Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции ароматических соединений со спиртами

    При алкилировании ароматических соединений спиртами в качестве катализаторов используют сильные протонные кислоты, например фосфорную, пирофосфорную, серную, хлорсульфоновую, олеум. Карбкатионы из спирта н этих кислот образуются путем следующих равновесных реакций  [c.119]

    Положительно заряженный конец диполя или карбениевый ион являются активными электрофильными агентами, способными взаимодействовать с бензолом или с производными бензола, имеющими в ядре активирующие заместители ароматические соединения с дезактивирующими заместителями в ядре в реакции Фриделя — Крафтса не вступают. В качестве катализатора реакции алкилирования ароматических соединений спиртами и олефинами часто используют минеральные кислоты плавиковую, серную или фосфорную. Действие кислот сводится к образованию [c.119]


    Алкилирование спиртами является предметом многолетних исследований Цукерваника [И. Цукерваник, Докторская диссертация, Ташкент, 1940 Бюллетень Среднеазиатского гос. университета, вып. 25, стр. 45 (1947)]. Мы полагаем, что реакция алкилирования ароматических соединений спиртами в присутствии кислотных катализаторов по праву должна называться реакцией Цукерваника. (Прим. ред.) [c.144]

    При алкилировании ароматических соединений спиртами вместо катализаторов Фриделя — Крафтса часто используются сильные протонные кислоты, например фосфорная, пирофосфорная, серная, хлорсульфоновая, олеум. Карбониевые ионы из спирта и этих кислот получаются путем следующих равновесных реакций  [c.232]

    РЕАКЦИИ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ СО СПИРТАМИ [c.232]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Смешанные катализаторы широко используют на практике для изменения равновесия реакции в требуемом направлении. Так, изменяя состав смеси катализаторов, используемых при гидрировании окиси углерода, можно получать высшие спирты, ненасыщенные или насыщенные углеводороды. Часто смешанные катализаторы используют и при деструктивной гидрогенизации нефтяных фракций. В настоящее время наиболее широко применяются никелевые и медные катализаторы. Никель одинаково легко катализирует гидрирование ациклических и ароматических соединений, медь легко катализирует гидрирование ациклических и труднее ароматических. В последнее время в промышленности при дегидрировании нефтяных фракций начали применять платиновые катализаторы. [c.242]


    Аналогичные синтезы являются весьма удобным методом получения жирноароматических спиртов. При некотором ужесточении условий в реакцию вступает и вторая группа, атакуя вторую молекулу ароматического соединения или приводя к продуктам внутримолекулярной циклизации. Высокая активность функциональных групп при вторичных и третичных атомах углерода затрудняет получение индивидуальных соединений даже при мягких условиях. Применение дополнительных факторов (снижение температуры и активности катализатора, использование растворителей и т. д.) позволяет изменять соотношение реагирующих продуктов в широком диапазоне  [c.135]

    Известно, что при алкилировании бензола первичными спиртами и алкилгалогенидами при контакте с кислотами Льюиса образуются ароматические соединения с изомеризованной и не-изомеризованной структурами алкильных заместителей. При использовании в качестве алкилирующего агента пропанола-1 выход н-пропилбензола в зависимости от условий реакции составляет 15—40%. [c.140]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]

    Изменения эффективности каталитических процессов, осуществляемых при искусственно создаваемом нестационарном состоянии катализатора, можно, по-видимому, ожидать всегда, если эти процессы протекают по раздельному механизму. В частности, по такому пути протекают такие окислительно-восстановительные реакции, как полное окисление водорода, СО, углеводородов и многих других органических веществ при повышенных температурах, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя каким-либо образом взаимодействие окислителя с восстановленным катализатором й затем — взаимодействие исходного вещества (в присутствии окислителя или без него) с вводимым в зону реакции окисленным катализатором, можно часто увеличить активность и (или) избирательность за счет того, что в нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. Примером этого, кроме уже названных процессов, может служить окисление нафталина во фталевый ангидрид на ванадиевом катализаторе [30]. Для этого процесса активность катализатора становится тем большей, чем больше степень окисленности 0, а избирательность процесса практически не зависит от величины 0 нри [c.40]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Помимо гидролиза монохлоридов в спирты, превращения их в амины, меркаптаны, эфиры ксантогеновой кислоты, а также алкилирования ими ароматических соединений, представляют интерес следующие реакции с участием монохлоридов  [c.87]

