Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффекты микроскопические

    В 1955 году, измеряя скорость гидролиза АТР миозином, Шноль наблюдал странное распределение результатов — они группировались вокруг 2-х или 3-х дискретных значений, а вероятность появления результатов между ними была ниже. После тщательного воспроизведения результатов, Шноль опубликовал свою первую статью, описывающую эффект микроскопических флуктуаций в журнале Вопросы медицинской химии [91]. Многие журналы с более высокой репутацией его статью отклонили. После неудачных попыток объяснить полученные данные особыми свойствами молекул белков в водных растворах, Шноль начал беспрецедентную 40-летнюю серию аналогичных экспериментов от химических реакций низкомолекулярных соединений до процессов радиоактивности и измерения гравитационной постоянной (последние результаты см. в [92]). [c.122]


    Анизотропия макроскопического коэффициента самодиффузии, связанная с эффектом препятствий, наблюдалась экспериментально для воды в упорядоченных гетерогенных системах [619, 621—623]. Эта анизотропия может проявляться даже в случае, когда микроскопический коэффициент диффузии изотропен ( >0 = /)ох). При использовании метода ИГ-ЯМР важно также учитывать эффекты пространственно ограниченной самодиффузии, которые могут приводить к искажению измеряемых величин D [617]. [c.239]

    Природа компенсационного эффекта недостаточно ясна. По одному из объяснений, компенсационный эффект свойственен процессам в конденсированных средах (к которым, конечно, принадлежат и твердые катализаторы) и связан с локализацией элементарных актов реакции в микроскопически малых областях и конечной скоростью перераспределения энергии в системе [2 ]. По другому объяснению [3 ], компенсационный эффект есть следствие неоднородности каталитической поверхности. Таким образом, возможно, что компенсационный эффект и не связан с энтропийными составляющими константы скорости реакции. [c.12]

    К нетепловым эффектам относят явления в полях с большой напряженностью (выше 100 В/см), называемые по терминологии Швана сильными взаимодействиями, и явления в слабых полях или слабые взаимодействия. В сильных полях (помимо нагрева) Наблюдаются эффекты насыщения диэлектрика, ориентация коллоидных частиц (проявляющаяся в биологических системах) и пондеромоторное действие. В слабых полях возможны резонансы макромолекул или биологических структур микроскопических размеров [21]. [c.85]

    Публикуемую монографию по содержанию материала можно разделить на три части. В первой части излагается формальная механико-статистическая теория, устанавливающая связь между макроскопическим характером вириальных коэффициентов и микроскопической природой межмолекулярных сил. В этой главе рассматриваются теорема вириала в классической и квантовой механике уравнение состояния на основе классической и квантовой теорий и как проблема теории химической ассоциации вириальные коэффициенты в квазиклассическом приближении при высоких и низких температурах вириальные коэффициенты с учетом аддитивных и неаддитивных межмолекулярных сил, внутренних степеней свободы, квантовых эффектов вириальные коэффициенты для чистых веществ и смесей газов. [c.5]


    Первый предельный случай (с/м ) означает, как и в случае микроскопической теории, что характерный период движения электронов в атомах взаимодействующих тел значительно больше времени распространения взаимодействия, т. е. нет эффекта запаздывания. В результате з р, я первое слагаемое в (11.35) обращается в нуль. При введении новой переменной интегрирования X 2Ьр(и У с) получаем [c.51]

    В нашей работе [ПО] хемомеханический эффект установлен впервые прямыми микроскопическими наблюдениями. Этот эффект наблюдавшийся на монокристаллах, проявился в пластифицировании и возникновении потока дислокаций к поверхности вследствие снижения поверхностного потенциального барьера при химическом взаимодействии с внешней средой и растворении металлов и минералов. [c.126]

    Изменение потенциала меди при деформации в упругой области, по-видимому связано с микроскопическими разрывами поверхностной пленки, что приводит к образованию многочисленных пар локальных элементов металл—пленка [86]. На ходе кривых в области пластической деформации также сказывается осложняющее действие пленок, как это видно из сопоставления величин механохимического эффекта при различных скоростях деформации, обусловливающих различное время залечивания пленок. [c.94]

    До сих пор вывод из микроскопических уравнений был достаточно прямолинейным. Однако теперь следует учесть, что имеются потери вследствие утечки излучения через концевые зеркала, а также вследствие спонтанного излучения атомов в другие моды. Кроме того, существует шум, обусловленный случайностью излучения. Эти эффекты в данном случае учитывают, добавляя член. [c.308]

