Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные принципы квантовой химии

    Данная книга представляет собой учебное пособие по квантовой химии, рассчитанное на студентов химических вузов. Как пишет автор в своем предисловии, его целью было составить такой учебный курс, который позволил бы лучше понять основные принципы квантовой химии и методы ее применення к расчетам химических систем и для интерпретации результатов спектроскопических измерений. Кроме того, задачей книги является подготовка студентов к освоению современных курсов органической и неорганической химии. [c.5]


    Вариационный принцип играет в квантовой химии особую роль, так как именно он лежит в основе большинства современных вычислительных методов квантовой химии. Введем некоторые понятия и сформулируем основные утверждения вариационного метода, обращая внимание на те детали, которые присущи квантово-химическим приложениям. Полное изложение метода дано, например, в [31]. [c.41]

    Волновые функции, которые использовались для молекулы водорода, имеют самые различные степени точности и сложности. Волновые функции основного состояния, дающие энергию с точностью до 0,00001 н, были получены недавно [10], но простые волновые функции, которые будут использованы для иллюстрации некоторых принципов молекулярной квантовой химии, восходят к раннему периоду волновой механики и уже долгое время служат моделями для представления ковалентного связывания во всех типах молекул. Мы видим, например, что я-электронная система этилена может быть описана приближенными волновыми функциями точно такого же вида, как и молекула водорода. Для формулировки оператора Гамильтона многоэлектронной системы не требуется никаких новых принципов, за исключением того, [c.25]

    Основные принципы квантовой химии [c.7]

    Любой химик-органик повседневно имеет дело с десятками и сотнями разнообразных органических и неорганических соединений, и ему постоянно приходится решать многочисленные задачи об их ожидаемом поведении в чрезвычайно разнообразных обстоятельствах (различных температур, составов среды, природы реакционных партнеров, катализаторов и т.п.), ответы на которые ему нужно получать быстро и достаточно надежно. Предполагается (хотя мы в этом сильно сомневаемся), что в принципе квантовая химия способна давать точные количественные ответы на любые вопросы такого рода. Однако в сегодняшней практике химик-органик обычно достаточно успешно решает рутинные задачи такого рода без помощи квантовой химии, используя традиционные подходы, основанные на чисто качественных концепциях, которые, однако, позволяют немедленно увидеть основные особенности исследуемого соединения. [c.546]

    ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ ОРГАНИЧЕСКОЙ ХИМИИ [c.31]

    В книге излагаются математические основы и основные принципы квантовой механики описываются результаты применения ее в химии. Подробно рассмотрены вопросы строения атомов и молекул, а также вопросы, связанные с действием света на материю (явления абсорбции света, излучения, рассеяния, рефракции и др.). Основные разделы методы математического исследования, общие принципы квантовой механики, строение атомов, строение молекул, системы в нестационарных состояниях. [c.4]


    Легкость расчетов по методу Хюккеля привела к тому, что внедрение языка и понятий квантовой теории в органическую химию в основном велось на основе изучения свойств я-сопряженных молекул. Вероятно, и в настоящее время теория сопряженных соединений является наиболее разработанной областью квантовой химии. В данной главе ставится цель объяснить, как и в какой мере с помощью расчетов можно изучать и прогнозировать свойства 7г-сопряженных систем. Будем использовать, как правило, метод МОХ, так как его применение не требует ЭВМ и вполне оказывается достаточным иметь микрокалькулятор. Метод МОХ позволяет осуществить расчеты в полной мере и пояснить принципы, на которых основаны и расчеты более сложными методами ССП МО. [c.255]

    Использование электронной теории освобождает студента от необходимости, заучивания большого числа, на первый взгляд, не связанных между собой фактов, что в прошлом было характерно для органической химии. Новый подход не требует от него запоминания нового материала,- но помогает ему несравненно лучше использовать уже известный материал. Вместо простого выучивания фактов этот подход помогает понять основные принципы. В то же время следует иметь в виду, что сложность органических молекул делает невозможным строгое применение к ним квантово-химических методов расчета. Общие закономерности, имеющие реальную ценность, могут быть получены из этих расчетов только при условии определенных приближений и допущений, и это обстоятельство никогда нельзя забывать. Тот день, когда химик-органик сможет работать не в лаборатории, а сидя в кресле за письменным столом, по-видимому, еще далек. [c.13]

