Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности процессов в жидкой фазе

    Большинство промышленных химико-технологических процессов относится к гетерогенным, но гетерогенные процессы часто включают в качестве одной из стадий гомогенный химический процесс в газовой или жидкой фазе. В гомогенных средах, особенно в жидкой фазе, химические реакции происходят быстрее, чем в гетерогенных, аппаратурное оформление гомогенных процессов проше и управление ими легче. Поэтому в промышленности широко используют прием гомогенизации системы для проведения химического процесса в однородной среде чаще всего применяют поглощение газов жидкостью или конденсацию паров, растворение или плавление твердых веществ для получения жидкой реакционной среды. [c.99]


    При чисто термическом крекинге при 500° из н-парафинов образуются насыщенные и ненасыщенные продукты расщепления. Если процесс проводят быстро, то получаются олефины с концевой двойной связью при длительном крекинге, особенно в жидкой фазе под давлением, двойная связь перемещается к середине цепи. Вначале, очевидно, образуются свободные радикалы, которые распадаются на олефин и иа новый, меньший радикал. Последний может затем реагировать аналогичным путем или присоединять И- или СН.з с образованием насыщенного углеводорода. Из всех алкильных радикалов наибольшее значение при термическом крекинге имеет - СНз, так как он является наиболее устойчивым. При достаточно длительной реакции и высоких температурах в конце концов все вещество превращается в метан, водО род и сажу. [c.88]

    При термическом крекинге для углубления процесса может применяться необогреваемая выносная реакционная камера, в которую продукты крекинга подаются непосредственно из змеевиков печи. Выносная камера бывает вертикальной с восходящим либо нисходящим потоком, иногда она выполняется в виде горизонтальной емкости. При восходящем потоке в камере происходит задержка и глубокое разложение жидкой фазы. В случае нисходящего потока жидкая фаза быстро выводится из камеры, а пары задерживаются относительно длительное время и крекируются. Особенно эффективна камера в том случае, когда на установке производится раздельное крекирование легкого и тяжелого сырья. Направляемые в камеру продукты глубокого крекинга передают часть тепла продуктам, поступающим из печи легкого крекинга, и тем самым способ- [c.177]

    Количество насыщенного водяного пара, определяемое по уравнению (11.40), необходимо для обеспечения суммарного давления паров равновесной системы, отвечающей данной температуре. В реальных условиях процесс перегонки ведется с конечной скоростью и поэтому жидкая и паровая фазы фактически не имеют достаточного времени для достижения полного равновесия. Если при этом учесть еще хотя и небольшую, но все же имеющуюся взаимную растворимость отгоняемого компонента с водой, а также и сопротивления массопередаче и теплопередаче в реальном процессе, то будет ясно, что парциальные давления компонентов в жидкой фазе будут несколько меньше, чем соответствующие теоретические значения. Эта особенность процесса учитывается обычно введением некоторого поправочного коэффициента насыщения В, приближенно определяемого выражением  [c.79]


    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Общий выход хемилюминесценции ц в химических реакциях обычно очень мал 10 —10 ° и даже Ю . В редких случаях он достигает нескольких процентов. Причиной этого может являться, с одной стороны, небольшая вероятность образования возбужденных молекул продукта, особенно в жидкой фазе. Эта вероятность уменьшается, если в реакции образуется несколько различных молекул. С другой стороны, обычно мал и выход люминесценции г л, так как с ней успешно конкурируют процессы безызлучательной дезактивации тушение, внутренняя дезактивация и пр. [c.120]

    Режим такого процесса следует подрабатывать в каждом отдельном случае. Особенно необходимо следить за pH среды, который для акрилатов должен быть в пределах 5,5—8. Он влияет на величину образующихся зерен полимера например, при pH выше 8 получают слишком мягкий продукт при pH ниже 5,5 — хлопьевидный осадок. При хорошо налаженном процессе жидкую фазу можно использовать для полимеризации новых порций мономера. Процесс пригоден для полимеризации акрилатов илн метакрилатов, но не стирола или виниловых эфиров . [c.178]