    Явления переноса, возникающие в обычных условиях под действием гидро- или аэростатической подъемной силы, чрезвычайно разнообразны. Они существуют в объемах одно- и многофазных жидкостей. Интересные и важные эффекты наблюдаются в жидких объемах любого масштаба — от микроскопических в живых системах, в масштабах порядка метров в обычной-жизни и в технике и до сотен километров в атмосфере и водной оболочке Земли, а также в огромных масштабах внеземной циркуляции вещества. [c.8]

    Известно [112, 120], что использование картин Муара позволяет наиболее отчетливо выявлять небольшие искажения кристаллической решетки. Данный принцип основан на том факте, что небольшие изменения в трансляционной симметрии приводят к заметным изменениям в картинах Муара. Картины Муара часто наблюдаются в тех случаях, когда изображения кристаллических решеток двух соседних зерен накладываются друг на друга. Характерными чертами картин Муара при электронно-микроскопических исследованиях искажений кристаллической решетки являются искривления получаемых изображений кристаллографических плоскостей и часто изменение расстояния между ними. С другой стороны, наблюдаемые явления могут быть вызваны дифракционными эффектами. [c.66]

    Среди атомно-молекулярных систем, доступных наблюдению, особое место занимает атом водорода Причина этого заключается в следующем Фундаментальным положением, лежащим в основе всей современной теории микромира, является утверждение, что закон Кулона сохраняет свое действие и на расстояниях порядка 10 см Между тем, эТот закон получен изначально как результат обобщения макроскопических экспериментов (опыт с крутильными весами Кулона и с определением электрического поля внутри заряженной сферы Кавендиша) Более того, как будет показано в гл 2, вообще любые эксперименты с микрообъектами всегда являются только макроскопическими и косвенными Другими словами, залезть внутрь атома или молекулы с каким-нибудь измерительным прибором в принципе нельзя Проверить правильность того или иного утверждения можно только одним способом рассчитать макроскопический эффект на основе той или иной микроскопической модели объекта, а за- [c.27]

    Природа рассмотренного эффекта носит чисто вероятностный характер. В ее основе лежит та же причина, по которой пару шаров разного цвета вытаскивают из урны, содержащей 50% белых и 50% черных шаров, в среднем в 2 раза чаще, чем пару шаров одного цвета. В общем случае, когда молекула Р содержит п центров связывания, соотношение между микроскопическими константами образования К и константами Кг, характеризующими отдельные стадии связывания, имеет следующий вид [12, 13]  [c.257]

    Электростатические эффекты могут передаваться с высокой эффективностью через систему ароматических колец. Это обстоятельство, несомненно, очень важно для функционирования биологически активных молекул, содержащих гетероциклические ароматические системы. Рассмотрим влияние степени протонирования азота пиридинового кольца на величину микроскопической константы связывания протона фенолят-анионом пиридоксина  [c.260]

    Электростатические эффекты в таких ароматических системах, как правило, удовлетворительно описываются уравнением Гаммета. В качестве упражнения можно сначала рассчитать четыре микроскопические константы диссоциации для 3-оксипиридина, используя значения констант, соответствующих разным стадиям, /5/Са = 4,91 и 9,62, а также значение таутомерного отношения [7] [c.260]


    Таким образом, в зависимости от типа частицы, ее энергии, химического состава образца, времени облучения в смазочном материале происходят различные микроскопические изменения, начиная от ионизации атомов и молекул и кончая полным превращением одних атомов в другие. При этом разрываются химические связи и образуются свободные радикалы, ионы и радикал-ионы, которые обладают свободными валентностями и избыточной энергией. В результате в облучаемой среде возникают различные химические реакции синтез и разложение, полимеризация и деструкция, окисление и восстановление, изомеризация или любая комбинация из этих процессов. Совокупность микроскопических процессов, происходящих под действием радиоактивного излучения, вызывает возникновение макроскопических эффектов в смазочных материалах. Изменения, которые при этом претерпевают смазочные материалы, могут быть весьма значительными и зачастую приводят к полной потере их эксплуатационных свойств. [c.240]

