Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители дисперсий

    Жидкие органодисперсии поливинилхлорида готовят в пластификаторах или в смесях пластификаторов с растворителями. Дисперсии первого типа называются пластизолями, а второго—органозолями. В состав пластизолей и органозолей кроме полимера и пластификаторов вводят растворители, стабилизаторы, пигменты и наполнители, а также добавки для улучшения адгезии и других свойств . 30 [c.243]


    Для нанесения покрытия ткань пропускают через дисперсию силоксанового каучука в растворителе и затем протягивают через колонну, в которой имеется несколько температурных зон (рис. 11.17). В первой зоне удаляется растворитель дисперсии [c.427]

    Скорость протекания этих двух конкурирующих реакций (деструкции и структурирования) определяется рядом факторов степенью распределения тиурама вг латексе, скоростью набухания частиц полимера в растворителе, применяемом для получения эмульсии или дисперсии тиурама Е, скоростью взаимодействия тиурама с полисульфидной группой, продолжительностью и температурой щелочного созревания латекса. Наряду с указанными факторами в значительной степени влияет глубина полимеризации с увеличением конверсии хлоропрена выше определенного предела возрастает тенденция к структурированию полимеров [17, 26]. Аналогично влияет и повышение температуры полимеризации, способствующей в большей степени увеличению скорости структурирования, чем деструкции полихлоропрена. Указанные факторы оказывают также влияние на молекулярно-массовое распределение полимера [26]. ------- [c.374]

    В адсорбционную колонку (d = 20 мм I = ИЗО мм) вносят, как описано выше, 150 г силикагеля марки АСК с частицами размером 45—100 меш. Через адсорбент сначала пропускают 200 мл нетролейного эфира (т. кии. 60—80 °С), затем 15 г исследуемой фракции, разбавленной тем же растворителем в отношении 1 3. Вслед за фракцией досыпают слой (1 —2 см) силикагеля, а затем, последовательно вносят десорбенты 300 мл нетролейного эфира, 150 MJ , бензола и 100 мл сухой спирто-бензольной смеси (1 1). В пробирки отбирают фракции по 20 мл. После отгонки растворителей углеводороды взвешивают и отдельные фракции на основании величин показателей преломления объединяют в четыре группы уг еводородов, указанных выше. Переход от парафино-нафте-новой к легкой ароматической фракции дополнительно контролируют по величине удельной дисперсии (см. стр. 138). [c.266]

    Таким образом, свойства адсорбционно-сольватной оболочки, влияющие на устойчивость дисперсий с неполярной средой, помимо сорбционной способности материала частицы и ее заряда, зависят от химической природы неполярного растворителя и, главным образом, от присутствия в нем ионов и полярных молекул. Последние способны образовывать [c.28]


    Наиболее распространенные и точные способы определения содержания ароматических углеводородов в бензинах прямой гонки — это комбинированные способы, основанные на определении тех или иных констант бензина до и после удаления ароматических углеводородов. Главнейшими константами, которые применяют при количественном определении ароматических углеводородов, являются критическая температура растворения в определенных растворителях (главным образом в анилине и реже в нитробензоле), плотность, показатель преломления, удельная и относительная дисперсия и парахор. [c.482]

    Для полученных после отгона растворителя фракций определяют показатель преломления и смешивают их в соответствии с пределами этих показателей, принятых для разных углеводородных фракций (парафино-нафтеновой, легкой ароматической и др.). Десорбируемые спирто-бензольной смесью смолы отбирают отдельно. Выход полученных фракций (в % на разделяемый продукт) характеризует его групповой химический состав. Иногда между фракцией тяжелых ароматических углеводородов и смолами отбирают фракцию с низким показателем преломления, которая характеризуется как промежуточная. Для более полной характеристики полученных фракций определяют их удельную дисперсию (см. стр. 252) значения се для отдельных групп углеводородов следующие  [c.245]

    Рассматриваются способы очистки отработанных смазочных масел с помощью растворителей, способных растворять базовую основу масла, вызывать флокуляцию примесей и нежелательных включений. Проводится сравнительное исследование влияния кетонов и спиртов на экстракцию — флокуляцию масел при нормальной температуре. Показано, что флокулирующее действие, главным образом, оказывают полярные растворители, а неполярные макромолекулы затрудняют процесс растворения. В связи с этим разность между параметрами растворимости растворителя и типичного полиизобутилена используется в качестве критерия при выборе смеси растворителей, поскольку найдена корреляция между этой разностью и осадкообразованием. Указывается, что добавление КОН в спиртовый раствор облегчает разрушение стабильных дисперсий и увеличивает осадкообразование примесей. [c.191]