    Ранее было отмечено, что структурная организация живой и неживой природы построена согласно принципам унификации и комбинации и включает явления трех типов. Оба принципа (редукционизма и холизма) оказались в основе научного поиска и нашли отражение в логике, как в науке о закономерностях и формах научного и философского мышления, так и в методе анализа индуктивного и дедуктивного способов рационалистической и эмпирической деятельности человека. На индуктивном способе мышления основывается разработка целого ряда научных дисциплин, например квантовой механики атомов и квантовой химии молекул. Фундаментальные положения этих наук базируются в основном на результатах изучения соответственно простейшего атома (Н) и простейшей молекулы (Н2), а также ионов Н , ОН . Тот же способ мышления в биологии лег в основу исследований, приведших к становлению и развитию формальной и молекулярной генетики, цитологии, молекулярной биологии, многих других областей. При дедуктивном способе мышления, ядро которого составляет силлогистика Аристотеля, новое положение выводится или путем логического умозаключения от общего к частному, или постулируется. Классическим примером дедукции может служить аксиоматическое построение геометрии. Мышление такого типа наглядно проявилось в создании периодической системы элементов - эмпирической зависимости, обусловливающей свойства множества лишь одним, общим для него качеством. Д.И. Менделеев установил, что "свойства элементов, а потому, и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от их атомного веса" [21. С. 111]. Тот же подход лежит в основе построения равновесной термодинамики и статистической физики. Оба способа мышления, индуктивный и дедуктивный, диалектически связаны между собой. Они вместе присутствуют в конкретных исследованиях, чередуясь и контролируя выводы друг друга. [c.24]

    Если же обратиться к проблеме белка - главному предмету нашего рассмотрения, то приходится констатировать, что становление нелинейной неравновесной термодинамики прошло практически незамеченным для составляющих эту проблему задач, в том числе задачи структурной организации белковых молекул - исходной в логической цепочке, связывающей строение белка с его функцией и структурами надмолекулярных систем. Между тем предпринимаемые уже в течение трех десятилетий попытки подойти к решению вопроса, используя эмпирические подходы, равновесную термодинамику и формальную кинетику, неизменно терпят неудачу. Оставаясь нерешенной, структурная задача сдерживает рассмотрение всех последующих и создание теоретической молекулярной биологии - науки, столь же необходимой для понимания процессов жизнедеятельности, как молекулярная физика и квантовая химия для трактовки физических и химических свойств органических и неорганических низкомолекулярных соединений. А. Сент-Дьердьи писал "Мы действительно приблизимся к пониманию жизни только тогда, когда наши знания обо всех структурах и функциях на всех уровнях - от электронного до надмолекулярного - сольются в единое целое", и далее "...одним из основных принципов жизни является организация мы понимаем под этим, что при объединении двух вещей рождается нечто новое, качества которого не адекватны и не могут быть выражены через качества составляющих его компонентов" [37. С. 11-12]. [c.89]