    В зависимости от типа катализатора и условий синтеза можно получать преимущественно бензин, дизельное топливо или твердый парафин. Процессы в жидкой фазе отличаются хорошим теплоотводом, высокой селективностью, равномерной нагрузкой на катализатор, простотой аппаратурного оформления и высокой производительностью. Процессы в стационарном слое катализатора с циркуляцией газа, особенно в жидкой фазе с суспендированным в масле катализатором, наиболее селективны (наименьший выход метана), отличаются высокой производительностью, хорошим теплообменом, сравнительно низкими температурой и давлением реакции. Из газов с отношением На СО от 0,6 до 2,0 (можно использовать отходящие газы ряда производств) получают преимущественно либо бензин, либо бензин и дизельное топливо, ли- [c.15]

    Возможно, что сравнительная легкость окисления сложных углеводородов и других органических соединений (в особенности в жидкой фазе) при температуре около 100—150°С определяется именно такого типа процессами первичного зарождения цепей ВНЧ-0=0 В + НОд. Поскольку в сложных углеводородах отрыв атома Н требует значительно меньшей энергии, чем в случае водорода (103 ккал), и снижается нередко до 80—90 ккал, энергия активации таких реакций составит, вероятно, около 40 ккал при такой энергии активации процесс пойдет с небольшой скоростью уже при температурах, близких к комнатной. [c.242]

    Возможно, что сравнительная легкость окисления сложных углеводородов и других органических соединений (в особенности в жидкой фазе) ири температуре около 100—150° С определяется именно такого тина процессами первичного за- [c.393]

    Вследствие того, что возбужденная ароматическая молекула не разлагается немедленно, она успевает рассеять полученную энергию в столкновениях с окружающими молекулами (особенно в жидкой фазе). Таким образом, распад ароматических молекул очень невелик и, соответственно, в ароматической среде невелика скорость инициирования цепных реакций. Это усложняет радиационное реагирование ароматических соединений, если они дают начало цепи, например, в реакциях окисления их кислородом. Если же цепи инициируются в результате распада другого реагента (например, хлора при хлорировании), то радиационнохимический процесс протекает с большей эффективностью. [c.54]

    Турбулизация потоков жидкости и пара повышает коэффициенты массоотдачи, но сопровождается неизбежным перемешиванием, способствующим выравниванию концентраций как по сечению, так и по длине потоков каждой из фаз. Продольное перемешивание, особенно в жидкой фазе, вызывает снижение движущей силы процесса ректификации в реальных аппаратах, приводящее к тем более ощутимому ухудшению разделительного действия колонны, чем выше коэффициенты продольной диффузии (перемешивания), и чем меньше скорость движения данной фазы. [c.382]


    Процессы химической абсорбции, рассмотренные в главах 2—4, имеют ту особенность, что распределение концентрации реагента в жидкой фазе не влияет на процесс диффузии — реакции абсорбирующегося компонента. В общем такое допущение неправомерно, хотя и приемлемо для большого ряда практических случаев. Представленный в разделе 1.5 случай абсорбции, сопровождающейся мгновенной реакцией, является наиболее важным примером процесса химической абсорбции, для которого распределение концентрации жидкого реагента влияет на общую скорость абсорбции. [c.58]

    Закономерности кинетики реакций в жидкостях имеют ряд особенностей, отличающих их от более простых законов кинетики газовых реакций. В данной главе будут рассмотрены общие принципы кинетики химических реакций в жидкостях для относительно простого случая гомогенных химических реакций и вытекающие из них следствия, полезные для феноменологического описания процессов химического превращения в жидкостных реакторах. Более детальное изложение кинетики гомогенных химических реакций в жидкой фазе дано в монографиях [1] и [2]. [c.27]

