Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды алифатические идентификация

    С тех лор в разных странах интенсивно начали развиваться работы по выделению и идентификации феромонов, влияющих на поведение насекомых, и особенно половых феромонов, число которых к 1983 г. достигло 600. По своей химической природе феромоны отиосятся к самым различным к/(ассам органических веществ углеводородам, алифатическим и ароматическим спиртам, альдегидам, сложным эфирам, соединениям карбоциклической и гетероциклической природы и др. [c.774]


    Систему ФИД/ПИД в сочетании с капиллярной хроматографией успешно приняли для определения индивидуального состава смеси углеводородов С2-С10 [36]. В подобных случаях необходимо не только знание величин удерживания углеводородов достоверная идентификация возможна лишь после отождествления хроматограмм, полученных при хроматографировании смеси углеводородов с разными детекторами, и вычисления отношения сигналов этих детекторов (ФИД и ПИД). Такая информация для 145 органических соединений (в том числе для алкилбензолов, олефинов и алканов) получена в работе [67]. Использование возможностей комбинации ФИД/ПИД помогает повысить надежность качественного анализа сложных композиций сточных вод [44] и загрязнений атмосферного воздуха промышленных регионов [45]. В последнем случае для групповой идентификации алкилбензолов, олефинов и алифатических углеводородов 500 мл воздуха пропускали через ловушку со стеклянными шариками, охлаждаемую до —183°С. Затем нагревали ее на водяной бане и разделяли десорбированные примеси на кварцевой капиллярной колонке с силиконом SE-30 при программировании температуры от -50 до 80°С. Идентификация проводилась по отношению сигналов ФИД/ПИД, которое для алканов, алкенов и алкилбензолов находится в пределах 0—43, 44—88 и 75—188 соответственно. [c.408]

    Еще один пример показан на рис. 8.29. В данном случае разделяли водную фракцию летучих веществ, выделенных из облученного говяжьего фарша. Смесь выделили из водного раствора с помощью эфира, а концентрирование эфирного раствора проводили при температуре —80 °С. Концентрированный раствор испаряли и потоком газа-носителя вводили в колонку, имеющую температуру —10 °С, и выжидали выхода всего содержащегося в смеси эфира. Колонка в данном случае была соединена с масс-спектрометром с быстрой разверткой, благодаря чему идентификацию веществ, выходящих из колонки, проводили по получаемым масс-спектрам. По окончании выхода из колонки эфира начинали программирование температуры. Анализ данной смеси показал, что она состоит в основном из углеводородов алифатического ряда и небольших количеств других веществ. Углеводороды с семью и более атомами углерода в молекуле обнаружили в водной фракции перегонки, а углеводороды с меньшим числом атомов углерода в молекуле — в летучей фракции. [c.279]

    Масла, жиры и воски. Газовая хроматография неомыляемых веществ. III. Идентификация углеводородов, алифатических спиртов, токоферолов, тритерпеновых спиртов и стеринов в оливковых маслах. [c.247]

    В случае гомолитических реакций, протекающих в жидкой фазе, обнаружить свободные радикалы, установить их природу и определить выход можно на основании их способности реагировать со свободными галогенами быстрее, чем друг с другом и окружающей средой [429, 430]. Как пример рассмотрим установление природы и определение выхода свободных радикалов, образующихся при радиолизе алифатических углеводородов и алкил-иодидов. Эти соединения облучались у-лучами в присутствии небольших добавок иода ( 10 3 моль), меченного радиоактивным изотопом Для идентификации и определения выхода образующихся алкилиодидов, а следовательно, и соответствующих радикалов в систему после облучения добавлялись стабильные молекулярные носители (ожидаемые алкилиодиды), после чего смесь подвергалась фракционной перегонке и производилось измерение активности отдельных ( акций. [c.229]


    Более низкокипящими являются сульфиды восточно-черновской нефти (начало отбора 60°), которые до 150° отгоняются в количестве 77%. Сульфиды этой нефти отличаются по составу от сульфидов ранее изученных нефтей [2], в которых состав продуктов гидрогенолиза фракций изменялся с ростом их температуры кипения. В продуктах гидрогенолиза фракций выкипающих выше 140°, не было углеводородных газов (метана, этана, пропана), а это указывает на то, что фракции представлены в основном циклическими сульфидами. Алифатические сульфиды, если они присутствовали, состояли из радикалов, мало отличающихся по числу углеродных атомов. Идентификация сульфидов этой нефти осложнялась наличием в продуктах разрушения одной и той же фракции газообразных и жидких углеводородов, что резко увеличивало число теоретически возможных структур как алифатических, так и циклических сульфидов. [c.345]