    Алкилирование. Для алкилирования ароматических соединений можно использовать алкилгалогениды (реакция Фриде-ля — Крафтса), алкены и спирты. Низшие алкены и спирты доступны (алкены выделяют из газообразных продуктов крекинга нефти, а спирты получают из монооксида углерода в присутствии катализаторов или гидратацией алкенов при низкой температуре), поэтому алкилирование бензола этими агентами находит промышленное применение. [c.379]


    Реакция, приводящая к ароматическому соединению, по-видимому, идет через переходное состояние с переносом гидрид-иона от а-атома углерода спирта, а не с переносом атома водорода гидроксильной группы  [c.456]

    Для этой цели могут быть использованы алифатические жирноароматические и ароматические кетоны. Значительно реже для получения третичных спиртов проводят реакции магнийорганических соединений с эфирами, ангидридами или галогеноангидридами карбоновых кислот  [c.214]

    Ароматические соединения, содержащие гидроксильную группу в боковой цепи, проявляют свойства типичных спиртов, сохраняя способность вступать в реакции электрофильного замещения [c.87]

    Константы скорости этих реакций измерены для радикалов СНд и С Н. и ряда других радикалов. Из них наиболее детально изучены реакции метильного радикала (реакции с Н , Ва, СН4, СВ4, СаНе, СгВв, С2Н4, СдНе, С4Н8,..., с циклическими и ароматическими соединениями, спиртами, перекисями, альдегидами, кетонами, кислотами, галогеповодородами, ал-килгалогенидами, аммиаком, алкиламинами, с сероводородом, меркапта- [c.81]

    В реакциях межмолекулярной дегидратации фосфорнокислые катализаторы ведут в основном процессы алкилирования ароматических соединений спиртами [176—180, 182, 183] и конденсации жирных кислот с аммиаком в соответствующие амины [188—193]. В процессах алкилирования высокую активность проявляет бискелетный фосфорнокислый катализатор. Он представляет собой пирофосфорную кислоту, пропитывающую карбосиликагель. На этом катализаторе превращение метанола при алкилировании толуола составляет 80,1% (при 360° С), а выход ксилолов достигает 66% [182, 183]. Подробно о механизме дегидратации и гидратации, термодинамике процессов и кинетических данных см. [405]. [c.465]

    Наиболее чувствительными оказались фотометрические реакции на кетоны С]-Сб (0,1 мкг) с 2,4-динитрофенилтидразином, альдегиды С -С (0,1 мкг) с реактивом Шиффа, ароматические соединения (спирты, эфиры и алкилбензолы) с формальдегидом и серной кислотой (0,07 мкг), а также на меркаптаны (0,07—0,15 мьсг) с нитропруссидом натрия (табл. 6, 7 и 9). [c.166]

    Изучение влияния растворителей на скорости реакций ароматических соединений с ароматическими аминами позволило нам прийти к выводу, что спирты выполняют роль бифункциональных катализаторов и предположить, что в этих случаях реакции протекают через циклический промежуточный комплекс. Полученвые в настоящей работе данные о природе катализа аминами в подобных реакциях указывают также на их бифункциональный характер. [c.741]

    Для спиртов характерны реакции с участием связей 0-Н и С-0, а также окислительные реакции. Химические свойства гидроксильной группы не изменяются в алкенолах, алкинолах и арилалканах. Эти соединения проявляют свойства, характерные для ненасьш1,енных или ароматических соединений. Спирты являются амфотерными соединениями, они проявляют слабые кислотные и слабые основные свойства. [c.379]

    Необходимо подчеркнуть, что, по всей вероятности, невозможен один ряд катализаторов с одинаковой во всех случаях каталитической активностью. Так трехфтористый бор слабо соединяется с ионом хлора, однако он проявляет большое сродство к иону фтора. По-видимому, это вызывается стерическими затруднениями ион B l весьма неустойчив, а ионы ВГГ и Al ir вполне стойки. Поэтому трехфтористый бор не катализирует реакцию циклогексилбромида с бепзолом [72], однако он весьма сильно катализирует реакцию циклогексилфторида с ароматическими соединениями [712]. Поэтому трехфтористый бор является активным катализатором по отношению к спиртам, олефинам и фторпроизводным и может занять первое место в ряду с более активными катализаторами. С другой стороны, в реакциях, использующих алкилхлориды или алкилбромиды, он не является эффективным катализатором и должен занять поэтому одно из последних мест. [c.429]