    С точки зрения теоретического обобщения условий протекания процесса ректификации, речь идет об определении соотношений ряда переменных величин, которыми, с одной стороны, являются веса и составы контактирующих потоков на различных ступенях процесса, а с другой,—тепловые свойства, температура и теплосодержания этих потоков паров и флегмы на различных уровнях по высоте колонны. Эти соотношения в общем виде выводятся аналитическим путем и наиболее просто и удобно представляются графически на рассмотренной ранее тепловой диаграмме, дающей теплосодержания единицы веса насыщенных фаз в функции их составов. На той же диаграмме путем проведения семейства конод или путем ее сопоставления с изобарными равновесными кривыми кипения и конденсации оказывается возможным представлять графически условия равновесного сосуществования паровых и жидких фаз, и это обстоятельство делает их применение к анализу работы ректификационной колонны особенно эффективным. [c.69]

    Некоторые химические процессы, и особенно процессы окисления органических продуктов кислородом в жидкой фазе, протекают через стадии образования перекисных соединений, которые могут быть причиной аварии. [c.136]

    Однако возможность производства высокопластичных битумов, вероятно, не связана с особенностями работы, присущими только трубчатому реактору (краткое время пребывания реагентов в зоне реакции при значительной рециркуляции жидкой фазы). Можно предположить, что получение высокопластичных битумов связано с тем, что процесс осуществляется при повышенном давлении, поскольку известно [11, 60], что при проведении процесса под давлением, примерно соответствующим давлению в трубчатых реакторах, высокопластичные битумы получаются и в других окислительных аппаратах. Так, при окислении в колонне гудрона с температурой размягчения 38 °С повышение давления с 0,2 до 0,4 МПа приводит к увеличению температуры размягчения битума с пенетрацией 42-0,1 мм с 60 до 65 °С [97]. Но это требует дополнительного изучения, причем следует учитывать, что обычно высокопластичные битумы получают из более легкого сырья, т. е. потеря некоторой части дистиллятных фракций предпочтительнее дополнительных затрат, связанных с окислением при повышенном давлении. [c.71]

    Первой важной особенностью структуры ФХС является иерархичность строения. Например, в любом контактно-каталитическом процессе можно четко выделить несколько уровней иерархии явлений 1) явления на атомарно-молекулярном уровне, происходящие в объеме газовой илп жидкой фазы 2) совокупность явлений на твердой поверхности зерна катализатора 3) множество физико-химических явлений на единичном зерне катализатора  [c.31]

    Фильтрационный эффект состоит в том, что при фильтровании чистых жидкостей через пористую перегородку сопротивление ее иногда неожиданно и резко возрастает. Это можно объяснить, в частности, возникновением поверхностных процессов на границе раздела твердой и жидкой фаз. Однако наиболее вероятной причиной увеличения сопротивления пористой перегородки является, по-видимому, выделение из жидкости пузырьков растворенного в ней газа статическое давление жидкости по мере прохождения ее через пористую перегородку падает и растворимость газа в жидкости соответственно уменьшается. Выделение газа из жидкости особенно вероятно в том случае, когда фильтрование проводят в вакууме. Не исключена возможность, что в некоторых опытах по разделению суспензий фильтрованием увеличение удельного сопротивления осадка частично можно объяснить выделением пузырьков газа как в фильтровальной перегородке, так и в самом осадке. [c.206]

    При фильтровании суспензии, содержащей жидкую фазу с большой вязкостью, течение жидкости через поры осадка и фильтровальной перегородки происходит медленно и фильтр работает с относительно небольшой производительностью. При фильтровании суспензии, содержащей жидкую фазу с небольшой вязкостью, но характеризующейся высоким объемным содержанием твердых частиц, жидкость протекает через поры осадка и фильтровальной перегородки с достаточной скоростью и фильтр работает с относительно хорошей производительностью. В этом случае в особенности повышается производительность фильтра по осадку, так как процесс разделения проводится при благоприятном отношении объема осадка к объему фильтрата. Таким образом, при разделении суспензии, отличающейся большой вязкостью, неблагоприятное влияние на скорость фильтрования оказывает большая вязкость ее жидкой фазы. [c.301]