    Современное состояние квантовой химии и возможности вычислительной техники предопределили два подхода к теоретическому исследо ванию реакционной способности. Как видно из предыдущей главы, первый из их, связанный с расчетом потенциальных поверхностей и энергии активации, применим лишь к реакциям относительно небольших молекулярных систем преимущественно в газовой фазе. Однако повседневная химическая практика требует рассмотрения значительно более сложных реакций, причем проходящих, в основном, в растворах. Именно эта практическая необходимость и привела к появлению так называемого метода индексов реакционной способности. Существует определенная аналогия между расчетами потенциальных поверхностей и методом индексов реакционной способности, с одной стороны, и строгими кинетическими исследованиями простейших газофазных реакций с определением абсолютных констант скоростей отдельных элементарных стадий и относительными исследованиями реакционной способности, использующими различные корреляционные соотношения, принятые в органической химии — с другой стороны. Эта аналогия еще более углубляется, если учесть то обстоятельство, что в основе как метода индексов реакционной способности, так и корреляционных уравнений органической химии лежит чисто эмпирический принцип линейности свободных энергий. Этот принцип является отражением качественного правила, на котором с самого начала основывалась органическая химия подобные вещества реагируют сходно, а сходные изменения в строении приводят к сходным изменениям в реакционной способности. Он устанавливает линейную связь между изменениями свободных энергий активации л свободными энергиями, определяю- [c.206]

    Английское издание, подобно японскому, предназначено для ознакомления химиков-органиков с основными принципами теории молекулярных орбиталей и применением ее в органической химии. Подробные объяснения, включенные в этот учебник, могут оказаться излишними для физико-химиков, хорошо владеющих методами квантовой механики. Однако они необходимы для многих исследователей, особенно химиков-органиков, которые хотят изучить основные принципы современных квантовомеханических расчетов, тем более, что число таких работ со временем, несомненно, будет все более возрастать. [c.7]

    Следует отметить, что, несмотря на большое число публикаций, нет пока достаточно широкого ассортимента ИСЭ, выпускаемых серийно. Кроме того, имеющиеся ИСЭ обладают в ряде случаев невысокой селективностью (например, рСа-ИСЭ). Практически не решены вопросы создания ИСЭ на Р04- M.g+ , 504 -ионы, имеющие важное прикладное значение. Не предложены пока принципы стандартизации ионометрических цепей, слабо разработаны вопросы конструкции и технологии изготовления ИСЭ. По существу, только начинаются систематические исследования динамики работы ИСЭ, в частности методы экспериментального определения их полных динамических характеристик. Наконец, и это самое важное, метод разработки новых ИСЭ в основном базируется на качественных соображениях, поскольку количественной теории, способной предсказывать селективность комплексонов и тем самым вести их направленный поиск для каждого конкретного иона, пока не существует. Создание такой теории — дело будущего, но уже теперь ясно, что она должна базироваться на основных принципах МЭ, в частности использовать достижения квантовой химии и теории локального строения материи на молекулярном уровне, учитывающих геометрию и топологию электронной плотности, системы энергетических уровней, свойства симметрии ионов, атомов и молекул и более сложных надмолекулярных образований кластеров, комплексов, сольватных оболочек. Именно на таких концепциях базируются последние теоретические работы [140, 141], в которых большое внимание уделяется развитию квантовой теории поверхностных явлений. Данная глава не ставит целью ввести читателя в круг подобных вопросов, они достаточно полно излагаются в цитированных выше монографиях и сборниках. Здесь будут рассмотрены только самые фундаментальные положения общей теории, а основное внимание сосредоточено на трех практически важных примерах — электродах, селективных к ионам кальция, калия и нитрата. [c.276]

    Общеизвестно, что квантовая механика играет роль метатеории по отношению к теоретической химии [243]. В таком случае и теорию химических реакций можно в принципе строго вывести из квантовой механики (и квантовой статистики, если мы относим ее к статистической физике, а не к квантовой механике). Но в действительности чис енное описание конкретных реакций, интересующих химиков, достигается ценой многочисленных и сильных упрощений. На рис. 13 схематически представлены взаимосвязи между различными концепциями теории химических реакций [244]. В современных квантовохимических вычислениях используется главным образом концепция, основанная на представлении об активированном комплексе, и то в основном только для процессов в газовой фазе. Цель этой главы — дать краткий обзор той области теории химических реакций, которая обычно рассматривается в современной квантовой химии, т. е. вычислений констант равновесия и скоростей химических реакций в газовой фазе. При этом в случае реакций задача сводится обычно к расчету констант равновесия (если справедлива равновесная гипотеза). Рас- [c.76]