    Итак, существуют три мира явлений. Мир одних, провозглашенный в физике Ньютоном в 1687 г., качественно неизменен. Мир других, провозглашенный в термодинамике Клаузиусом в 1850 г., деструктивен. И, наконец, мир третьих, провозглашенный в биологии Дарвиным в 1859 г. и в естествознании Пригожиным в 1980 г., созидателен и склонен к эволюционному саморазвитию. Три мира - три научных мировоззрения - три языка, на которых человечество одновременно ведет диалог с природой. Явления первой и второй групп, как уже отмечалось, подчиняются принципиально разным законам природы (детерминистическим и статистическим соответственно), совокупности которых образуют их научные фундаменты. Представления, выработанные для описания явлений одной группы, не могут быть использованы для описания другой. Так, термодинамические функции состояния (температура, энтропия, свободная энергия и др.) теряют смысл для объектов и явлений, изучаемых классической физикой и квантовой механикой. В то же время такие физические понятия, как координаты, импульсы и траектории движения микрочастиц, волновая функция, уравнение Шредингера и др., неприемлемы для равновесной термодинамики. Явления третьей, промежуточной, группы не потребовали для своего описания раскрытия новых фундаментальных законов природы. Новизна рождающихся в результате статистико-детерминистических процессов структурных образований не в особых, ранее неизвестных свойствах микроскопических элементов, а в макроскопических организациях этих элементов с упорядоченной системой связей. Качественные изменения, происходящие при спонтанном переходе системы от хаоса к порядку, возникают благодаря кооперативному эффекту, проявляющемуся в процессе реализации возможностей микроскопических [c.23]

    Как отмечалось в 8, неравновесные бимолекулярные реакции должны описываться микроскопическими кинетическими ураинениями. Решение атих уравнений требует информации о зависимости сечений реакций от энергии различных степеней свободы. Поэтому проведенные к настоящему времени модельные расчеты неравновесных эффектов основаны на модельных представлениях о зависимости сечений от поступательной или колебательной энергии [98]. Что касается влияния нарушения максвелловского распределспия на скорость бимолекулярной реакции, ю оно сравнительно мало, если энергия активации заметно превышает к [71]. С другой стороны, следует ожидать, что неравновесные аффекты, обязанные нарушению больцмановского распределения по колебательным состояниям реагентов, будут значительно больше. Это связано с тем, что времена колебательной релаксации намного больше времен поступательной релаксации, и поэтому вполне вероятно, что столкновения не будут успевать восстанавливать равновесное распределение, нарушаемое реакцией. Мы раесмотрим этот вопрос в рамках фспомено.логического подхода, заменяя сложную систему кинетических уравнений для заселенностей более простыми уравнениями для концентраций молекул, способных в различной степени участвовать в реакции. [c.146]

    Зависимость микроскопических свойств от температуры обусловливается а) изменением диапазона энергии, который нейтрон проходит при замедлении б) изменением сечеиий теиловой группы, которые определяются средней энергией нейтрона в) эффектом Допплера. [c.219]

    В выражении ( ) для микроскопической константы скорости к ( ) множителем Р учитывается эффект адиабатических вращений. Множитель F для случая молекул АК типа симметричных волчков вычисляется по известной формуле [164], связывающей Р с величиной отношения вращательных статистических сумм адиабатических степеней свободы АК и активной молекулы. Кроме того, в программе предусмотрены независи-мь й ввод величины Р, в этом случае все вычисления проводятся с заданной величиной Р. Вычисления частоты дезактивирующих соударений со производятся в рамках приближения сильных соударений. [c.253]

    Поскольку четыре микроскопические константы ионизации нельзя определить из кривых титрования, необходимо было использовать спектрофотометрпческий анализ в ультрафиолетовой области для группы R—S . р/< = 8,65 бетаиновой структуры цистеина (ионизация тиола в ирисутствии положительно заряженного атома азота) и р/( = 8,75 S-метилцистеина (ионизация аминогруппы в присутствии нейтрального атома серы) близки к значениям и 2 для диссоциации ио выше приведенным механизмам и свидетельствуют, что эти величины должны иметь близкие значения (табл. 2.1). Здесь надо вновь отметить важный вклад индуктивного эффекта и эффекта ноля, обусловливающих различие рКа этих соединений от рКа обычных алкилмеркаитанов и аминов. [c.43]