    В жидкой фазе молекулы растворителя, адсорбируясь на поверхности катализатора, непосредственно влияют на ее состояние, заряд, свободную энергию и распределение электронов на поверхностных уровнях. Наличие жидкой фазы ох еделяет возможность протекания реакций каталитического гидрирования и окисления по электрохимическому механизму, т. е. путем прямого перехода электронов реагирующих молекул к электроду-катализатору [74, 75]. Близость каталитических и электрохимических жидкофазных процессов позволяет широко применять электрохимические методы при исследованиях состояния катализатора в ходе реакции, механизма реакции и кинетики процессов. Особенно много в этом направлении сделано Сокольским [75, 76]. [c.42]

    Выделяющиеся при высоких температурах смолы и высокомолекулярные ароматические углеводороды способны извлекать из раствора пропана благодаря влиянию дисперсионных сил остающиеся в нем нежелательные компоненты. В результате в верхней части деасфальтизационной колонны совмещаются процессы фракционирующего разделения пропаном и селективной экстракции избирательным растворителем (смолы, полициклические ароматические углеводороды). Этот процесс можно назвать ректификационной экстракцией . Фракционирование сырья растворителями, находящимися близко к критическому состоянию, имеет свои особенности по сравнению с противоточным экстракционным процессом при помощи избирательных растворителей. Главное различие заключается в том, что при существовании температурного градиента в обычной многоступенчатой экстракционной колонне самопроизвольно возникает внутренняя циркуляция только той жидкой фазы, которая подается на. более холодном [c.68]

    Исследоваине влияния давления иа эффективность процесса НТК показало, что повышение давления увеличивает степень конденсации углеводородов, но уменьшает селективность (избирательность). Снижение температуры при постоянном давлении наряду с увеличением стеиепи кондеисацин приводит к увеличению селективности тяжелые углеводороды переходят в жидкую фазу быстрее. Установлено также, что в процессе НТК не достигается равновесие газовой и жидкой фаз л<идкая фаза по составу тяжелее, чем равновесная, а газовая легче. Это объясняется более быстрым протеканием процессов теплообмена по сравнению с массообменом, особенно в жидкой фазе, что и вызывает ее переохлаждение. При расчете процесса НТК в соответствии с фазовым равновесием реальный процесс будет эффективнее расчетного. [c.158]

    При возникновении Н-связи энергия и энтальпия системы уменьшаются, поэтому IS.U и ДЯ отрицательны. (Энергия или энтальпия начального состояния вычитается из энергии или энтальпии конечного состояния). Для описания изменений состояния системы в результате реакций образования Н-связей пользуются как величинами АЯ, так и величинами Д /. Но в жидкой фазе различием между Дб и ДЯ = Дi/ + -fPДV можно пренебречь, так как изменение объема мало и ЯДУ < А 6/. Реакция (И1.15) может сопровождаться рядом других побочных явлений, особенно в жидкой фазе, поэтому экспериментальные значения д и или Д Я нередко представляют собой результат наложения не-сколькнх процессов. Чтобы пояснить, о чем идет речь, рассмотрим реакцию образования кольцевых димеров уксусной кислоты  [c.59]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Обшие особенности влияния жидкой фазы на гомолитические процессы проанализированы в работе [4]. Мы остановимся отдельно только на влиянии клеточного эффекта, в том числе в полимерной матрице, и высокого давления на термолиз пероксидов в растворе, поскольку клеточный эффект существенно влияет на общую скорость термолиза и выход радикальных продуктов в объем, а изучение влияния давления позволяет выявить ряд особенностей механизма термолиза. Следует подчеркнуть, что механизм гомолиза не очень чувствителен к свойствам среды, так как при этом не происходит существенного перераспределения зарядов в молекуле пероксида. Однако при наличии конкуренции простого гомолиза и других маршрутов термолиза, включающих нерадикальные перегруппировки, и особенно гетеролитические превращения, изменение свойств растворителя может оказать решающее воздействие на механизм термолиза. [c.201]

    Одной из особенностей цепного разветвленного механизма является автоускоренный и самоподдерживающийся характер развития процесса. В случае цепных реакций окисления органических веществ, особенно в жидкой фазе, период начального ускорения оказывается сильно затянутым во времени, что проявляется в виде значительных периодов индукции. [c.386]