    Уже в более ранней работе было показано, что такие ароматические соединения, как бензол, толуол, ксилол, фенол, крезолы, могут легко алкилироваться олефинами, циклоолефинами, некоторыми циклопарафинами, галоидалкилами, спиртами и эфирами, а также соединениями, дающими в результате разложения указанные выше соединения или являющимися промежуточными соединениями при образовании таковых. В качестве катализатора при проведении реакции в жидкой фазе используются галоидметаллы и сильные кислоты, при проведении же реакции в паровой фазе — кислотные катализаторы или кислоты, отлол енпые на носителе. [c.489]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Вопрос экономии сульфирующего агента наиболее радикально решается при использовании 50з. Существуют два варианта сульфирования ароматических соединеннй с 50з, Первый применим для малолетучих веществ и заключается в сульфировании парами 50з, разбавленными воздухом. По условиям реакции и типу реакторов (см. рис. 93, б, в и г) процесс аналогичен сульфированию спнрто15 и олефинов этим же агентом. Другой вариант состоит в проведении реакции в жидком сернистом ангидриде, в котором раствоимы как 50з, так и ароматический углеводород. При т. кип. жидкого сернистого ангидрида, равной —10 °С, процесс протекает в мягких гомогенных условиях, причем тепло реакции снимают за счет испарения ЗОг этим обеспечивается отсутствие перегревов и снижается роль побочных реакций. При таком способе сульфирования применяют реактор, ранее встречавшийся для сульфатирования спиртов хлорсульфоновой кислотой (см. рис. 93, а). [c.333]

    Реакции второго типа были подробно исследованы на примере спиртов, причем внимание исследователей привлекало изучение соотношения активности гидроксильных групп, расположенных при первичном, вторичном и третичном углеродных атомах. При взаимодействии 1,3-бутандиола с ароматическими соединениями в мягких условиях с А1С1з реагирует лишь вторичная группа  [c.135]

    Первая промышленная установка оксосинтеза была пущена в Батон-Руже (США) в 1948 г., а к 1974 г. мировое производство оксопродуктов Превысило 3,5 млн. т. В основной реакции участвуют соединения разных классов олефины (алкены), диены (алкадиены), ненасыщенные кислоты, спирты и нитрилы, ароматические и гетероциклические соединения, окиси олефинов и др. Наибольшее техническое значение по сравнению с другими продуктами реакции гидроформилирования имеют получаемые на ее основе спирты. [c.255]

    Известно, что кислородсодержащие органические соединения (спирты и эфиры) имеют высокую температурную чувствительность в чистом виде. Например, октановое число метанола в чистом виде по исследовательскому методу (температура воздуха перед карбюратором 52°С, п=6С0 об/мин) составляет 112 единиц, тогда как по моторному методу (1емперату ра подогрева смеси после карбюратора 140 С, п=900 об/мин ) - 90 пунктов. Следовательно, чувствительность метанола, определяемая как разность между ОЧИМ и ОЧММ, равна 22. Для МТБЭ этот показатель равен 16. Согласно опьпным данны.м [6], у парафиновых и нафтеновых углеводородов, облгщающих малой чувствительностью, длительности задержек воспламенения в широком диапазоне изменения температур сжатия (450-600 С) почти не зависят от температуры. У непредельных и ароматических углеводородов, отличающихся высокой температурной чувствительностью, с ростом температуры сжатия наблюдаются непрерьшное уменьшение периода задержки воспламенения. Периодом задержки воспламенения топлива принято и ивать интервал времени от начала развития предпламенных реакций (завершение быстрого нафевания смеси топливо-воздух до заданной начальной тел пературы) до момента появления пламени. Парафиновые и нафтеновые углеводороды обладают двухстадийным процессом воспламенения, поэтому длительность периода задержки х . - для них складывается из двух частей задержки холодного пламени х, - и так называемого второго периода задержки хз - интервала времени от момента угасания холодного пламени (завершение холодно-пламенной стадии) до возникновения горячего взрыва. Стадия холодного пламени характеризуется [c.39]

    К реакциям алкилирования можно отнести и взаимодействие ароматического соединения с оксираном с образованием р-арилэтилового спирта  [c.386]