    И вот в последнее время на нефтедобывающих промыслах стали использовать особые вещества, имеющие довольно сложное название—мицеллярные дисперсии. Основными составляющими этих композиций являются нефтерастворимые поверхностноактивные вещества, спирт, углеводородный растворитель типа керосина или легких фракций нефти. Добавляют сюда и воду. [c.58]

    В табл. 9 приводятся данные исследования фракций ароматических углеводородов, выделенных из масел различных нефтей [4, 12]. Из этих данных следует, что характер ароматических углеводородов масляных фракций, кипящих в одних и тех же пределах температуры, резко отличается по всем физико-химическим показателям. Первые фракции ароматических углеводородов, десорбированных с силикагеля изооктаном (или другими аналогичными неполярными растворителями), отличаются низкими значениями плотности и коэффициента преломления, высоким молекулярным весом и индексом вязкости, близким к индексу вязкости нафтеновых фракций. Кольцевой анализ по методу п-й-М показал, что эти углеводороды имеют одно ароматическое кольцо, несколько нафтеновых колец и значительное количество атомов углерода в боковых цепях. Фракции ароматических углеводородов, десорбируемых бензолом, имеют высокие плотности и удельную дисперсию, относительно низкий молекулярный вес и крайне низкие значения индекса вязкости. Кольцевой анализ показывает [c.21]

    Защитный восковой состав ПЭВ-74 (ТУ 38.101103-77) — дисперсия церезина в нефтяном растворителе. [c.489]

    Четыреххлористый углерод, хотя он и летуч и ядовит, нашел широкое применение вследствие его способности обеспечивать лучшие дисперсии по сравнению с другими органическими жидкостями. Помимо этого, он является превосходным растворителем масел и жиров. Хорошие дисперсии, обладающие меньшей летучестью и ядовитостью, могут быть получены путем замены четыреххлористого углерода перхлорэтиленом (см. ссылку 9). [c.32]

    Для получения устойчивых дисперсий в такого рода растворителях требуется предварительное приготовление пасты из углерода и масла, причем смешивание этих веществ следует продолжать до полного смачивания частиц углерода маслом. После этого готовую пасту разбавляют растворителем до желательной концентрации. [c.32]

    Являясь поверхностно-активными веществами, компоненты кубовых остатков бутиловых спиртов характеризуются высоким проникающим действием в АСПО, ослабляют структурно-механические связи в отложениях парафина и, как следствие, в сочетании с углеводородным растворителем, каким является гексановая фракция, способствуют более интенсивному их растворению. Кроме того, кубовые остатки являются хорошим диспергатором, образуют устойчивую дисперсию парафина в нефти и препятствуют вторичному осаждению его из раствора при изменении термодинамических условий. [c.66]


    Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать агрегативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя. [c.24]

    Известно, что система модификаторов адгезии, состоящая из резорцина, уротропина и высокодисперсной гидроокиси кремния, обеспечивает высокую прочность связи эластомера с химическими волокнами. Влияние системы модификаторов на механические свойства резин зависит не только от природы волокон, но и от фактора их формы. Это объясняют следующим. Прочность композиции пропорциональна фактору формы волокон. Если волокна очень длинные, суммарная поверхность контакта их с резиновой смесью весьма велика. Таким образом, волокна, длина и фактор формы которых выше критической, оказывают усиливающее действие на эластомер. Таково поведение полиамидных волокон в композициях. Существуют различные способы изготовления эластомерных композиций, наполненных волокнами смешение волокон с эластомерами в виде твердой фазы, жидкого каучука, водной дисперсии или раствора эластомера в органическом растворителе. Однако в производстве резиновых технических изделий жидкие композиции не получили широкого распространения. В основном изготовление и переработку резиновых смесей, содержащих волокнистые наполнители, ведут на обычном оборудовании резиновой промышленности — на вальцах, в резиносмесителях и экструдерах. [c.181]

    В растворах пересыщение, необходимое для получения зародышей, достигается обычно либо путем химической реакции с образованием продуктов, трудно растворимых в данном растворителе, либо добавлением к раствору вещества другого компонента, который уменьшает растворимость этого вещества. Например, спиртовой раствор канифоли превращается в коллоидную дисперсию при добавлении к нему воды. [c.9]

