Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества соединения первые синтезы

    В первой части книги приведены правила техники безопасности при работе в лаборатории органической химии, показаны приемы сборки основных приборов и установок, а также перечислен необходимый минимум лабораторного оборудования и химической посуды. Задача практикума — нау<чить студента выполнять несложные синтезы органических веществ, познакомить с основными методами их выделения, очистки и идентификации, показать, как вести записи в лабораторном журнале, дать представления о качественном и количественном анализе органических соединений. [c.3]


    При рассмотрении путей биосинтеза важно идентифицировать хотя бы некоторые из промежуточных продуктов (интермедиатов). Один из них — 3-фосфоглицерат. Поскольку 3-фосфоглицерат является первичным продуктом фотосинтеза, он вполне законно может рассматриваться как исходное вещество, из которого образуются все остальные углеродсодержащие соединения. В большинстве организмов фосфоглицерат может легко превращаться в глюкозу и фосфоенолпируват, которые в свою очередь могут вновь давать фосфоглицерат. Любое из этих трех соединений может служить предшественником при синтезе других органических соединений. Первая стадия биосинтеза включает реакции, в результате которых образуется 3-фосфоглицерат (или фосфоенолпируват) либо из СО2, формиата, ацетата и липидов, либо из полисахаридов [c.457]

    Первыми источниками получения органических веществ были животные и растительные организмы X, продукты их жизнедеятельности. Каждый живой организм представляет собой своеобразную химическую лабораторию, в которой осуществляются как процессы синтеза, так и распада. В растительных организмах из простых исходных веществ (диоксид углерода, вода) под воздействием солнечной энергии синтезируются сложные органические вещества (фотосинтез). В животных организмах, наоборот, сложные органические вещества (сахара, белки, жиры) распадаются на более простые, часть из них как бы сгорает , отдавая энергию и превращаясь в СО2 и Н2О, но в то же время в организме также синтезируются специфические белки, жиры и другие вещества. Растительный мир является главным производителем органических веществ. Особое место в этом отношении занимают деревья. Древесина и полученные из нее целлюлоза и лигнин являются ценным сырьем для химической переработки. Так, например, сухая перегонка древесины с давних времен применялась для получения органических соединений, таких, как уксусная кислота, метиловый спирт (древесный спирт), ацетон, фенолы. [c.13]

    Синтезы многих органических препаратов проводятся в водной среде или включают на определенной стадии обработку реакционной смеси водой. В связи с этим встает вопрос об отделении от воды продукта реакции — органического вещества. Простая отгонка воды обычно не может быть применена, поскольку большинство органических соединений образует с водой азеотропные смеси, а некоторые — гидролизуются при нагревании. Наиболее распространенный способ выделения органического вещества из продуктов реакции, содержащих воду, состоит из следующих последовательных стадий экстрагирование, высушивание вытяжек, отгонка растворителя и очистка выделенного вещества перегонкой или перекристаллизацией. Две последние операции уже были рассмотрены в предыдущих разделах. Остановимся кратко на трех первых. [c.43]


    Наряду с успехами в области синтеза органических веществ в первой половине XIX столетия были достигнуты значительные успехи также и в области анализа этих соединений. Анализы многочисленных органических соединений позволили выявить основную особенность их состава оказалось, что все без исключения органические соединения содержат углерод. Это дало основание Гмелину охарактеризовать еще в те годы химию органических соединений как химию соединений углерода. [c.7]

    Различают промышленные, синтетические и препаративные- (лабораторные) методы получения органических веществ, Межд> ни.ми есть принципиальные отличия. Во-первых - объемы произнодства, от миллионов тонн в промышленности до граммов и лабораториях. Во-вторых, степень чистоты. На производстве чаще работают со смесями, хотя часто получают и очень чистые соединения (положим, газы - сырье дня полимеров, каучуков, сырье для нефтехимии). В лабораториях работают обычно с чистыми веществами (реактивы). Третье различие - цены. Реактивы дорогие, а для нефтехимического синтеза сырье должно быть доступным и дешевым. Дру1ая проблема - работа с ядовитыми веществами. В лабораториях защититься легче. Есть еще одно различие - в промышленности можно организовать прои шодство и при малых выходах в реакторе, поскольку используют циклические процессы - возврат в реактор непрореагировавшего сырья (рециркуляция). [c.38]