    Аддитивная зависимость наблюдается, если при растворении вещества в смеси не происходит никаких новых процессов по сравнению с теми, которые протекают в каждом растворителе в отдельности. Исходя из этих данных, для нас представляло большой интерес разработать метод идентификации сложных многокомпонентных смесей, состоящих из летучих кислородсодержащих соединений, с использовапием фазовых равновесий в системе смешанных растворителей. Преимущества смеси растворителей из двух или трех компонентов заключаются в следующем [3] 1) не для всех соединений в чистых растворителях, вследствие их малой пли неограниченной растворимости, можно определить константы распределения с достаточной степенью точности 2) так называемые О—Н-смеси растворителей (т. е. смеси гликоль—углеводород) способствуют растворению соединений, содержащих высокополярные группы, в то время как Н -компонент понижает вязкость гликолей и облегчает растворение алифатических и ароматических соединений. [c.93]

    Обработка кислотами позволила выделить для последующей идентификации три основных класса ЛОС из присутствующих в смеси веществ алифатические и ароматические углеводороды и их кислородсодержащие производные. Хлорированные углеводороды, включенные в состав модельной смеси, поскольку они.часто используются в промышленных технологиях, не экстрагируются кислотой, а н-бутилацетат и н-амилацетат экстрагируются лишь частично [24]. При этом распределение ЛОС между кислотой и используемым для экстракции сероуглеродом зависит от относительной растворимости. [c.255]

    Другое дело, если исследуются смеси загрязнений, в состав которых входят соединения одного гомологического ряда (только н-парафины, только ароматические углеводороды, только алифатические спирты и т.д.). Тогда идентификация по индексам в пределах соединений этого ряда будет достаточно надежной, и ее информативность возрастает до 70—80%. [c.53]

    После выделения и концентрирования фракции ПАУ ее хроматографируют на колонке с оксидом алюминия, применяя в качестве элюента (подвижная фаза) циклогексан, бензол или их смесь (подробнее об этом см. раздел 7). Часто полученный экстракт сначала разделяют на отдельные фракции (ПАУ, алифатические углеводороды, органические соединения с функциональными группами и др.) методом ЖХ или ТСХ, а затем уже анализируют методом газовой хроматографии. В последнем случае результаты идентификации очень надежны, так как достигается высокая степень разделения ПАУ, особенно в случае использования капиллярных колонок, позволяющих разделять до 200—300 ПАУ или ПАС (полиароматические соединения с атомами азота, серы или кислорода). [c.145]

    Если для ароматических соединений ионный механизм нитрования считается общепринятым и достаточно достоверным, то в случае алифатических углеводородов такой определенности еще нет. Как уже указывалось, многие исследователи считают, что нитрование алканов — это молекулярно-радикальный процесс,, протекающий через образование свободных радикалов (К и ЫОг) с последующей их рекомбинацией и, следовательно, обрывом цепи. Убедительным доказательством в пользу такого представления было бы определение и идентификация свободных радикалов в ходе нитрования. Однако в литературе отсутствуют какие-либо сведения о такой работе. Практически отсутствуют также данные о кинетических закономерностях нитрования алканов (порядок реакции, энергия активации, изменение скорости в зависимости от времени, температуры, давления и т. д.). [c.14]

    Идентификация изотактических полимеров осуществлена впервые при помощи фракционирования гетерогенных полипропиленов, содержащих около 40—50% нерастворимого частично кристаллического и 50—40% растворимого в алифатических углеводородах частично аморфного полимеров. [c.24]

    Возможность применения масс-спектров ионных серий для групповой идентификации определяется сравнительным постоянством таких спектров для различных соединений, относящихся к одному гомологическому ряду. В основе такого постоянства лежат одинаковые закономерности фрагментации гомологов, зависящие главным образом от характера функциональных групп и малочувствительные к размерам углеводородных радикалов. Сильные колебания интенсивностей линий спектров ионных серий наблюдаются только для нескольких первых гомологов. Именно это послужило причиной того, что в работе [30], где были рассчитаны средние спектры ионных серий нескольких десятков гомологических рядов углеводородов, некоторых кислородсодержащих соединений и алифатических аминов, при построении таких спектров не учитывались гомологи менее чем с 8 атомами углерода. Возможности построения спектров ионных серий с учетом веществ с числом атомов углерода меньще 8 в настоящее время не исследованы. [c.94]


