяется локальная геометрия и строение поверхности мембраны, что приводит к появлению соответствующего вкусового ощущения. Гипотеза Бейд-лера вскоре былатодтверждена [8]. [c.9]

    Результаты зкспериментов разных авторов подтверждают многие из сделанных здесь выводов [6, 7, 10—13, 23]. Любопытны результаты, полученные Израелашвили с соавт. [11], которые исследовали нарушения контакта между поверхностями упругих тел (слюда), модифицированных путем адсорбции на них молекул ПАВ, что выбывает одновременное изменение величин ф и е в потенциале взаимодействия. Хотя геометрия контакта и характер отрыва в основном, ло-видимому, соответствовали теории ДКР, поскольку радиусы кривизны поверхностей были велики, сила отрыва при известной удельной работе адгезии лучше описывалась формулой (ХП.7), отвечающей подходу ДМТ. [c.391]

    Адсорбция как физическая, так и химическая обусловливается избыточной свободной энергией поверхности. Если валентные связи между атомами и ионами, расположенными внутри объема твердого тела, взаимно скомпенсированы (насыщены), то таковой ком-пенсированности межмолекулярных сил на его поверхности (как и на поверхности жидкости) не происходит. Кроме того, поверхность твердого тела не является идеально гладкой, а имеет многочисленные ультрамикроскопические выступы и углубления различных форм в зависимости от геометрии кристаллической решетки. Сама кристаллическая решетка также не всегда идеальна и однородна, и на ней имеются различного рода дефекты и примеси. Естественно, степень компенсированности валентных сил на различных участках неоднородной поверхности твердого тела различна и, следовательно, неоднородна адсорбционная активность этой поверхности. Наиболее активные участки (центры) поверхности будут более энергично адсорбировать (хемосорбировать) молекулы реактантов. Отсюда следует вывод о том, что адсорбция (хемосопбиия ) неоднородна. [c.421]

    Процесс гетерогенного катализа состоит в адсорбции реагирующих молекул поверхностью катализатора, реакции между ними и десорбции, т. е. отделении от поверхности продуктов реакции. Адсорбция приводит реагирующие молекулы в состояние тесного соприкосновения, изменяет структуру их электронных оболочек и может понизить энергию активации. Как показал Баландин в своей мультиплетной теории катализа [9], важнейшую роль в процессе играет геометрическое структурное соответствие между поверхностями катализатора и сорбируемой молекулы. Металлический катализатор обладает кристаллической структурой. Если симметрия его кристаллической решетки и межатомные расстояния соответствуют геометрии молекул реагентов, то последние могут эффективно сорбироваться и приходить в необходимое для реакции состояние в результате взаимодействия с атомами металла. Так, реакция гидрирования бензола СйНеЗНа СбН12 катализируется платиной, никелем и некоторыми другими металлами, но не железом, серебром и т. д. Молекула бензола — правильный шестиугольник с длинами связей С—С, равными 1,4 А. Атомы на поверхности кристаллического никеля и других эффективных катализаторов также располагаются в виде шестиугольников, примерно на тех же расстояниях, что и в бензоле [10]. Напротив, атомы некатализирующих эту реакцию металлов либо размещаются по-иному, либо обладают неподходящими размерами. [c.359]

    Помимо важной роли в развитии теории адсорбции (см. разд. 1 гл. I) графитированные термические сажи представляют также интерес как эталонные углеродные непористые адсорбенты с однородной поверхностью при изучении свойств термически необработанных саж, графитов, коксов и активных углей. В частности, сопоставление с графитированной термической сажей важно при изучении адсорбционных свойств новых важных адсорбентов — неокисленных молекулярно-ситовых углей [1—7]. В последнее время графитированная термическая сажа приобрела важное значение в газовой хроматографии [8—16], в особенности как адсорбент для разделения структурных и пространственных изомеров [9, 10, 12, 17, 18] и других соединений, отличающихся геометрией молекул [10, 18], а также дейтери-рованпых [И, 19—22], фторированных [23, 24], хлорированных, бромированных и иодированных углеводородов и их производных [25] и ряда элементорганических соединений [26, 27]. Кроме того, графитированные сажи применяются как носители слоев труднолетучих и высокомолекулярных веществ [28—31]. Графитированная сажа с успехом применяется также как носитель однородных адсорбционных слоев более высококипящего адсорбата (например, ксенона или этилена) при изучении адсорбции на поверхности таких слоев при низкой температуре более низкокипящего адсорбата (аргона) [32—37]. [c.40]


Смотреть страницы где упоминается термин Геометрия адсорбции: [c.128]    [c.82]    [c.86]    [c.12]    [c.163]    [c.18]    [c.48]    [c.429]    [c.927]   
Смотреть главы в:

Катализ стереохимия и механизмы органических реакций -> Геометрия адсорбции




ПОИСК





Смотрите так же термины и статьи:

Высокая чувствительность термодинамических характеристик адсорбции (удерживания) на ГТС к геометрии молекул

Геометрия переходного состояния при адсорбции

Роль геометрии адсорбции в катализе



© 2025 chem21.info Реклама на сайте