    Приведенные данные о зависимости скорости образования Сз5 от тем пературы указывают на преимущественное выкристал-лизовывание алита из расплава. При таком механизме процесса чрезвычайно важное зачение приобретают свойства среды, в которой протекает реакция образования Сз5, особенно вязкость жидкой фазы и подвижность ионов в ней. В самом деле, только при достаточно низкой вязкости жидкой фазы и высокой подвижности ионов Са2+ будет обеспечено интенсивное перемешивание микрообъемов расплава, обогащенных известью и кремнеземом, [c.329]

    Процесс гидрогенизации представляет собой в первом приближении сумму процессов гидрирования и крекинга. Тепло реакции гидрогенизации слагается из теплот двух этих процессов. При л<идкс фазной гидрогенизации твердого сырья сюда добавляется еще его теплота растворения. Определение этих составляю-П1ИХ в большинстве случаев практически неосуществимо, особенно для жидкой фазы. Поэтому приходится ограничиваться определением суммарного теплового эффекта реакции. Для того чтобы подсчитать эту величину, составляют тепловой и материальный [c.381]

    Для оольшинства углеводородов, особенно в жидкой фазе, характерны автокаталитические окислительные реакции, протекающие по механизму вырожденных разветвленных цепей с первоначальным образованием органических перекисных и бескислородных радикалов ROg и Й. Для этих процессов характерны периоды индукции и чувствительность к действию инициирующих и ингибирующих примесей. Часто реакции начинаются на стенках реактора. Сходные явления встречаются и в катализе, считающемся часто гетерогенным [7]. В нашей лаборатории несколько лет изучается действие органических [8] и неорганических катализаторов [9] на окисление жидких углеводородов, начинающееся с образова- [c.46]

    Уже из приведенного выше материала видно, что газофазное нитрование протекает более сложно, чем нитрование в жидкой фазе или хлорирование в газовой и в жидкой фазах. Расшифровку результатов газофазного нитрования особенно затрудняют деструктивные процессы, приводящие к образованию низших нигропарафинов. Поэтому факторы, влияющие на образование нитропарафинов при газофазном нитровании углеводородов, особенно пропана, были в последнее время изучены повторно состав продуктов реакции определяли не ректификацией, а гораздо более быстрым масс-спектроскопическим методом [90]. [c.570]

    После активации шарики промывают водой для удаления избытка активирующего раствора (главным образом ионов SOI ) и образовавшихся в результате реакции вредных для катализатора соединений к таким соединениям в первую очередь относится натрий. При промывке не только изменяется состав жидкой фазы, в которой распределены частицы геля, но и происходит удаленпе растворимых компонентов с поверхности твердых шариков. Постепенно процесс проникает в глубь шариков, в основном извлекая легко растворимые в воде и адсорбированные примеси (в первую очередь сернокислый натрий). Но возможно также растворение и основных компонентов — окислов кремния и алюминия. Растворимость их, хотя практически и ничтожна, но не равна нулю. Молекулы гидрогеля будут переходить в истинный пли коллоидный раствор прежде всего с поверхности, и таким образом при промывке (особенно длительной) поверхность шариков будет сглаживаться. Промывка катализатора от посторонних растворимых солей начинается еще в процессе актива- [c.60]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Процесс гидрообессеривания остаточного сырья характеризуется рядом специфических особенностей. Это большие диффузионные затруднения дпя протекания основных реакций, обусловленные наличием значительной жидкой фазы в зоне реакции и большими размерами молекул сырья. Другой важный фактор - быстрая дезактивация катализатора, обусловленная высоким содержанием коксообразующих и металлсодержащих соединений. Все это резко снижает м >фективность реакции удаления серы. В качестве примера могут быть приведены результаты изучения влияния металлсодержащих порфиринов и асфальтенов на степень гидрогенолиза тиофена. В качестве модельного соединения использован протопорфирин IX диметилэф1фа и асфальтены, выделенные из нефти. Добавление соответственно 6 и 4% этих веществ в гаофен снижает степень его превращения с 72% до нуля (рис. 3.8) [100]. В этой работе показано, что для асфальтенов более характерно отложение на внешней поверхности гранулы катализатора вввду больших размеров их частиц и ассоциатов (до 4—5 нь и, соответственно, создание условий для больших диффузионных затруднений в процессе. Порфирииы, хотя и в большей степени проникают в поры катализатора, также отрицательно влияют на реакции удаления серы из тиофена. [c.113]