    При всей простоте и наглядности полученного индекса для групповой идентификации главная трудность, препятствующая его широкому использованию, заключается в рациональном выборе реперной ионной серии. Если принять, как это было предложено в работе [33], в качестве реперных пики с массами, относящимися к ионной серии 2п—1), и условие нормировки (4.4), то тогда алканы характеризуются интервалом значений 5 120—180, алифатические кетоны 180—240, сложные эфиры 260—380, алифатические амины 240—300, а ароматические углеводороды - 800—900. Такие различия между индексами 5 соединений разных классов позволяют быстро проводить оценочную групповую идентификацию, надежность которой, однако, меньше, чем идентификации по совокупности 14 линий спектров ионных серий. [c.97]

    В спектрах исходного для полимеризации сырья — фракции 160—200 °С легкого масла (см. табл. 2) и фракции 140— 200 °С смолки СК (см. табл. 3) — наблюдаются полосы поглощения, характерные для углеводородов с одной и двумя ненасыщенными связями как алифатической, так и ароматической структуры, индена и алкилароматических углеводородов. В литературе нет сведений о спектрах чистого индена, и идентификация индена проводилась сопоставлениями специально снятого для этой цели спектра индена 98%-ной чистоты. [c.41]

    Известно 110—13], что более рациональным и воспроизводимым способом характеристики удерживания в газожидкостной хроматографии являются индексы удерживания, предложенные Ковачем 14, 15], основанные на сравнении удерживания веществ с удерживанием ряда однотипных стандартов — нормальных углеводородов. Несмотря на подробную разработку метода бесстандартной идентификации для углеводородов, их галогензамещен-ных и оксипроизводных [14—16], система индексов удерживания на азоторганические соединения распространена недостаточно [17—21], В работах [17, 18] приведены индексы удерживания первичных алифатических аминов. В работах Авотса [19, 20] приведены индексы удерживания метилпиридинов на 4 фазах (апиезон М, силикон Е-301, ТВИН 80 и полиэтиленгликоль 6000), а также 6 бициклических производных пиридинов на апиезонеМ и силиконе Е-301. Наиболее подробное исследование алифатических и гетероциклических аминов приведено в работе Андерсона с соавторами [21, 22]. [c.96]

    Качественная идентификация газообразных продуктов термо- поликонденсации нефтяного пека,o y J e твлeннaя методом добавок, показала,что летучими продуктами являются Н2,СН ,С2Н0.Волее тяжелые углеводороды не обнаружены,это свидетельствует о том что боковые алифатические заместители в конденсированной ароматической системе очень короткие. [c.108]

    Первый путь — изучение состава жидких продуктов термического разложения угля или его деструктивного гидрогеноли-за, желательно в мягких условиях, хотя начинались эти работы с идентификации компонентов коксовых смол. Успехи современной аналитической химии, применение высокоразрешающих хроматографических методов в комбинациях с масс-спектроме-трией, ИК- и ЯМР-спектрометрией дали весьма существенную информацию. Так, например, только в публикациях последних лет сообщается об идентификации более ста структур, считая только основные классы органических соединений. Из насыщенных соединений в продуктах пиролиза обнаружено 23 парафина Се—Сзо, 4 изопарафина, 5 производных циклогексана и бицикло- [0,4,4]-октана, а также 9 ненасыщенных аналогов Сэ—С17 [5]. В продуктах гидрогенизации найдено 14 парафинов С16—С29 [6], 15 парафинов Сд—С23 [7], 24 парафина С о—Сзз в основном прямоцепных [8]. Можно предположить, что длинноцепные алифатические углеводороды образуются за счет деструкции воскообразного вещества липтинитов. [c.85]

    Работа Циммершейда с сотр. [319] по разделению алифатических соединений с открытой цепью включением с мочевиной является одним из самых ранних примеров подобного рода. Было показано, что алка-ны нормального строения и их производные с открытой цепью образуют соединения включения с мочевиной в противоположность большинству разветвленных и циклических углеводородов и их производных. Из этой работы стало очевидно, что методика применима для разнообразных исследовательских целей при разделении смесей, очистке и идентификации соединений, а также для анализа . Эта работа определяет место мочевины среди различных типов соединений, которые обнаруживают включающие свойства. Отсюда можно заключить о возможности использования других видов соединений включения. [c.144]