    Еще в начале нынешнего столетия фотохимия вызывала определенный интерес как новое направление в синтетической органической химии. В соответствии с возможностями того времени знания в этой области были в основном эмпирическими. Развитие фотохимии как науки началось лишь около тридцати лет тому назад. Предпосылками для него явилось углубление знаний об электронном строении атомов и молекул на основе квантовой механики, а также развитие техники и теории спектроскопии. Благодаря тесному взаимодействию физики, спектроскопии и квантовой химии удалось создать прочные теоретические основы фотохимии и применить сформулированные общие принципы к исследованию многих фотохимических реакций. Бурное развитие фотохимии продолжается. Наибольшее практическое значение фотохимия имеет сейчас в области регистрации информации и в таких фундаментальных природных фотохимических процессах, как фотосинтез в зеленых растениях. [c.7]

    В такой, несомненно, неутешительной ситуации следует напомнить, что неэмпирические вычисления составляют только очень малую, хотя и очень важную, часть современной квантовой механики молекул и что в большей части этой книги речь шла совсем не о численных значениях величин, а о чисто теоретических проблемах о постановке и решении (с большей или меньшей аккуратностью в каждом конкретном случае) задач, связанных с поведением электронов в молекулах. То обстоятельство, что достигаемая при решении этих задач точность не всегда (по спектроскопическим или термохимическим стандартам) достаточно высока, не делает, разумеется, теорию бесплодной. В самом деле, вопросы, связанные с точностью численных расчетов, совсем несущественны по вполне определенным причинам в большинстве проблем квантовой химии задача квантовой химии — заложить фундамент и очертить рамки (как в гл. 4 и 8) для общего понимания широкого круга явлений, иногда количественно, но чаще полуколичественно или просто качественно. Не удивительно поэтому, что дальнейший прогресс в квантовой химии определяется в основном использованием именно упрощенных моделей и полуэмпирических расчетов и, конечно, интуицией исследователя. Важно, конечно, чтобы развитие квантовой химии в этих направлениях надежно основывалось на строгих теоретических принципах, позволяя нам видеть самое важное и характерное в неэмпирических подходах, а значит, позволяя получать те же качественные результаты, тратя при этом значительно меньше усилий на вычисления. Именно поэтому работа по выполнению все возрастающего числа неэмпирических расчетов для малых молекул, будучи важной сама по себе, все более сказывается на [c.319]

    В приведенных выше цитатах вскрыты большие трудности, стоящие перед химией. Химия до сих пор ставит перед нами много нерешенных существенных проблем, которые нелегко разрешить с помощью экспериментальных методов. С другой стороны, в этих цитатах содержится утверждение о существовании теории, способной решить любой химический вопрос. К сожалению, это утверждение делается в принципе , а не в действительности , а это отличие никогда еще не было так существенно. Математические трудности основных уравнений квантовой механики совершенно закрыли путь к полному и точному решению всех химических задач, за исключением самых простейших. В этой главе мы рассмотрим, в чем состоят некоторые из этих трудностей. [c.331]

    Учебное пособие по квантовой химии, написанное американским ученым Р. Фларри. Основная задача данного пособия — краткое изложение принципов квантовой химии и особенно ее приложений к расчетам химических связей и к обработке спектроскопических измерений, а главное — подготовка студентов к освоению курсов органической и неорганической химии. [c.4]

    Книга Козмана начинается с изложения основных математических нонятий и методов, используемых в квантовой механике. Сюда относятся элементы алгебры операторов, решение дифференциальных уравнений, разложение функций в ряды и т. д. Далее подробно излагается классическая теория колебаний, аналогии с которой широко используются в квантовой химии. Вторая часть книги посвящена рассмотрению основных принципов квантовой механики, сформулированных в виде законов и следствий, и применению уравнения Шредингера к большому числу конкретных задач (осциллятор, частицы в ящиках, прохождение через потенциальные барьеры, атом водорода и т. д.). Детально изложен вопрос об угловых моментах. В третьей части рассматриваются многоэлектронные атомы. После всей этой большой подготовительной работы автор переходит к рассмотрению молекул. При этом детально рассматриваются сравнительно простые молекулы, вопросы теории направленных валентностей, расчет молекулы бензола и т. д. Автор не ставит своей целью изложение всего огромного материала, который имеется в настоящее время по расчету различных молекул, а подробно рассматривает простейшие примеры, что хорошо подготовляет читателя для самостоятельной работы и понимания оригинальной текущей литературы. [c.6]