    Использование метода одновременного определения скоростей абсорбции, сопровождаемой и не сопровождаемой химической реакцией, как уже говорилось в разделе IX-1-4, особенно необходимо в таком частном случае, когда коэффициент физической массоотдачи в жидкой фазе изменяется в значительной степени при протекании абсорбции с химической реакцией. Примером такого процесса, как установлено в работе П. Л. Т Бриана и др., рассмотренной в разделе Х-1, и Ю. В. Аксельрода, Ю. В. Фурмера и др. , является абсорбция двуокиси углерода растворами аминов. Доп. пер. [c.225]

    Структура осадка прежде всего определяется гидродинамическими факторами, к числу которых относятся пористость осадка, размер составляющих его твердых частиц и удельная поверх1Ность или сферичность этих частиц. Однако на структуру осадка очень сильно влияет и ряд других факторов, которые до некоторой степени условно можно назвать физико-химическими. Такими факторами являются, в частности, степень коагуляции или пептизации твердых частиц суапензии содержание в ней смолистых и коллоидных примесей, закупоривающих поры влияние двойного электрического слоя, возникающего на границе раздела твердой и жидкой фаз в присутствии ионов и уменьшающего эффективное сечение пор наличие сольватной оболочки на твердых частицах (действие ее проявляется при соприкосновении частиц в процессе образования осадка). Вследствие совместного влияния гидродинамических и физико-химических факторов изучение структуры и сопротивления осадка крайне ослоя няется, и возможность вычисления со противления как функции всех этих факторов почти исключается. Влияние физико-химических факторов, тесно связанное с поверхностными явлениями на границе раздела твердой и жидкой фаз, в особенности проявляется при небольших размерах твердых частиц суспензии. По мере увеличения размера твердых частиц усиливается относительное влияние гидродинамических факторов, а по мере уменьшения их размера возрастает влияние физико-химических факторов. [c.14]

    Кундо Н.Н. Особенности кинетики и механизма процессов получения серы при окислении H в газовой и жидкой фазе. //XX Всеросс. конф. по химиии и технолог, орг. соед. серы. Тез. докл. Казань, 1999. с. 35. [c.211]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

    Более полная информация о способах реализации процесса может, быть получена при анализе свойств смеси и отдельных составляющих ее смесей меньшей размерности. Рассмотрим качественно это применительно к стадии выделения целевых продуктов. Обычно смесь, поступающая на разделение, является продуктом химического превращения (это особенно характерно для химических производств) и наряду с целевыми компонентами может содержать исходные реагенты и побочные продукты. При невысокой степени превращения исходные реагенты желательно выделить и возвратить на стадию превращения. Они, таким образом, становятся также целевыми продуктами стадии выделения. Что касается побочных продуктов реакций, то последние, особенно при больших мощностях производства, также могут представлять товарную ценность. Даже не будучи таковыми, они часто должны подвергаться последующей обработке исходя из требований охраны окружающей среды. Следовательно, смесь, поступающая на разделение, может содержать различные по агрегатному состоянию (газообразные или жидкие), по важности (целевые или побочные) и по требованиям на качество продукты. Однако все они составляют единую смесь, свойства которой определяются как свойствами отдельных компонентов, так и степенью их взаимодей-отвия. При наличии неконденсирующихся компонентов (критическая температура которых ниже температуры смеси) возникает вопрос о целесообразности изменения условий или выделения газовой и жидкой фаз на первом этапе разделения. [c.96]


Смотреть страницы где упоминается термин Особенности процессов в жидкой фазе: [c.166]    [c.88]    [c.166]    [c.108]    [c.95]    [c.126]    [c.131]   
Смотреть главы в:

Гетерогенный катализ физико-химические основы -> Особенности процессов в жидкой фазе




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Особенности процесса



© 2025 chem21.info Реклама на сайте