    В масс-спектрах ароматических гидроксильных соединений пики молекулярных ионов обладают еще большей интенсивностью. В спектре фенола пик молекулярных ионов максимален. Пик, соответствующий ионам с массой М — 1), мал. Очевидно, разрыв связи О—Н, находящейся в Р-положении к кольцу, происходит с меньшей вероятностью из-за наличия кислорода. В масс-спектре наблюдаются интенсивные пики ионов с массами 65 и 66, образованные при разрыве кольца. Как было установлено измерением масс, эти ионы отвечают формуле СО и СНО. Состав ионов с массой 65 и 66 может быть получен также на основании изучения дейтерированного фенола и тиофенола, как это было сделано Моминьи [1426]. В масс-спектрах этих соединений были соответственно обнаружены пики с массами 65, 66, 67 и 65, 66. В масс-спектре анилина также имеются пики сравнимой интенсивности, соответствующие ионам с массами 65 и 66, которые образовались благодаря отрыву соответствующих соединений азота H N и H2 N. Аналогичные осколочные ионы наблюдаются также в спектре нафтолов [190]. В спектрах крезолов имеется интенсивный пик молекулярных ионов, и даже больший пик, соответствующий ионам (М — 1) образования последнего следовало ожидать по аналогии с толуолом. В данном случае от исходной молекулы легко происходит отрыв СНО, но не СО. Наличие перегруппировочных ионов с массой 77 указывает на аро матический характер соединения. Масс-спектры соединений типа 2-фенилпро панола и 2-фенилэтанола близки к спектрам ароматических углеводородов В обоих случаях диссоциация [751] происходит с разрывом связи, находя щейся в Р-положении к кольцу и атому кислорода, а также с отрывом спирто вой боковой цепи и образованием соответствующих ионов с массами 91 и 105 Диссоциация с отрывом метильного радикала из 2-фенилпропанола, соответ ствующая разрыву другой р-связи по отношению к кольцу, осуществляется с малой вероятностью. Образуются перегруппировочные ионы с массами 92 и 106. Изучение спектров соответствующих дейтерированных соединений, в которых дейтерий введен в гидроксильную группу [751], показало, что в значительной степени эти ионы образованы с миграцией водорода гидроксильной группы. В общем случае ароматические и нафтеновые гидроксильные производные идентифицируются легко, частично на основании интенсивных пиков молекулярных ионов. Спектры алифатических спиртов труднее поддаются расшифровке. Некоторые факторы, затрудняющие идентификацию, будут рассмотрены ниже. [c.359]

    Хепп и Стьюарт очистили 10 алифатических кислот и получили их масс-спектры [831]. Наличие кислорода устанавливается просто молекулярный вес карбоновых кислот на две единицы выше молекулярного веса соответствующих углеводородов, причем пики молекулярных ионов достаточно интенсивны и могут быть замечены без особых затруднений. Таким образом, кислоты с алкильной группой, связанной с карбоксильной, легко отличаются от углеводородов. Большие пики 31, 45, 59 и т. д. также свидетельствуют о присутствии кислорода в молекуле, а наличие характерных пиков, связанных с карбоксильной группой, обычно облегчает идентификацию кислот. Необходимо отметить, что многие из низших членов ряда одноосновных кислот обладают едким запахом, что дает возможность просто отличить, например, масляную кислоту от валериановой. Двухосновные кислоты не обладают таким свойством, однако так как они обычно термически неустойчивы и распадаются при нагревании до температуры, необходимой для создания соответствующей упругости пара, то обычно такие соединения превращаются в метиловые или этиловые эфиры до исследования их при помощи масс-спектрометрического метода или газожидкостной хроматографии [1643]. Многие из этих эфиров могут быть идентифицированы по запаху. [c.380]

    Из материала, изложенного выше, очевидно, что масс-спектрометрия является превосходным методом идентификации структурных изомеров алифатических соединений. Отмечалось также, что этим методом значительно труднее идентифицируются некоторые изомеры, отличающиеся только положением двойной связи. Еще труднее дифференцировать ароматические изомеры типичный пример представляют собой весьма сходные между собой спектры трех ксилолов. Здесь вновь наиболее запутанная ситуация создается в случае углеводородов, тогда как введение в молекулу гетероатома создает элемент асимметрии, который часто находит свое отражение в масс-спектре. Для этилпиридипов, например, относительная интенсивность пика с массой 92 (потеря Hg) заметно уменьшается в последовательности 3-этил-, 4-этил-, 2-этилпиридин [16] — в согласии с ожидаемым порядком устойчивости ионов Vni, IX и X  [c.323]

