Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

окисей связи углерод—кислород

    Окись азота образует координационные комплексы с атомами металла, которые аналогичны комплексам с окисью углерода. Однако частота валентного колебания связи азот — кислород меняется значительно сильнее в комплексах с окисью азота, чем частота связи углерод — кислород в карбонилах металлов. [c.110]

    Это явление можно, по-видимому, объяснить тем, что в присутствии кислотных катализаторов окись углерода присоединяется к олефину, образующемуся из спирта вследствие дегидратации, тогда как при синтезе формиата связь углерода с кислородом в спирте не разрывается. [c.347]


    Направление раскрытия окисного цикла при перегруппировках в общем может быть предсказано довольно просто на основании относительной легкости ионизации двух углерод-кислородных связей окиси. Кислород-углерод-ные связи окисей этиленов алифатического ряда по легкости разрыва могут быть расположены в следующий ряд третичные > вторичные, > первичные. Это правило иллюстрируется на примерах перегруппировки окисей изобутилена и триметилэтилена. Аналогично окись пропилена дает главным образом пропионовый альдегид [260]. Другим примером может служить перегруппировка окиси 1-метилциклогексена (VI). [c.37]

    Позднее это представление о механизме синтеза было несколько дополнено и высказано предположение (Фишер), что вначале окись углерода и водород адсорбируются на поверхности катализатора. При этом происходит образование карбидов и связь углерода с кислородом ослабляется. Кислород, реагируя с активированным водородом (в случае реакции синтеза над никелевыми или кобальтовыми катализаторами), образует воду, или (в случае железных катализаторов), соединяясь с СО, образует СОг, а карбид металла с активированным водородом образует радикалы = СН, СНз и —СНз. Эти радикалы полимери- [c.335]

    В случае быстрого процесса адсорбции, когда поверхностные реакционные центры полностью связываются с кислородом и за ним следует медленный процесс разрыва связи углерод — углерод, наблюдаемая реакция будет нулевого порядка по отношению к кислороду. Предложенный механизм предполагает, что окись углерода является первичным продуктом реакции. Из данных, приведенных в табл. 3, видно, что окись углерода является первичным продуктом реакции в температурной области ниже 800°. [c.195]

    Как показали наши исследования, в результате термического разложения комплексоната железа образуются окись железа, а также двуокись углерода, амины и некоторые другие вещества. Образование двуокиси углерода подтвердило тот факт, что сила связи металл—кислород значительно больше, чем сила связи углерод—углерод. Декарбоксилирование молекулы в процессе нагревания подтверждает это. Таким образом, перед комплексонами открывается еще одна возможность их использования в энергетике для пассивации поверхностей нагрева оборудования. [c.346]

    Если водородная связь с Ог слабая, то гидролитический процесс совершенно не зависит от pH в щелочной области. Это справедливо не только для тиоловых эфиров, но применимо и к фенольным эфирам (рис. 6). В последнем случае ароматическое ядро уменьшает электронную плотность у спиртового кислорода в эфирной группе и таким путем способствует уменьшению его сродства при образовании водородной связи. Большое значение имеет тот факт, что эфиры, которые расщепляются под действием одного имидазола, как, например, тиоловые и феноловые эфиры [43], в то же самое время оказываются очень устойчивыми к активирующему влиянию Ог при гидролизе под действием эстеразы угря. С другой стороны, гидролиз эфиров алифатических спиртов, которые не подвергаются катализу под действием имидазола, зависит от водородной связи с Ог. Водородный мостик уменьшает электронную плотность при эфирном кислороде. При разрыве связи С—ОК во время расщепления связи ацил—кислород последний атом приобретает отрицательный заряд, тогда как недостаток электронов у атома углерода может быть восполнен путем обобществления электронов с карбонильным кислородом. Отделение заряда всегда требует [c.303]