    Реакция Гомберга — Бахмана — Хея является одним из немногих методов, позволяющих получать несимметричные производные бифенила. Арилирование ароматических соединений проводят действием водного раствора щелочи на хорошо перемешиваемую смесь соли диазония с большим избытком ароматического соединения. По-видимому, собственно реакции арили-рования предшествует переход соли диазония в растворимую в органическом слое диазокислоту, которая, подобно диазоацетату в реакции со спиртом, претерпевает гомолитический разрыв [c.460]

    Эта реакция аналогична предыдущей. Практическое применение этого метода ограничено тем, что тригалогениды трудно доступны, хотя их можно приготовить присоединением ССЦ и аналогичных соединений по двойной связи (т. 3, реакция 15-34) или в результате свободнорадикального галогенирования метильных групп в ароматических соединениях (т. 3, реакция 14-1). При проведении гидролиза в присутствии спирта можно сразу получить эфир (см., например, [373]). 1,1-Дихлороалкены при действии серной кислоты также гидролизуются до карбоновых кислот. Как правило, 1,1,1-трифториды в эту реакцию не вступают [374], хотя известны и исключения [375]. [c.101]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Конденсация ароматических соединений с альдегидами или кетонами называется гидроксиалкилированием [295]. Эта реакция используется для синтеза спиртов [296], хотя часто первоначально образующийся спирт взаимодействует с другой молекулой ароматического соединения (реакция 11-13), давая продукт диарилирования. Для этой цели реакция оказывается весьма полезной, примером может служить синтез ДДТ  [c.366]

    При восстановлении ароматических соединений натрием (или калием или литием) в жидком аммиаке (такие реакции называются восстановлением растворенным металлом) обычно в присутствии спирта (часто этилового, изопропилового или грег-бутилового) идет 1,4-присоединение водорода и образуются несопряженные циклогексадиены. Эта реакция называется восстановлением по Бёрчу [276]. В коммерчески доступном аммиаке часто в качестве примесей содержатся соли железа, что снижает выход восстановления по Бёрчу. Поэтому часто необходимо предварительно перегнать аммиак. При проведении восстановления по Бёрчу с замещенными ароматическими соединениями электронодонорные группы, такие, как алкильные или алкоксильные, приводя к снижению скорости реакции и обычно оказываются в продукте при двойной связи. Например, из анизола получается 1-метокси-1,4-циклогексадиен, а не 3-ме-токси-1,4-циклогексадиен. Электроноакцепторные группы, такие, как СООН или СОМНг, способствуют увеличению скорости реакции, а в продукте связаны с восстановленным атомом [277]. Механизм реакции включает прямой перенос электронов от металла [278]  [c.186]

    Известно большое число разнообразных реакций фотоприсоединения, причем могут протекать реакции как гомо- так и гетероприсоединения. Алкены могут вступать в реакции фотохимического электрофильного присоединения, например, с водой, спиртами и карбоновыми кислотами. Также известны реакции фотохимического присоединения при возбуждении ароматических соединений, как в реакции с амином  [c.170]

    Для введения в ароматические соединения углеродсодержащих групп широк используются альдегиды, кетоны и их производные. Первичными продуктами этих реакций являются ароматические спирты — идет алкоголирование ароматического субстрата  [c.125]

    При разработке способов получения и изучение свойств синтезированных соединений установлены закономерности реакций соединений адамантана, а именно вторичных амидов и диамидов с хлорирующими реагентами имидоилхлоридов и диимидоилхлоридов со спиртами, фенолами, аммиаком, первичными и вторичными аминами, гидразинами, сложными ароматическими соединениями термораспад имидоилхлоридов влияние эффектов адамантильной группы на реакционную способность имидоилхлоридов при их взаимодействии с нуклеофильными и электро-фильными реагентами кинетика и механизм имидоилирования гидрокси-соединений имидоилхлоридами взаимодействие имидатов с электроноакцепторными заместителями в иминофуппе с аминами и гидразином экспериментально количественно или качественно определена основность имидоилхлоридов и имидатов, установлена связь этого свойства со строением соединений. [c.85]


Смотреть страницы где упоминается термин Реакции ароматических соединений со спиртами: [c.429]    [c.231]    [c.81]    [c.465]    [c.382]    [c.623]    [c.348]    [c.303]    [c.267]   
Смотреть главы в:

Фтор и его соединения Том 1 -> Реакции ароматических соединений со спиртами




ПОИСК





Смотрите так же термины и статьи:

Спирты ароматические



© 2025 chem21.info Реклама на сайте