    Если предположить, что х 10 дин, то, согласно (3), при 013 50 дин/см изменению 0—Эо,, л 1° будут соответствовать г 10 см при 000= 90° иг 10 смпри 0оо = 10°. Отсюда следует, что при точности измерения углов контакта в Г можно ожидать заметного отклонения 0 от Эоо для микроскопически измеряемых г только при малых углах контакта. Эффект от х может быть полностью перекрыт эффектом гистерезиса угла смачивания, составляющего, на твердых поверхностях, обычно величину больше одного градуса. Кроме того, небольшая ошибка в значениях межфазных натяжений, которые вместе с х/г определяют угол контакта, может привести также к ошибочным значениям для х. [c.258]

    Физические свойства электретов существенно зависят как от особенностей диэлектриков (их полярности и электропроводности), так и от режима изготовления (например, напряженности поля, температуры и времени поляризации). В зависимости от напряженности электрического поля можно получать из одного и того же вещества и гомо- и гетероэлектреты (совпадающие и несовпадающие по полярности со знаком заряда электрода) с различной плотностью поверхностных зарядов. Гетерозаряд обусловлен, прежде всего, ориентационной дипольной поляризацией, а также микроскопическими неоднородностями и ионной электропроводимостью диэлектрика. Образование гомозаряда связано с тем, что при высоких напряжениях вследствие искрового пробоя воздушного зазора заряды переходят с электрода на образец полимера. Электретный эффект в твердых диэлектриках имеет объемный характер. В так называемом незакороченном состоянии электрет все время находится в электрическом поле, в результате чего происходит рассасывание объемного заряда. При плотном закорачивании электрета его внутреннее поле равно нулю [58, гл. I]. Время жизни электрета зависит от электропроводности как его самого, так и среды, а также от качества закорачивания. Поскольку возникновение электретного состояния связано с поляризацией и ориентацией, ему должно сопутствовать существенное увеличение оптической анизотропии. При кратковременной поляризации полимеров (в частности, ПММА) их оптическая анизотропия практически не проявляется. После резкого возрастания оптической анизотропии в интервале времен от 3 до 6 ч дальнейшее увеличение времени поляризации практически не повышает анизотропию, что свидетельствует о завершении ориентации. [c.253]

    Сопоставляя па данном этапе рассмотрения концепции Хироми и Тома, мы видим, что отнесение константы Михаэлиса к соответствующим микроскопическим параметрам в рамках обеих концепций идентично (сравните выражения 14 и 15, с одной стороны, и 43 — с другой). Однако смысл каталитической константы в обеих концепциях различается (см. выражения 17 и 44). Если по гипотезе Хироми каталитическая копстапта пропорциональна гидролитическому коэффициенту ко, который является строго характеристическим для данного фермента, и определяется исключительно соотношением констант ассоциации субстрата в продуктивном и непродуктивном фермент-субстратном комплексах (17), то по гипотезе Тома величина гидролитического коэффициента зависит от способа связывания фермента с субстратом и от степени полимеризации последнего. На наш взгляд, это придает настолько больн1ую гибкость расчетам на основании концепции Тома, в особенности с помощью машинного анализа, что может в отдельных случаях делать бессмысленными определения показателей сродства индивидуальных сайтов активного центра. фермента, поскольку все наблюдаемые кинетические эффекты могут быть объяснены в рамках вариации гидролитического коэффициента при изменении структуры олигомерного субстрата и способов его связывания с ферментом. То же можно отнести и к определению константы скорости второго порядка ферментативного расщепления субстрата (см. выражения 18 и 45). [c.65]

    Для обоих типов катализа реакции в прямом и обратном направлении идут через одинаковые интермедиаты, что соответствует принципу микроскопической обратимости. Как и следует ожидать от механизма, при котором связь С—Н разрывается в лимитирующей стадии, субстраты типа КС02С0К проявляют изотопные эффекты дейтерия (величиной около 5) в обоих процессах, катализируемых как основанием [67], так и кислотой [68]. [c.427]

    Изучены коллоидно-химические свойства водньк дисперсий олово- и цинксодержащих сополимеров в зависимости от содержания металлсодержащих мономеров в исходной реакционной смеси. Исследована биологическая активность олово- и цинксодержащих сополимеров к отдельным видам микроскопических грибов, бактерий и их ассоциациям. Показано наличие у данных сополимеров одновременно фунгицидных и бактерицидньгх свойств. Установлены чувствительные и малочувствительные микроорганизмы к исследуемым биоцидным сополимерам Найдено оптимальное соотношение олова и цинка в сополимере, обеспечивающее максимальный синер1-етический эффект биоцидности у вновь синтезированных биологически активных сополимеров. [c.80]