    Пособие состоит из четырех глав. В первой главе изложены сведения о посуде, оборудовании и приборах, используемых в лаборатории органического синтеза, описаны разделение и очистка органических веществ, дано определение некоторых констант, рассмотрены свойства растворителей, правила техники безопасности и первая помощь при несчастных случаях. Во второй главе дано описание различных типов химических превращений, их механизм и приведены синтезы, протекающие в соответствии с этими механизмами. Здесь же рассмотрены основные теоретические и практические вопросы. Третья глава посвящена функциональному анализу и идентификации органических соединений как химическими, так и [c.3]

    В настоящее время путем синтеза получают множество органических соединений. Более того, оказалось, что многие органические вещества гораздо проще и дешевле получать синтетически, чем выделять из природных продуктов. Наибольшим успехом химии 50—бО-х годов XX века явился первый синтез простых белков — гормона инсулина и фермента рибонуклеазы. Таким образом доказана возможность синтетического получения даже белков — наиболее сложных органических веществ, являющихся непременными участниками жизненных процессов. [c.549]

    Большинство природных органических веществ—это сложные соединения изучение их было не под силу молодой науке. Первые успехи были достигнуты при работе с более простыми веществами винным спиртом, уксусной кислотой, бензолом и др., из которых можно было получать множество новых соединений, в живой природе не встречающихся. Так произошло превращение органической химии из науки о веществах органического происхождения в науку о веществах, получаемых путем синтеза. [c.19]

    Первые удачные попытки научно подойти к химии природных соединений углерода были сделаны на примере наиболее простых по составу и легко доступных соединений. Объектами исследования являлись жирные кислоты, спирты, углеводороды. Изучение характерных особенностей этих веществ привело к синтезу соединений, не встречающихся в природе. Среди них надо назвать хлорангидриды кислот, галоидпроизводные углеводородов, диазосоединения и многие другие вещества. Развитие промышленности в первой половине XIX столетия и расширение области применения всевозможных органических веществ природного происхождения (красители, дубильные вещества и т. п.) значительно способствовало усилению интереса к органической химии и стимулировало проведение специальных исследований. Накопление экспериментального материала в свою очередь вызывало настоятельную необходимость в теоретических обобщениях, позволяющих объяснить многообразие органических веществ и различные явления, наблюдаемые при их превращениях. [c.630]

    Органические соединения способны участвовать в электродных процессах, что с успехом используется в органическом синтезе.. Электрохимический способ получения органических веществ нашел промышленное применение в конце 50-х годов. Первым крупным производством является получение диальдегидной формы крахмала путем обработки крахмала раствором йодной кислоты, организованное в США. В результате окисления крахмала йодная кислота переходит в йодноватую кислоту, которую вновь окисляют до йодной кислоты электрохимическим путем. В 1963 г. в США фирма Монсанто сообщила о пуске первой очереди производства адиподинитрила. До настоящего времени этот продукт является наиболее крупнотоннажным среди дру- [c.208]


    Одпако при обычной температуре эта реакция протекает очень медленно, так как фосген малорастворим в воде. Фосген легко реагирует с органическими гидроксилсодержащими соединениями (а также с амидами), образуя эфиры угольной кислоты (и производные мочевины). Поэтому его широко применяют при производстве красителей, а также для синтезов в научных лабораториях. В первую мировую войну его применили как боевое отравляющее вещество. [c.491]

    Берцелиус полагал, что органические соединения, содержащиеся в растениях и организмах животных, обязаны своим происхождением особой жизненной силе Жизненная сила лежит целиком за пределами неорганических элементов и не связана ни с каким из их обычных свойств... Что представляет собой эта сила, как она возникает и где кончается - мы не знаем . Тем не менее вскоре были проведены первые синтезы органических веществ из неорганических. [c.26]

    Первые схемы органического синтеза были не очень сложны. Однако чтобы проводить и сравнительно простые синтезы, химики должны были научиться анализировать органические вещества. Основоположником анализа органических веществ явился Ю. Либих. Предложенные им методы элементного анализа (1831-1833 гг.) в различных вариантах применяют и в настоящее время. Все они основаны на сожжении навески вещества (порядка нескольких миллиграмм) и измерении количеств образовавшихся продуктов (СО2, Н2О, N2). В последующем для установления строения органических соединений стали широко привлекать и спектральные методы. [c.30]