    Неорганические газы, интересные с биологической точки зрения, могут быть растворены в плазме, питательных растворах, сусле или химически связаны, как кислород и окись углерода, гемоглобином крови. Если газ просто растворен и находится лишь в равновесии с растворителем, его концентрацию в жидкой фазе определяют, анализируя газовую фазу [9, 36, 50]. Зависимость между парциальным давлением газа р и мольной долей газа в жидкой фазе N дается уравнением Генри [c.141]

    По классической теории, в которой кислород постоянно считается двухвалентным, окись углерода может быть представлена как производное двухвалентного углерода (формула I). В электронной теории формула СО имеет вид П. Однако, учитывая неподеленные пары электронов кислорода и предполагая, что два из них участвуют в образовании прочной связи углерода с кислородом, получаем формулу П1, аналогичную формуле молекулы N2  [c.479]

    Тронов создал фенольную гипотезу, согласно которой поглощенный углем кислород реагирует прежде всего с боковыми цепями молекул органической массы в местах, где находятся фенольные гидроксильные группы. В результате этого происходит гидроксилирование углеводородных звеньев и образование карбонильных групп. При разрыве связей между карбонильными группами из-за последующего окисления углей выделяется окись углерода, а при избытке кислорода —двуокись углерода [62]. [c.173]

    Исследуя сорбцию некоторых газов на раскаленных металлических нитях в вакууме, Лэнгмюр установил (1915 г.), что адсорбированные атомы или молекулы связаны с атомами, образующими поверхность металлического сорбента, такими же химическими связями, как и в известных химических соединениях, в том числе комплексных. Оказалось, что раскаленная вольфрамовая нить при давлении кислорода порядка 10 атм покрывается моно-атомным слоем кислорода (а), причем каждый атом кислорода связан ковалентной связью с атомом вольфрама, принадлежащим данному твердому телу — вольфрамовой проволоке. При 3000° С поверхность вольфрама была наполовину покрыта моноатомным слоем кислорода. В аналогичных условиях окись углерода также образует химически связанный с поверхностью вольфрама монослой (б). [c.49]

    В молекуле окиси углерода между углеродом и кислородом действуют две ковалентные связи С 0 Электронные пары несколько смещены к более отрицательному кислороду, в результате чего молекула становится малополярной с дипольным моментом 0,12D. Полярность молекулы и наличие у атома углерода свободной пары электрона объясняет способность молекулы к реакциям комплексообразования. Оксид углерода может ыть лигандом по отношению к положительному иону металла и нейтральному атому d-элемента в последнем случае образуются карбонилы металлов. Карбонилы делятся на одноядерные, содержащие один атом металла [Сг(СО)б], [Ре(С0)5] и др., и многоядерные, содержащие от 2 до 4 атомов металла [Fe2( 0)eJ, [ o2(GO)g], [Rh4( 0)iJ, [RUg( 0)i2] и др. Координативная связь возникает за счет пары электронов углерода молекулы СО. Особенно легко образуют карбонилы металлы подгрупп хрома, марганца и 8В группы. Карбонилы, как правило, либо жидкости, либо летучие твердые вещества. При нагревании карбонила координативная связь разрывается и происходит разложение на окись углерода и металл [Ni( 0)4l = Ni + 4С0. Этим пользуются для получения чистых металлов, для нанесения металлической поверхности на тела, имеющие сложный рельеф. Карбонилы металлов 8В группы часто применяют в качестве катализаторов. Карбонилы железа используют в качестве антидетонаторов моторного топлива. [c.479]

    За счет остающихся у атома углерода в окиси углерода неиспользованных на образование связей двух электронов атом углерода может образовать еще две ковалентные связи, присоединяя второй атом кислорода. Это проявляется в двух химических свойствах окиси углерода она горюча и может восстанавливать металлы из их окислов. Окись углерода горит синим пламенем, превращаясь в двуокись углерода СО2  [c.94]