    Увеличению чувствительности способствует уменьшение размера стартового пятна, так как его дисперсия складывается с дисперсией размывания, что увеличивает общую дисперсию. Уменьшения же размера стартового пятна можно достичь двумя путями увеличением концентрации раствора наносимого вещества и, следовательно, уменьшением объема пробы и обеспечением быстрого испарения растворителя со слоя, например нагреванием пластинки. [c.149]

    Подобно всем веществам ВМС могут давать как молекулярные, так и коллоидные системы в зависимости от природы растворителя (например, каучук молекулярно растворим в бензоле, а в воде дает дисперсию — латекс). [c.193]

    Синтез коллоидных систем путем замены растворителя сводится к тому, что вещество, из которого хотят получить золь, растворяют в соответствующем растворителе в присутствии стабилизатора и затем раствор смешивают с другой жидкостью, в которой вещество нерастворимо. В результате этого вещество выделяется из раствора, но ввиду присутствия в системе стабилизатора онО не выпадает в виде осадка, а образует золы Таким образом могут быть получены гидрозоли канифоли и серы. Этот же метод Перрен использовал для получения классических дисперсий гуммигута и мастики. Растворителем для этих веществ служит этанол. Стабилизаторами являются примеси, содержащиеся в ничто жных количествах в исходных веществах и спирте (продукты окисления). Строение мицелл полученных таким способом золей еще не изучено, но известно, что во всех случаях коллоидные частицы заряжены отрицательно. [c.245]

    Ресурс деталей механизма газораспределения, крестовин, шлицевых соединений карданов, шарниров рулевого механизма, шестерней, валов коробок передач, юбок поршней и т. д. при использовании твердых смазочных покрытий на основе МоЗг повышается на 30—50% и более. При нанесении на металл дисперсии МоЗг в органической смоле со специальным растворителем образуется сухая пленка, обладающая хорошим сцеплением, антизадирными и антифрикционными свойствами. Покрытия выдерживают высокие нагрузки, температуру до 380°С, имеют длительный срок службы, отличаются хорошей коррозионной стойкостью. Рекомендуемая толщина пленки 5—15 мкм. [c.671]

    Высокомолекулярные вещества могут образовывать как истинные, так и коллоидные растворы (дисперсии). Характер раствора зависит от сродства ВМВ к растворителю. В растворителях, полярность которых соответствует полярности ВМВ, происходит истинное растворение с образованием молекулярных растворов (например, агар-агар и желатин в воде или каучук в неполярном растворителе). При несоответствии полярности растворителя и ВМВ образуются золи или дисперсии. [c.465]

    Первый процесс характерен для лаков и красок на основе эфиров целлюлозы, поливинилхлорида или других полимеров в летучих растворителях и водных дисперсий полиакрилатов, поливинилацетата и др. [c.211]

    Образование ряда сольватов обусловливается ионно-дипольным притяжением частиц растворенного вещества и растворителя. Например, при растворении кристалла с ионной решеткой получается раствор с ионной степенью дисперсии (см. Электролитическая диссоциация ). Ионы обладают положительным или отрицательным зарядом и взаимодействуют с дипольными молекулами полярных растворителей, как то вода, аммиак, спирт и др. [c.158]

    Дисперсионную полимеризацию описывают с привлечением терминов как полимерной, так и коллоидной химии целесообразно рассмотреть эти термины. Термин полимерный коллоид часто используют для описания полимерных дисперсий в любой среде, имеющих размер частиц, характерный для коллоидов, т. е. в интервале 0,01—10 мкм [12] применяют также его сокращенный вариант — полоид , но в более ограниченном смысле [13] (см. стр. 102). Коллоидные дисперсии в органических разбавителях часто называют трганозолями , соответствующий термин гидро-золи относится к аналогичным дисперсиям в воде [14]. Однако термин органозоль в технологии поверхностных покрытий обычно относится к полимерной дисперсии особого типа в органическом разбавителе (см. раздел V.1). Если для улучшения процесса пленкообразования такие пластификаторы, как длинноцепные сложные эфиры, используются в качестве органических растворителей, дисперсии называют пластизоли [15]. Термин НВД (неводные дисперсии) в настоящее время также широко применяют в литературе о поверхностных покрытиях для описания красок, основанных на полимерных дисперсиях, полученных в алифатических углеводородах и аналогичных разбавителях [16—23]. [c.13]