    В основных процессах синтеза изопрена образуются концентрированные сточные воды, содержащие высокотоксичные вещества (диметилдиоксан, формальдегид, диолы, триметилкарбинол, циклические спирты и другие органические вещества, в том числе высокомолекулярные органические соединения). Суммарная концентрация органических веществ в сточных водах первой стадии синтеза изопрена весьма высока ХПК = 200—250 г/л (по податному методу) эти сточные боды содержат также до 10 г/л серной кислоты. Ведущим ингредиентом в сточных водах второй стадии синтеза изопрена является формальдегид концентрация его 62,5 г/л. Другие производственные стоки и стоки вспомогательных процессов значительно менее концентрированы они содержат относительно небольшое количество непредельных углеводородов, формальдегида, муравьиной кислоты и других органических веществ ХПК смеси этих вод не превыщает 1000 мг/л, а БПКполн —до 400 мг/л. [c.174]

    Однако при наличии на земной поверхности только растений и животных неизбежно наступил бы момент, когда углекислый газ атмосферы перешел бы в состав органических соединений. Этот момент был бы неизбежным, во-первых, потому, что в растениях процессы синтеза преобладают над процессами распада и, во-вторых, вследствие того, что не все растительный органические вещества используются животными клетчатка и лигнин не пригодны для питания животных. Поэтому шло бы накопление органических веществ. Подобное явление не имеет места благодаря деятельности микроорганизмов. Микробы разлагают самые разнообразные органические соединения, включая клетчатку и лигнин и вновь возвращают углерод в атмосферу в форме углекислого газа. На рис. И—П схематически изображен круговорот углерода в природе.  [c.143]

    Исторический анализ развития органического синтеза в первой половине XIX в. позволяет сделать вывод, что неправомерно относить возникновение органического синтеза к 1850-м годам и связывать его с деятельностью Бертло. Столь же неверным было бы считать основателем органического синтеза Вёлера, Кольбе или какого-либо другого химика, осуществившего большее или меньшее количество синтетических превращений. Уже на самых ранних этапах развития органической химии предпринимались попытки искусственного получения органических соединений, и к началу 1850-х годов были открыты многие методы получения и превращений органических веществ, осуществлены полные синтезы некоторых из них, целенаправленные синтетические превращения все шире применялись для обоснования теоретических положений. В разработке синтетического направления принимали участие многие химики, занимавшиеся исследованием органических соединений. К началу работ Бертло в этой области уже было накоплено много сведений, оторые он дополнил и обобщил в своих исследованиях. К моменту возникновения теории хими- [c.56]

    В практической деятельности каждый химик-органик сталкивается с необходимостью определения органических веществ не только на конечной, но часто и на промежуточных стадиях синтеза. Эта задача peцJaeт я различными методами в зависимости от того, было анализируемое вещество известно ранее, т. е. описано ли оно в литературе, или получено впервые. В первом случае необходимо доказать идентичность исследуемого образца и вещества, строение которого известно и свойства охарактеризованы во втором случае необходимо провести исследование, в результате которого будет составлена структурная формула соединения. Естественно, что первая задача более проста, чем вторая. [c.247]

    Углеводы, или сахара, представляют собой обширный класс природных органических соединений, составляющий основную массу органического вещества нашей планеты. С представителями углеводов человек сталкивается в самых различных областях своей деятельности и при изучении самых различных живых объектов. Только по химии углеводов (не считая биохимии) сейчас публикуется в среднем полторы-две тысячи работ в год. Охватить этот материал в рамках небольшой книги, разумеется, невозможно. Мы сконцентрируем внимание на фундамента ь-ных вопросах структуры углеводных молекул и лишь очень кратко остановимся на синтетических проблема,х этой области, так как синтезу будет посвящена специальная книга. Наша задача — кратко описать современное состояние исследований в области углеводов. Ц понятие современное состояние мы вкладываем не только и не столько самоновейшие сведения и методы исследования, а в первую очередь сегодняшнее понимание этой области, ее, так сказать, современную идеологию. А она весьма нетривиальна и во многом отлк ется, например, от идеологии химии белка. Как мы дальше увидим, дан<е такое фундаментальное химическое понятие, как понятие об индивидуальном веществе, имеет различный смысл для белков и полисахаридов. Мы попытаемся дать читателю почувствовать современную логику мышления исследователей в этой очень своеобразной и увлекательной области биоорга ической химии. [c.3]