    В зависимости от величины концентрации окиси углерода н длительности пребывания человека в такой среде различаются три степени отравления легкое, среднее, тяжелое. При тяжелом отравлении человек теряет сознание, почти не дышит и, если не принять своевременных мер, пострадавший может скончаться. Отравление окисью углерода вызывает нарушение питания кислородом тканей организма в связи с тем, что окись углерода быстро вступает в химическую реакцию с красящими веществами красных кровяных шариков (гемоглобином). А гемоглобин, связанный с окисью углерода, не соединяется с кислородом. [c.118]

    Графитовая окись — очень непрочное соединение и даже при слабом нагревании разлагается с выделением кислорода в виде окиси и двуокиси углерода. Следует отметить, что прокаленный нелетучий остаток графитовой окиси состоит в основном из графита. Иными словами, после удаления кислорода восстанавливаются прежние металлические связи, и графит регенерируется. [c.42]


    Основными вариантами газовой хроматографии являются га-зо-адсорбционная и газо-жидкостная. Выбор наиболее эффективного способа анализа определяется характером поставленной задачи. Смеси низкокипящих веществ, которые входят в состав продуктов горения (водород, окись углерода, метан, кислород, азот и др.), легче разделяются методом адсорбционной хроматографии. В связи с этим при анализе продуктов горения именно этот метод приобретает наибольшее практическое значение. [c.93]

    При изучении механизма взаимодействия олефинов с кислородом в статических условиях было установлено, что атом кислорода способен разрывать двойную углерод-углеродную связь олефина с одновременным образованием альдегида. В случае этилена таким альдегидом является формальдегид. Молекулярный кислород не принимает участия в реакции, однако он может взаимодействовать с первичным радикалом, возникшим при реакции атома кислорода с этиленом. И в этом случае продуктом реакции также будет формальдегид. Окись этилена не была обнаружена среди продуктов окисления, поэтому в предлагаемой ниже схеме она не участвует  [c.202]

    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]

    Окись углерода. Исследование адсорбции окиси углерода на цеолитах является эффективным методом исследования поверхности. Валентные колебания связи углерод — кислород в молекуле СО представлены в ИК-спектре интенсивной полосой поглощения. Это дает возможность использовать СО для подробного изучения особенностей поверхности. Кроме того, довольно крупные молекулы СО не могут проникать в гексагональные призмы и содалитовые ячейки каркаса фожазитов. Это ограничивает пределы исследований, но вместе с тем способствует получению дацных об адсорбционных центрах, которые расположены в больших полостях. [c.234]

    В гл. 1 уже указывалось, что в многоядерных карбонилах окись углерода может быть связана с двумя атомами металла. В этом случае связи металл — углерод являются ковалентными а-связями. В результате этого порядок связи углерод — кислород уменьшается и эта связь становится аналогичной связи в органических карбонилах. Кейбл и Шеляйн (1956) сравнили мостиковые карбонилы металлов с циклобутаноном. [c.66]

    Следовательно, -электроны металла не так легко участвуют в образовании связи с окисью углерода в качестве лиганда. Поэтому л-характер связи металл — углерод мал, и связь углерод — кислород соответственно более прочная. Таким способом было дано объяснение опытам Эйшенса и Плискина (1958), в которых полоса валентного колебания карбонила окиси углерода, адсорбированной на железе, смещалась в сторону высоких частот на 160 см после добавления кислорода. Эйшенс и Плискин (1957) нашли, что для появления полосы поглощения при 2193 см к системе никель — окись углерода необходимо добавить кислород. Отсюда не следует, что много кислорода внедряется в поверхностные соединения окиси углерода, или, что эти соединения адсорбируются на поверхностном атоме или ионе кислорода. Объяснение, вероятно, связано со способностью кислорода связывать -электроны металла и таким образом делать их недоступными для образования л-связи с окисью углерода. В этом случае имеется только а-связь углерод — металл, удерживающая окись углерода на поверхности. [c.97]