    Учитывая вычисленные ранее значения тех частей G , которые отвечают первично возбужденным молекулам gHg и ионам gH/, можно считать приближенное значение Gg в 1,3 для газообразного бензола. Непосредственно экспериментальным путем это значение до сих пор не определялось, но в настоящее время над этой задачей работают в нашей лаборатории. Однако для приближенного сравнения вычисленного значения Gg с опытными данными можно воспользоваться результатами Линдера и Дэвиса [14], на которые мы уже ссылались. Согласно их данным, значение Gg для газообразного бензола примерно в четыре раза меньше, чем для алифатических углеводородов. Из приводимых Линдом [13] старых экспериментальных данных явствует, что для процесса разложения алифатических углеводородов получается величина M/N, равная 2, что примерно соответствует G = 8. Одна четвертая этой величины, т. е. 0 = 2, не слишком сильно отличается от условно вычисленного нами для газообразного бензола значения 0 1,3, в особенности если учесть, что в старых работах встречались некоторые трудности при идентификации продуктов облучения. [c.169]

    Определение химическою строения неизвестного соединения на основании спектроскопических и спектрометрических данных может быть цоручено и компьютеру, который здесь выступает в роли искусственного интеллекта . При этом имеется в виду не идентификация неизвестного соединения путем сравнения его спектра с эталонными, а именно установление строения впервые изучаемого спектроскопически вещества на основе набора большого числа спектров,- соответствующих другим соединениям. Примеры такого подхода уже есть. Биман и Мак Лафферти в 1966 г. применили компьютерный структурный анализ для определения аминокислот в составе олигопептидов Петтерсон и Рихаге (1967) — для установления строения предельных углеводородов от до Сдо, содержащих одну метильную группу в боковой цепи Джерасси и сотр. (1969) — для установления строения алифатических кетонов и простых эфиров. Сасаки (1970) предложил метод компьютерного структурного анализа, основанный на положении о том, что в спектроскопических данных находится информация о всех фрагментах данного вещества и чт-о поэтому задача компьютера сводится к построению из этих фрагментов наиболее вероятной структуры анализируемого соединения [55]. [c.314]

    Эту же методику применяют и для надежной идентификации и определения галогенуглеводородов в городском воздухе после концентрирования этих токсичных ЛОС в трубке с 180 мг тенакса G [180]. Такой подход (см. также главу X) с использованием мультидетекторной системы (ПИД, ЭЗД, ПФД и ТИД) дает возможность надежной идентификации компонентов в сложной смеси загрязнений, состоящей из алифатических и ароматических углеводородов, галогенуглеводородов, альдегидов, спиртов, фенолов, серу- и азотсодержащих ЛОС [189]. [c.398]

    Другим приемом идентификации с помощью ФИД является использование отношения сигналов ФИД/ПИД и ФИД с другими детекторами. Эта техника была впервые реализована Дрисколом с сотр. [40] для идентификации ароматических углеводородов, парафинов и олефинов в природном газе, используемом в качестве сырья для нефтехимии. Этот способ групповой идентификации ароматических и алифатических углеводородов оказался полезным при исследовании продуктов газификации каменного угля [41] и расшифровке состава бензинов [42]. Результаты идентификации, основанные на измерении отношения сигналов ФИД/ПИД для 21 соединения, были получены после хроматографирования ЛОС на капиллярной колонке со скваланом длиной 100 м. [c.406]

    С целью идентификации летучих продуктов пиролизу при 500° С в течение 10—12 сек. были подвергнуты алифатические моноаминокарбоновые кислоты глицин, аланин, валин, изолейцин [122]. Разделение продуктов пиролиза проводили при 25,46 и 55°С на колонках с активированным углем, силикагелем, а также на колонке с 2,4-днметилсульфоланом на хромосорбе Р нри детектировании по теплопроводности. Хроматограммы продуктов пиролиза — двуокиси и окиси углерода, метана, этана, полученные на колонках с активированным углем и силикагелем, различались в основном количественным соотношением. На колонке с 2,4-ди-метилсульфоланом были идентифицированы углеводороды С — g. [c.63]