    Все сведения о строении и свойствах объектов химии (молекул, радикалов, комплексов, кристаллов и т. п.) в принципе могут быть получены решением уравнения Шрёдингера для соответствующих, систем ядер и электронов. Однако точное решение уравнения Шрёдингера для всех интересующих химию систем — молекул, радикалов, комплексов и т. п. — наталкивается на практически непреодолимые математические трудности Поэтому квантовая химия, как правило, использует приближенные расчетные методы, а также по-луколичественные и качественные. Даже получаемая квантовой химией качественная информация о строении и свойствах веществ имеет принципиальное значение для химии. При разработке таких приближенных методов основываются не только на математических соображениях (при подборе вида исходной волновой функции), но и на фактическом материале химии. Квантовая химия в основном рассматривает стационарное состояние системы из электронов и ядер (входящих в состав молекулы, радикала и т. п.), для которого характерен минимум энергии. В настоящее время главная заслуга квантовой химии заключается в раскрытии природы химической связи. Наибольшее распространение получили два квантово-химических способа приближенного расчета систем из ядер и электронов, отвечающих химическим объектам, — метод валентных связей и метод молекулярных орбиталей. В обоих ме- [c.88]

    Структура данной книги не сильно отличается от учебника выпуска 1970 г. Фотохимия — это химия возбужденных частиц, и ее предметом является изучение различных превращений возбужденной частицы ее химические реакции либо излуча-тельный или безызлучательный распад. Эти возможности и рассматриваются в гл. 3—6 в гл. 1 дается общее введение в основные принципы фотохимии, а в гл. 2 кратко объясняются закономерности поглощения и испускания излучения. Совершенно очевидно, что в фотохимии используются определенные экспериментальные методы, и иллюстративный материал лучше усваивается, если читатель понимает суть экспериментальной методики. Описание некоторых наиболее важных экспериментальных методов приводится в гл. 7. Эта глава включает очень общее представление о направлении, называемом Фотохимия с высоким временным разрешением . Оно связано с детализацией динамики фотохимических процессов, включая использование энергии исходных частиц в определенных квантовых состояниях при преобразовании в конечные продукты. Этот материал позволяет понять детали фотохимического взаимодействия, но не очень хорошо согласуется с содержанием гл. 3—8. Так как экспериментальная реализация этого метода технически сложна, то описание его дается в гл. 7 (разд. 7.5 и 7.6). Гл. 8 завершает книгу обсуждением фотохимических процессов, происходящих в природе, и некоторых технологических и лабораторных применений. В ней я не пытался жестко с.педовать систематическим названиям химических соединений, привояя названия, широко используемые в промышленности. [c.9]

    Быстрое развитие науки и техники в 20 в. привело к совершенствованию методов термохим. измерений и резкому повышению их точности. Развиваются термохим. исследования соед. бора, фтора, кремния, фосфора, РЗЭ, полупроводников, комплексных соед. и др. Интенсивно разрабатыг вается Т. биол. процессов, поверхностных явлений, полимеризации. Квантовая химия в принципе позволяет вычислять теплоты образования и эпергии хиМ. связей, однако пока это возможно лишь в простейших случаях. Поэтому эксперим. методы остаются в Т. основными и наиболее точными. Для приближенной оценки неизвестных тепловых эффектов использ. эмпирич. методы, базирующиеся иа установленных термохим. закономерностях. Данные Т. использ. в теор. химии и применяют в практике для расчета аппаратуры, теплового баланса, оптим. режима процесса, при создании новых видов топлива., . , , . ,  [c.569]