    Наблюдавшиеся спектры (рис. 64) лучше всего могут быть объяснены на основе теории, предложенной Блайхолдером (19646). Согласно этой теории, центры на ребрах и углах граней поликри-сталлической поверхности металла — наиболее активные центры хемосорбции окиси углерода. Атомы металла в этих положениях имеют меньше соседей, чем атомы металла в плоскости граней кристаллитов. Б результате атомы мета.тла на углах криста.тлитов имеют больше -электронов, доступных для образования я-связи с адсорбированными молекулами окиси углерода, и поэтому л-характер и прочность связи металл — углерод возрастали. ] анее было показано, что частота валентного колебания связи углерод — кислород у карбонилов металла смещается к более низким значениям по мере увеличения вклада л-связи во взаимодействие между атомами металла и углерода. Окись углерода, ответственную за появление полосы поглощения карбонильной грунны нри самых низких частотах, считали поэтому адсорби- [c.259]

    Высокочастотная полоса была отнесена к валентному колебанию связи углерод — кислород структуры II. Как полагали, оба связывающих электрона в этом соединении поставляются окисью углерода. Это привело Эйшенса и Плискина к выводу, что окись алюмршия как носитель способствует передаче электронов от платины к адсорбированной молекуле окиси углерода. [c.264]

    Спектроскопическое исследование и специфические химические реакции показали, что соединение А представляет собой первичный спирт, содержащий одну 1(ыс-замещенную двойную связь. При озонолизе получается альдегид, элюируемый со стандартизованной газохроматографической колонки между w-октаналем и -нонана-лем. На основании этих результатов исследователи пришли к выводу, что этот альдегид представляет собой метилзамещенный ок-таналь. Весьма ценную информацию можно получить также при помощи гидрогенолиза. Следует напомнить, что при гидрогенолизе происходит не только присоединение водорода к кратным связям, но и разрыв связей углерод—кислород. В результате этой реакции был получен 3-метилгексадекан [c.214]

    Двуокись углерода, метилизоцианат, недокись углерода, окись углерода, метилизоцпанид, метилазид и диазометан являются примерами группировок, в которых двойная связь является частично тройной. Интересно, что, например, в двуокиси углерода, где вследствие резонанса между сгруктурами III, IV и V каждая связь углерод-кислород является в такой же [c.151]

    Структурные формулы в основном возникли в органической химии и хорошо описывают органические молекулы. Для неорганических молекул штрих хуже передает многообразие атомного взаимодействия. В молекуле СО существует так назьшаемая семиполярная связь. Атом кислорода передает электрон углероду, после чего электронные оболочки обоих атомов делаются подобными электронным оболочкам азота. Поэтому Л. Полинг описывает окись углерода формулой С = О . Связь в молекуле Не трактуется как трехэлектронная, возникающая в результате обмена места электрона иона гелия с электронной парой гелия. Высказывалось предположение, что подобная связь имеется и в О2. [c.484]

    Взаимодействие поверхности серебряного катализатора с компонентами реакционной газовой смеси является наиболее существенной стадией каталитического процесса окисления этилена. При этом важно знать, в какой форме находится кислород на поверхности серебра, т. е. в виде каких частиц из следующих известных Оа, О2, От, О, О", О , Оз или 0.1. От этого зависят такие свойства поверхностных соединений серебра и кислорода, как состав, строение, термическая стойкость и особенно прочность связей металл — кислород, определяющая реакционную способность этих соединений. Поэтому стадия образования нестойких поверхностных кислородных соединений серебра, которые сравнительно легко разрушаются,образуя активные промежуточные продукты (например, перекись этилена), способные повести процесс превращения дальше — в те или иные конечные продукты (окись этилена, двуокись углерода, вода и т. п.), — является чрезвычайно важной при каталитическом окислении. Иными словами, форма кислорода может в.лиять на вид кинетических уравнений процесса каталитического окисления этилека. [c.270]