    ПЛЕНКООВРАЗУЮЩИЕ ВЕЩЕСТВА — сппте-тич. или природные вещества, способные при нанесении на поверхность образовывать нленки за сравнительно небольшой промежуток времени (от нескольких минут до одних суток). Важнейшими свойствами таких пленок являются адгезия к поверхности, твердость, эластичность, влагонепроницаемость, стойкость к атмосферным и др. воздействиям внешней среды. В лакокрасочных материалах, содержащих порошкообразные пигменты и наполнители (в красках, шпаклевочных составах), П. в. одновременно играют роль связующих. П. в. наносят на поверхность в виде р-ров в органич. растворителях, дисперсий в воде или в n.ia -тификаторах, а также в виде расплавов. [c.44]

    Одним из наиболее простых является полимеризация диена на щелочном металле в среде полярного растворителя. Так как в полярном растворителе константы роста цепи одного порядка с константой инициирования, то при достаточном избытке щелочного металла возможно выделение первичных продуктов, содержащих 2—10 звеньев мономера. В качестве мономеров употребляют днолефнновые гл пинпларол атпчсские углеводороды. Для увеличения повер.хности щелочного металла его обычно используют в виде дисперсии в парафине или вазелине. Чем больше полярность растворителя, чем больше отношение металл мономер, тем меньше звеньев мономера содержит катализатор [2]. [c.413]

    Растворитель отгоняют чаще всего под вакуумом. Концентрирование дисперсий можно проводить всеми известными методами упариванием под вакуумом, сливкоотделением с использованием сливкообразующпх агентов или центрифугированием, причем и в этом случае используют сливкоотделяющие агенты, например альгинат натрия. Вместо альгината натрия для сливкоотделения можно применять калиевое канифольное мыло [71] при введении его в латекс в количестве 2% содержание полимера в серуме понижается до 0,9%, а в образовавшихся сливках составляет 55%. Серум можно вновь использовать для приготовления водной фазы. Обычно действие мыл в качестве агентов сливкоотделения менее эффективно, чем Действие полиэлектролитов. Мыла пригодны для осветления серума, содержащего частицы величиной не менее 200 нм. [c.602]

    Подобные контактные устройства широко распространены в промышленности и было бы весьма полезным иметь надежные данные о межфазной поверхности и о коэффициентах массоотдачи в жидкой и газовой фазах в различных условиях. Однако имеющиеся данные весьма разноречивы, причем еще одна из важных нерешенных проблем заключается в наличии влияния растворенных веществ на поведение системы. Размер пузырей при данных условиях, а следовательно, и газосодержание и межфазная поверхность сильно зависят от тенденции малых пузырей к коалесценции. Эта тенденция намного меньше почти во всех растворах по сравнению с чистым растворителем. Поэтому легко получить дисперсию мелких пузырей в растворе, в то время как в чистом растворителе они быстро коалесцируют, образуя пузыри больших размеров. О количественном влиянии растворенных веществ известно очень мало. Согласно Калдербэпку и др. для колпачковых тарелок оно оказывается менее важным, чем для устройств других рассмотренных ниже типов. [c.224]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    Поскольку асфальтены образовывали не иетинный раствор, а скорее всего давали коллоидную дисперсию, тонкая структура ИК-сиектра в области поглощения ароматических соединений могла быть потеряна. Для тяжелого масла соотношение алифатических протонов к ароматическим в спектрах ЯМР равнялось 4,01 1, а соотношение метиленовых и метильных протонов было равно 1 1,75, Для асфальтенов эти значения равнялись соответственно 3,49 1 и 1 1,1. Температура плавления асфальтенов равна 146°С. Молекулярная масса, найденная методом осмометрии в парах (с о-ксилолом в качестве растворителя), составила 407. для тяжелого масла и 638 для асфальтенов. Относительные выходы тяжелого масла и асфальтенов из исходных углей и пз деиолиме-ризованного продукта различались незначительно. [c.324]

    Дисперсность — важнейший признак объектов коллоидной химии. Она придает новые свойства не только отдельным элементам дисперсной системы, но п всей дисперсной системе. С ростом дисперсности увеличивается роль поверхностных явлений в системе, т. е. более сильно проявляется специфика гетерогенных дисперсных (коллоидных) систем. Одиако ссли гетерогенность является универсальным признаком, так как любая многофазная система в принципе может быть объектом коллоидной хпмии (иаиример, ее межфазная поверхность), то одиа только дисперсность без гетерогенности не может определить принадлежность конкретного объекта к коллоидной химии. Например, истинные растворы представляют дисперсию растворенного вещества в растворителе, но коллоидной системой не являются. Н. П. Песков в том же учебнике пишет ...в понятии дисперсности не заключается ничего, что указывало бы на гомогенность или гетерогенность данной системы... и еще ...одна степень дисперсности не может считаться исчерпывающей характеристикой коллоидного состояния, одним из самых важных признаков коллоидности является многофазность системы, то есть существование в ней физических плоскостей раздела... . Эту плоскость раздела Н. П. Песков называл коллоидной поверхностью . [c.11]