    И. М. Любарский и Л. С. Палатник зксиериментально установили, что белая фаза представляет собой сложную гетерогенную высокодисперсную структуру, содержащую аустенит, мартенсит и карбиды [43]. Эта структура образуется в результате импульсного приложения энергии (механического удара), которая с большой скоростью преобразуется в теплоту. Возникающие при этом в процессе трения точечные источники теплоты вызывают сложные эффекты закалки и отпуска в микроскопических объемах металла, которые приводят (при многократных механических ударах) к структурным изменениям не только в тонком поверхностном слое, но и на значительной глубине от трущейся поверхности. [c.23]

    Так как растворитель может влиять на скорости двух конкурирующих реакций различным образом, то замена растворителя может сильно модифицировать состав смесн продуктов, образующихся по конкурирующим направлениям реакции. Много таких примеров найдено при работе методом проб и ошибок в синтетической химии. Важный пример микроскопического эффекта растворителя — увеличение нуклеофильно-сти многих анионов в полярных апротонных растворителях по сравнению с их нуклеофпльностью в гидроксилсодержащих растворителях сравнимой полярности (23]. В гидроксильных растворителях анионы-обычио сильно сольватнропаны за счет водородных связей. Это особенно справедливо для анионов, обладающих высокой концентрацией заряда на атомах кислорода или азота  [c.148]

    Примечание. Мы предположили, что К (/)—марковский процесс. Однако обычно наибольший интерес представляют материалы, в которых наблюдаются эффекты памяти, поскольку они дают больше информации о микроскопических магнитных моментах и их взаимодействии. В этом случае полученные выше результаты остаются формально правильными, однако надо иметь в виду следующую особенность. По-прежнему остается верным то, что р (уи)—это функция распределения величины У в момент времени в который вык.чючается малое поле В. Однако уже несправедливо, что это распределение р (уц) однозначно определяет подансамбль и тем самым будущее Г (/). Теперь уже важно знать, что система стареет в присутствии поля В Л-АВ, так что ее плотность в фазовом Пространстве является канонической не только по переменной У, но и по всем другим переменным, которые определяют ее будущ ее. Следовательно, полученные формулы неприменимы к зависящим от времени полям В(<), если только изменения не настолько медленны, что система способна все время поддерживать равновесное распределение, соответствующее мгновенному значению В (О- [c.94]

    Аналогично изменяются другие электрофизические свойства пленок оптическая плотность, ширина запрещенной зоны (0,5 эВ - в максимумах и 2 эВ в минимумах электропроводности). Совокупностью электронно-микроскопических и спектроскопических (оже, ИК, КР) исследований было установлено, что в аморфных углеродных пленках, полученных при Е=50 эВ и 125 эВ, преобладают элементы структуры с графитным ближним порядком.. А в пленках, полученных при Е=30 эВ, 90 эВ и 150 эВ (пленки с повышенными диэлектрическими свойствами), преобладают структурные элементы с ближним атомным порядком, организованным по типу различных метастабильных фаз при Е=150 эВ -карбиноподобные пленки, при Е=90 эВ - алмазоподобные, при Е=30 эВ образуется аморфная фаза на основе промежуточного типа гибридизации между зр и зр с ближним порядком, соответствующим фанецентрированной кубической решетке. Ранее такой фазы среди кристаллических модификаций углерода обнаружено не было. Итак, ионное облучение растущих углеродных пленок может стимулировать фазовые преврашения в них, и этот эффект является немонотонной функцией энергии ионов. [c.29]

    Разумно было бы заключить что в присутствии посторонних паров скорость коагуляции изменяется лишь в аэрозотях, состоя щих из твердых частиц и что причина изменения состоит не в увеличении или уменьшении эффективности столкновения а в изменении формы образующихся агрегатов С другой стороны, некоторые опытыкак будто показывают, что скорость агрегации аэрозотей частицы которых имеют значительное давление пара например водяных туманов, увеличивается в присутствии веществ, снижающих дав пение пара, в частности хлорида кальция Механизм этого эффекта был исследован на микроскопических и макроскопических системах 28 Данные по рассеянию света и скорости седиментации аэрозолей, а также электронные микрофотографии частиц показывают, что некоторые пары оказывают специфиче ское влияние на скорость агрегации некоторых аэрозолей [c.158]