    Случай окиси углерода почти также сложен, как и случай с кислородом. Окись углерода почти немедленно диснронорционируется на активной поверхности никеля, давая уголь и углекислый газ. Окись углерода так же, как и водород, приводит к уменьшению намагничивания сверхпарамагнитного никеля. При давлении выше нескольких долей миллиметра наклон изотермы намагничивание— объем почти равен наклону изотермы для адсорбции водорода на том же образце. Эйшенс показал, что окись углерода при малых насьщениях поверхности, вероятно, присутствует в виде поверхностных структур типа кетон-ных группировок некоторых карбонилов металлов. Это следует из данных инфракрасных спектров и находится " в согласии с магнитными данными, которые также приводят к мысли о существовании двух связей углерод — никель при адсорбции молекулы окиси углерода. Для адсорбции очень важны данные инфракрасной спектроскопии они показывают, что молекулы окиси углерода образуют линейные структуры, т. е. что каждый атом углерода связан только с одним атомом никеля. Для насыщенной поверхности магнитные данные не дают оснований утверждать о каком-либо изменении типа связей. Однако это не противоречит нашему выводу о том, что при образовании связи между окисью углерода и атомом никеля должен происходить слабый переход электронов между атомом углерода и никелем. Магнитный метод не дает возможности различить, связана ли молекула окиси углерода с двумя атомами никеля или с одним. В соответствии с этим мы можем принять, что и магнитные данные и данные инфракрасных спектров не расходятся для одного и того же насыщения поверхности. Магнитный метод не лимитируется концентрацией адсорбата в мертвом пространстве, в то время как для метода инфракрасной спектроскопии необходимо поддерживать в мертвом пространстве небольшое давление. В магнитном методе возможно повысить давление до 1 атм и выше. Если работать при повышенном давлении в случае адсорбции окиси углерода на никеле, то изотерма намагничивание — объем становится почти параллельной оси объемов, что должно указывать на внезапное изменение типа связи в области высоких давлений. Однако вопрос осложняется тем, что [c.26]

    Окись дивинила в присутствии алкоголятов, подобно окиси пропилена, присоединяет спирты в соответствии с правилом Марковникова с образованием первичных эфиров и эритрита, а в присутствии BFg-0(G2H5)2 присоединение спиртов к окиси дивинила протекает вопреки правилу Марковникова с образованием втор.эфиров эритрола [48]. Для объяснения порядка присоединения спиртов к окиси дивинила А. А. Петровым предложена гипотеза, согласно которой щелочные катализаторы, в частности алкоголяты, просто повышают реакционную способность спиртов их каталитическое действие не связано с деформацией связи и обусловлено только легким, но сравнению со свободными спиртами, присоединением по правилу Марковникова, а BFg действует таким образом, что образует комплексные соединения с окисями. В результате такой координации ослабляется связь между кислородом и углеродом, окись принимает форму оксониевого соединения с положительно зарян<енным трехвалентным кислородом и взаимодействует со спиртами с образованием эфиров вторичных спиртов. Такое присоединение можно выразить следующими схемами  [c.241]

    Однако на основании общих сведений о слабости связей с двузаме-щенным углеродом можно было бы предполагать, что и эта окись будет неустойчивой, поэтому ее устойчивость может служить доказательством слабой сродствоемкости бензильного радикала, вследствие чего усиливается связь углерода — носителя двух бензильных групп — с третичным гидроксилом в дибензилгликоле и с мостиковым кислородом в соответствующей окиси. Известны различные примеры исключительной устойчивости окисей этилена под влиянием заместителей, сродствоемкость которых одинакова [4]. [c.275]