    Существует ряд стабилизаторов дисперсий, вполне пригодных. для описываемых суспензий, но, по-видимому, они не привлекли к себе должного внимания. Вопрос стабилизации углеродных дисперсий весьма тн тельно разработан ван-дер-Ваарденом (см, ссылку 10), который пришел к выводу, что частицы газовой сажи адсорбируют преимущественно ароматические углеводороды, причем, эта тенденция у них настолько сильна, что уже адсорбированные ими алифатические углеводороды вытесняются ароматическими. Стабилизация алифатического углеводородного растворителя достигается путем применения ароматического соединения с одной или несколькими алкиловыми группами боковой цепи. Эти защитные завесы из алкиловых групп вокруг каждой из частиц препятствуют сближению последних, благодаря чему предотвращается флокуляция. Еще раньше Ребиндер и другие (см. ссылку 11) показали, что карбоновые кислоты производят ста- бнлизирующее действие. на суспензию углерода в бензоле- Катионообменные моющие средства также стабилизируют углеродные [c.32]

    В растворитель, применяемый при химической чистке, масляная пленка удаляется вследствие ее растворения. Вслед за этим частицы пятнообразующего вещества, оставаясь в растворителе, переходят в состояние дисперсии, которое временно стабилизуется адсорбированными масляными пленками, покрывающими каждую отдельную частицу. По мере растворения этих пленок в растворителе частицы либо получают возможность флокулировать, либо они снова адсорбируются поверхностями волокон ткани, что в итоге приводит к явлению, известному под названием посерения ткани. Надо полагать, что именно по этой причине длительная обработка ткани без применения фильтра имеет своим следствием явно выраженное ее посерение. Второй причиной этого явления может быть увеличение статического заряда на поверхностях волокон ткани, которое вызывается трением в среде, обладающей низкой диэлектрической постоянной. [c.102]

    Диализ. Грэм еще в 1861 г. предложил использовать полупроницаемые мембраны для очистки коллоидов путем диализа и для их обнаружения. Чаще всего коллоидную дисперсию помещают в сосуд с дном из мембраны, который погружают в другой сосуд с чистым растворителем. Второй сосуд делают либо очень большим, либо проточным со сменивающимся растворителем. Проходя через мембрану, низкомолекулярные компоненты извлекаются из коллоида. Мембрана подбирается в зависимости от коллоида. Для водных растворов чаще всего используются мембраны из колло- [c.14]

    Однако полимеры растворяются не во всех растворителях следовательно, и они могут образовывать дисперсные системы. Наиболее известны дисперсии полимеров в воде, представляющие собой эмульсии типа М/В и называемые в технологии латексами. Латексы, так же, как и обычные эмульсии, образуются несамопроизвольно, а лишь в присутствии эмульгаторов. Будучи типичными представителями эмульсий, латексы обладают характерными особенностями, что позволяет широко использовать их в промышленности. Исключительно важное значение для народного хозяйства имеют синтетические латексы, такие как бутадиен-стирольный (СКС-С, СКП-ЗОП, СКС-50Н и др.), бутадиен-ни-трильный (СКН-40К, СКН-40П), хлоропреновый (Л-4, Л-7, ЛП, ЛГ), карбоксилатный (СКД-1), бутилкаучуковый (БК-2045Т) и др. [c.295]

    Основные классы дисперсных систем. Под термином дисперс-цая система подразумевается любая, минимум двухкомпонентная, система, в которой один из компонентов в раздробленном (диспергированном) состоянии более или менее равномерно распределен в массе другого компонента. Последний образует непрерывную фазу, т. е. как бы играет роль растворителя обозначается, как дисперсионная среда (лат. (11зрег5из — рассеянный, рассыпанный). [c.263]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]


Смотреть страницы где упоминается термин Растворители дисперсий: [c.603]    [c.188]    [c.11]    [c.321]    [c.90]    [c.106]    [c.110]    [c.146]    [c.354]    [c.346]    [c.290]    [c.204]   
Твердые углеводороды нефти (1986) -- [ c.73 ]




ПОИСК







© 2025 chem21.info Реклама на сайте