    Сотрудниками Башкирского государственного педагогического университета были проведены исследования по оценке фитотоксичности (токсичности на растительные организмы) вяжущего вещества ВМТ. В качестве тест - организмов использовались низшие (почвенные микроскопические водоросли) и высшие (пшеница Московская-35 ) растения. В результате экспериментов было установлено, что фунты, укрепленные вяжущим веществом ВМТ, обладают определенными фитостатическими свойствами по отношению как к высшим, так и низшим растениям, но фитостатический эффект резко снижается до уровня контроля при нанесении на укрепленные участки слоя фунта толщиной не менее 20 см. Следовательно, участки земель, где вяжущее вещество ВМТ применяется для укрепления фунтов, можно использовать под сельскохозяйственное производство либо в иных целях при условии рекультивации посредством нанесения плодородного слоя фунта толщиной не менее 20 см. [c.101]

    Каждая группа характеризуется микроскопической константой связывания (К ), равной б-Ю" (которую можно назвать также истинной константой связывания, так как она относится к карбоксильной группе, не взаимодействующей с другими группами). Интуитивно ясно, что в отношении связывания протонов раствор дианиона дикарбоновой кислоты должен вести себя точно так же, как раствор моноаниона I —СОО вдвое большей концентрации. Если это действительно так, то для характеристики обоих центров связывания достаточно знать одну истинную константу. Тем не менее, как это ни странно, константы образования /<1 и Кй, соответствующие связыванию первого и второго протонов, оказываются неодинаковыми /<1 = 10-Ю" Кг =2,5-Ю". Этот факт обусловлен так называемым статистическим эффектом. На первой стадии протон может присоединиться к любой из двух карбоксильных групп, и образующиеся при этом молекулы будут неразличимы  [c.257]

    Рентгенограмма полученного вещества характеризовалась тремя сильно размытыми линиями с d = 2,49 с. ш. и 1,32 ср. ш., что свидетельствует о его высокой дисперсности. Электронно-микроскопический анализ также показал чрезвычайно высокую степень дисперсности свежеосажденного продукта. На термограмме гидросиликата никеля при температуре 200° С обнаружен интенсивный эндотермический эффект, характеризующий выделение молекулы воды. Согласно нашим определениям, потеря веса образца NiSiOg 2HaO в процессе нагревания его при указанной температуре составила 12,22%. [c.138]

    До наступления перекрытия межфазных полей уменьшение толщины прослоек при сохранении объемов фаз и площадей межфазных ловерхностей не сопряжено с затратой работы, идущей на изменение свободной энергии системы, а только с диссипацией энергии вслед- ствие преодоления вязкости и других сил пассивного сопротивления. Положение меняется, как только наступает перекрытие (см. рис. II. 1, б). Теперь равновесное изменение толщины прослойки -сопряжено с затратой положительной или отрицательной работы. < ледовательно, ее источник — силы отталкивания или притяжения, возникающие в зоне перекрытия поверхностных сил первого рода. Эти силы, обусловленные эффектами перекрытия, мы будем называть поверхностными силами второго рода. Для их теоретического расчета необходимо основываться на молекулярных или микроскопических представлениях, что является в общем случае крайне сложной и в физическом, и в математическом плане задачей. Для ее упрощения рационально прежде всего рассматривать простейший случай — силы второго рода, появляющиеся при достаточном утоньшении плоского слоя равномерной толщины Ъ. Этот лростейший случай не только облегчает теоретический расчет возникающих сил, но и может быть использован, как показано в [1], в качестве основы для приближенного расчета сил, действующих в прослойках неравномерной толщины и даже ограниченных непло- скими поверхностями. [c.30]


Смотреть страницы где упоминается термин Эффекты микроскопические: [c.139]    [c.95]    [c.64]    [c.515]    [c.111]    [c.175]    [c.262]    [c.60]    [c.219]    [c.27]    [c.29]    [c.42]    [c.32]   
Механизмы биоорганических реакций (1970) -- [ c.169 , c.179 ]




ПОИСК





Смотрите так же термины и статьи:

И ЭФФЕКТ МАРАНГОНИ— ГИББСА Духин МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ ДИСПЕРСИОННЫХ



© 2025 chem21.info Реклама на сайте