    Вариационный принцип прост в своей формулировке и имеет широкую область применения в квантовой химии. Если в соответствии с выражением (5.14) рассчитать среднее значение энергии с приближенным решением уравнения Шрёдингера, то эта энергия будет всегда больше, чем точная энергия основного состояния для этого гамильтониана. [c.104]

    Наряду с этим термины Ф. х. и чхим. физика используются и в более узком смысле — для обозначения двух частей теор. химии. Ту часть, к-рая опирается непосредственно на атомную физику, наз. хим. физикой. Часть, основанную по преимуществу на физике систем, состоящих из очень большого числа частиц, т. е. на термодинамике, статистич. механике и кинетич. теории в-ва, наз. Ф. х. В соответствии с ходом историч. развития физики, Ф. х. — более старая область знания, чем хим. физика. Так, основные принципы хим. термодинамики, составной части Ф. х., были установлены в 19 в., а квантовая химия, составная часть хим. физики, возникла и развилась лишь в 20 в. [c.621]

    Химические реакции в течение долгого времени были привлекательным объектом для квантовой химии. Особенно следует отметить замечательные успехи теории молекулярных орбиталей (МО-теория) в интерпретации большого числа химических реакций и предсказании для них ориентации и стерео направленности. В терминах молекулярных орбиталей были рассмотрены фундаментальные проблемы химических реакций различного типа как внутримолекулярных, так и межмолекулярных. Широкое применение среди химиков-органиков находят в настоящее время индексы хи-мтеской реакционной способности для я- и (т-электронных систем, предложенные на основе нескольких реакционных моделей [1—5]. Правила отбора Вудворда — Гоффмана для перициклических процессов раскрывают основные принципы, лежащие в природе реакций, относящихся с обычной точки зрения к совершенно различным типам это стимулирует новые экспериментальные исследования на основе предсказаний данных правил [6—9]. Недавний прогресс в области высокоскоростных вычислительных машин позволил удобно использовать некоторые полуэмпирические МО-мето-ды для расчета сложных взаимодействующих систем и получить результаты, достаточно точные в химическом смысле [10—18]. С помощью таких полуэмпирических методов были изучены координаты некоторых реакций [19—26]. Имелись попытки рассчитать химическое взаимодействие между большими молекулами методом МО аЬ initio [27—31 ]. Проведены также широкие исследования способов химического взаимодействия на основе молекулярных орбиталей изолированных реагентов [32—39]. Применение этих методов к реагирующим системам, интересным с химической точки зрения, в общем ограничено ранней стадией реакции поэтому энергию взаимодействующих систем обычно представляют в виде зави- [c.30]

    За последние двадцать пять лет теория валентности достигла огромных успехов. Это связано главным образом с появле-нием квантовой механики. Образование химика теперь не может считаться завершенным, если он не знаком по меньшей мере с основными принципами, с помощью которых был достигнут указанный прогресс. Это вовсе не означает, что каждый студент-химик должен уметь самостоятельно делать теоретические расчеты, но он, несомненно, должен быть знаком с основными идеями и методами, образующими фундамент современной теории валентности. Блистательное и изящное объяснение столь обширной области химии, явившееся результатом исследований в течение двух последних десятилетий, не может остаться неизвестным студенту-химику. Давно пора отказаться от трактовки химии в терминах доквантовой электронной теории валентности. [c.10]

    Основная область научных работ— квантовая химия. Развил (1966) теорию строения больших молекул с сопряженными связями, основанную на принципах квантовой механики и эмнирическом материале и позволяющую нригнози-ровать физико-химические свойства вещества. Предсказал (1973—1975) [c.612]