    Кислород, простейший элемент VIA группы периодической системы, имеет электронную структуру ls 2s 2p и поэтому способен проявлять ковалентность, равную двум, образуя либо две одинарные связи, либо одну двойную связь с другими атомами. Он обладает очень сильной способностью к образованию двойной связи, и в последующих разделах будут рассмотрены разнообразные соединения, в которых кислород образует двойные связи с углеродом или другими элементами. Настоящая глава посвящена химии связи С — О, а также О — Н-связи. Среди классов соединений, содержащих С — 0-связь, имеются простые эфиры типа ROR, в которых R и R могут быть насыщенными, ненасыщенными или ароматическими углеводородными группами трехчленный циклический эфир (СН2)гО, известный под названием окись этилена или, более строго, 1,2-эпоксиэтан, Который обладает необычными свойствами алканолы ROH и фенолы АгОН некоторые полиоксисоеди-нения, в частности глюкоза, являющаяся типичным представителем очень важных природных сахаров — альдогексоз. Помимо способности к образованию двух ковалентных связей, атом кислорода проявляет слабые основные свойства и образует оксониевые соединения, в которых атом кислорода окружен тремя атомами или группами. Соли, образующиеся при протонировании эфира или алканола, являются, однако, слишком нестойкими для того, чтобы можно было их выделить при обычной температуре, хотя в некоторых случаях это удается при очень низкой температуре. [c.329]

    Образование карбидов при распаде окиси углерода на металлах группы железа было подтверждено Фишером и Баром [29], а впослед-ствие также Баром и Жессеном [30]. Фишер и Кох [31] пришли к следующим представлениям о химизме синтеза .. . окись углерода и водород сначала адсорбируются па поверхности катализатора. После этого окись углерода на активных центрах катализатора химически связывается с одновременным ослаблением углерод-кислородной связи. Реакционно-активный водород образует с кислородом воду. Углерод, связанный в виде карбида, соединяется с активным водородом и освобождается из карбида в виде радикалов СН—, СНа—и СНз—, которые эатем полимеризуются в различные углеводороды, остающиеся сначала адсорбированными на катализаторе. [c.86]

    Скорость процесса контролируется взаимодействием метана с адсорбированным на катализаторе кислородом и тормозится десорбирующимся водородом. Стадия (I) не является лимитирующей. Окисление активных центров происходит быстро с образованием промежуточного соединения, обладающего слабыми основныш свойствами. Меаду подвижным водородным атомом метана и промежуточным соединением устанавливается водородная связь. Вследствие большого сродства водорода к никелю протон, принимающий участие в водородной связи,смещается к атому никеля. В результате разрядки протона на поверхности кристаллического никеля образовавшийся комплекс атомов разлагается на окись углерода, водород и окись никеля. Распад промежуточного соединения не является стадией, контролирующей скорость процесса, о чем свидетельствует большой экзотермический эффект его образования /27/. [c.49]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Следует иметь в виду, что активирование метильной или метилено-вой группы олефии овой двойной связью не всегда удается использовать для получения непредельных карбонильных соединений, так как двойная связь С=С в общем быстрее поддается действию кислотных окислителей и перманганата калия (с гидроксилированием и расщеплением углерод-углеродной связи, ср. разд. Г,4.1.6 и Г,6.5.1), 1чем алкильная группа. Для подобных селективных окислений пригодны кислород и двуокись селена (см. разд. Г, 6.2.3). Таким образом, например, в промышленности получают акролеин из пропилена окислением кислородом в газовой фазе при 350—400°С над катализатором (окись меди). Акролеин далее через аллиловый спирт превращают в глицерин (см. разд. Г,4.1.6). [c.9]

    Отрицательный индуктивный эффект -/-эффект проявляют галогены, кислород-, серо- и азотсодержащие группы (Р, С1, Вг, I, ОН, ОК, 5Н, ЫНг и т д ), так как они более электроотрицательны, чем углерод, с которым связаны, а также группа СС1з [c.238]


Смотреть страницы где упоминается термин окисей связи углерод—кислород: [c.121]    [c.237]    [c.526]    [c.526]    [c.227]    [c.442]    [c.228]    [c.48]    [c.59]    [c.509]    [c.1056]   
Органическая химия (1964) -- [ c.60 ]

Органическая химия (1964) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Связь кислород кислород

Углерод связи



© 2025 chem21.info Реклама на сайте