    Еще более перспективен для использования при изучении процессов самоочищения морских вод метод газовой, в частности газо-жидкостной, хроматографии. В принципе он позволяет провести практически полное разделение углеводородов, входящих в состав нефтепродуктов, и их идентификацию. Несколько сложнее обстоит дело с количественным анализом, однако и здесь уже имеются известные достижения. Лурье, Пановой и Николаевой [4] разработан газохроматографический метод определения группы алифатических углеводородов (Ст—Сю), двух циклических (цик-логексан и циклопентан) и группы ароматических углеводородов (толуол, этилбензол, ксилолы, изопропилбензол, м-пропилбензол, грет-бутилбензол, втор-бутилбензол, стирол), входящих в состав продуктов переработки нефти. Кроме того, проведена идентификация углеводородов керосина и дизельного топлива после их разделения на колонке, содержащей силикагель, на парафино-пафтеповую и ароматическую фракции. Метод заключается в экстракции нефтепродуктов из воды гексаном, введении экстракта в хроматограф и хроматографическом окончании анализа с использованием в качестве детектора катарометра. Точность метода [c.58]

    Фурмен и Джераломон [7] исследовали пригодность этой реакции для идентификации большого числа соединений с применением различных реактивов для обнаружения продуктов окисления. Парафиновые углеводороды и алифатические амины обрабатывали озоном не при комнатной температуре, а при 55—90°С. Перед опрыскиванием пластинки детектирующим ре-активо.м необходимо удалить с нее избыток озона. [c.195]

    Проведен [1436, 1438] также термолиз поливинилхлоридной смолы (геон 103, содержание С1 57,4%) по двум методам. В первом из них образец нагревали во входной камере масс-спектрометра, имеющей температуру 325 °С, и регистрировали масс-спектр всего пиролизата. По второму методу проводили пиролитическую газовую хроматографию полимера с подачей продуктов в масс-спектрометр после предварительного концентрирования [1437]. Образцы пластизолей и ПВХ (10—20 мг) пиролизовали при 600°С в токе газа-носителя (гелия). В этих условиях из ПВХ выделялось стехиометрическое количество хлороводорода (58,3%), т. е. хлороводород составляет по массе более половины общего количества продуктов разложения. Типичная пирограмма ПВХ, полученная этим методом на колонке с неподвижной фазой ЗЕ 32, приведена на рис. 118. Результаты идентификации компонентов представлены в табл. 54. Индексом по.мечены компоненты, определенные на колонке с неподвижной фазой поропак рЗ. Основными продуктами пиролиза ПВХ являются хлороводород, бензол, толуол и нафталин. Образуются также алифатические насыщенные и ненасыщенные углеводороды С]—С4. [c.310]

    С целью идентификации сернистых соединений Берч с сотрудниками [74] применяли гидрообессеривание фракций сернистого концентрата над никелем скелетным. Гидрогенолиз узких фракций сернистых соединений проводили в этаноле с 10—15-кратным количеством скелетного никеля (по весу) при температуре 80°С в течение 2 часов. Полученные алифатические и моноциклические углеводороды указывают на присутствие MOHO- бициклических сульфидов. [c.40]

    Бензол, толуол, ксилол и стирол мбгут быть получены из неочищенной нефти или каменного угля. Некоторые нефти содержат до 35—37% ароматических углеводородов и их алкилпроизводных, таких как изопропилбензол, псевдокумол и дифенилметан. Для идентификации ароматических углеводородов обычно используют их характерное поглощение в УФ-области спектра. Аналитик, определяющий алифатические и ароматические углеводороды, обычно имеет дело со множеством соединений как природных, так и синтезированных, в том числе с побочными продуктами различных химических процессов. Число возможных ароматических соединений, отличающихся по строению и реакционной способности, бесконечно велико. Достаточно сказать, что почти все ароматические [c.527]


Смотреть страницы где упоминается термин Углеводороды алифатические идентификация: [c.91]    [c.48]    [c.479]    [c.209]    [c.479]    [c.400]    [c.156]    [c.226]    [c.218]    [c.259]    [c.155]    [c.246]    [c.21]    [c.32]    [c.281]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.320 ]

Общий практикум по органической химии (1965) -- [ c.578 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды алифатические



© 2025 chem21.info Реклама на сайте