    До сих пор мы не использовали для ЭО их выражение в форме ЛКАО (2.57), так что формулы (3.22)-—(3.26) не связаны с этой конкретной (и приближенной) форлюй ЭО. Таким образом, в принципе, можно было бы вообще отказаться от ЛКАО-формы ЭО и рассматривать истинные ЭО в качестве первичного базиса, по которому разлагаются собственные функции гамильтониана системы. Это часто делается в квантовой химии молекулярных цепочек С Н2п + 2- В таком случае в качестве основных параметров теорип фигурируют матричные элементы II в базисе из ЭО — а, рл и т. п., которые в полуэмпирическом варианте теории определяются из опытных данных. В силу строгой унитарной эквивалентности истинных ЭО и блоховских функций подобный подход, пожалуй, был бы даже более строгим и не нуждался бы в сопоставлении с методом сильной связи (см. разд. 3.6.1). Тем не менее такой путь построения теории все же не является целесообразным с точки зрения поставленных нами задач, поскольку мы желаем исследовать зависимость структуры полос от свойств атомов, а не от свойств связей. Кроме того, кристаллы с двухцентровыми связями А—В являются липхь частным случаем координационных кристаллов, так что такой подход страдал бы очевидным отсутствием общности. [c.95]

    Теория молекулярных орбиталей была создана еще в 30-е годы, однако лишь в последние два десятка лет началось успешное применение ее в органической химии. До недавнего времени этот метод квантовой химии, как правило, применяли для объяснения статических свойств молекул в основном или в возбужденном состояниях (теплоты образования, дипольные моменты, электронные спектры и др.) [1 — 3]. Изредка предпринимались попытки применять его для исследования реагирующих молекул. В последнем случае использовали два приближения статическое и динамическое II, 2, 4]. В первом подходе реакционная способность молекулы оценивается из данных по. распределению электронной плотности в исходной или конечной молекулах. Принимается, что при возмущении молекулы реагентом энергия ее изменяется пропорционально величине АЯ реакции. Поскольку метод дает лишь относительные значения энергий возмущения, то важным условием пригодности метода является соблюдение правила не-пересечения путей реакций для сравниваемых молекул (принцип ВЕР ) [5]. Во втором подходе предполагают, что рассчитанная разность энергий электронного взаимодействия в исходной молекуле и в Лромежуточном комплексе реакции пропорциональна наблюдаемой энергии активации. Как правило, это приближение дает более хорошие результаты. Однако здесь всегда имеется неопределенность в расчете, выз ванная нашим незнанием точной структуры промежуточного комплекса или переходного состояния. [c.5]

    Сейчас наступила новая эпоха с квантовой химии. Создание и освоение электронно-счетных машин позволяет в принципе, а во многих случаях уже и на практике решать сложнейшие квантовомеханические уравнения и, таким образом, вычислять энергии связей, распределение электронных плотностей, реакционную способность и много других основных для химии задач. Применение новой вычислительной техники позволяет вплотную подойти к разработке точной количественной теории химического строения, кинетики и реакционной способности. Нет сомнений, что это бли жайший путь для создания математической химии, непосредственное значение которой для химической технологии очевидно. [c.497]

    Квантовая химия с ее общими уравнениями математически чрезвычайно сложна, но несколько упрощается существенными требованиями, налагаемыми граничными условиями решаемых задач, а также особыми запретами. Последние зависят от особых основных принципов, которые будут сформулированы в следующей главе. Широта смысла линейного дифференциального уравнения второго порядка в частных производных делает уравнение Шрёдингера мощнейшим оружием как раз в тех случаях, когда надо одним математическим выражением выразить множество разнообразных объектов, подметить их общие фундаментальные свойства, а также охарактеризовать всеобъемлющую Систему и составляющие ее семейства элементов. [c.26]


Смотреть страницы где упоминается термин Основные принципы квантовой химии: [c.2]    [c.16]    [c.283]    [c.283]    [c.47]    [c.621]    [c.313]    [c.99]    [c.99]   
Смотреть главы в:

Электронный аспект реакций полимеризации -> Основные принципы квантовой химии

Электронный аспект реакций полимеризации -> Основные принципы квантовой химии




ПОИСК





Смотрите так же термины и статьи:

Химия квантовая



© 2025 chem21.info Реклама на сайте