    Теперь нам хорошо известно, что его взгляды были и обосновян-ными и прогрессивным и. Но тем не м( иее, объективно, они оставляли в стороне проблему наглядного моделирования пространственного сорасположения атомов п атомных групп в молекулах. Между тем проблема эта была в то время, в 1850-х годах, весьма актуальной, так как без ее решения планомерный синтез новых органических веществ был невозможен. Решение же ее было подготовлено всем ХОДОМ развития первых структурных представлений I) теория сложных радикалов указала иа возможности как разделения готовой молекулы на отдельные ее фрагменты, способные оставаться неизменными в ходе реакций, так и на их синтез 2) унитарная теория подвела фундамент под атом но-молекулярное учение, указав на молекулу как наименьшую истниу химпческого соединения  [c.82]

    Структурные теории твердого тела — только что появившаяся область знаний. Иногда ее называют химией твердого тела , химией твердого состояния , но она, с другой стороны, является также и физикой твердого тела, так как в основном оперирует физическими понятиями и использует физические методы исследования. Это одно из наиболее перспективных направлений развития структурной химии, ибо оно обещает стать реальной основой неорганического синтеза. До сих пор неорганическая химия, подобно органической химии, основывалась на атомно-молекулярпом учении. Но это было грубой идеализацией, так как в отличие от органических веществ подавляющее большинство неорганических соединений представлено не совокупностями молекул, а реальными кристаллами. Неорганическая химия поэтому не имела таких успехов в синтезе химически индивидуальных веществ, каких достигла органическая химия она успешно решала задачи синтеза лишь тех соединений, которые существуют в форме совокупности молекул, например синтеза аммиака. Получение же оксидов, сульфидов, селенидов и многих других солей, а также интерметаллических соединений осуществлялось отнюдь не по принципу синтеза запроек-гироваиных структур, как это было в органическом синтезе, а по принципу стехиометрии, т. е. не в русле структурной химии, а в русле учения о составе — на уровне первой концептуальной системы. [c.99]

    Экстракция твердых веществ является первой ступенью изучения органических компонентов высушенных листьев и коры, а также некоторых горных пород и почв. Ткани растений можно иногда удовлетворительно экстрагировать в делительной воронке, но для более тяжелых и тонкоизмельченных неорганических материалов обычно требуется экстракция в приборе Сокслета. С целью экстракции возможно большего количества органического материала необходимо выбрать растворитель, в котором легко растворимы как умеренно полярные, так и неполярные соединения (например, алканы с длинной цепью). Неполярный растворитель, такой, как гексан, не годится для этого, поскольку экстракция многих полярных соединений (например, фенолов) будет неэффективной. Вместе с тем алканы с длинной цепью будут плохо экстрагироваться метанолом. Хлороформ был бы хорошим компромиссом, но при анализе следов требуется специальная очистка его. Хорошим экстрагентом оказывается смесь бензола с метанолом. Выбор растворителя для природных образцов не является единственным затруднением— даже тонко измельченные твердые вещества, первоначально свободно диспергированные в экстракционной гильзе, могут образовывать плотную массу, в которой контакт фаз будет затруднен. Поэтому часто проводят ультразвуковую экстракцию диспергированного в растворителе неорганического материала, помещая стакан с суспензией в ультразвуковую камеру на несколько минут. Это лучше всего делать после приблизительно часового перемешивания твердого вещества с растворителем, при этом необходимо принять меры предосторож-, ности, чтобы в результате использования звуковой энергии не произошел нежелательный синтез микроколичеств примесей на уровне следовых количеств вследствие разложения растворителя однако для смеси бензола с метанолом такая опасность исключена. [c.515]

    Химики-органики начали создавать органические вещества с 20-х годов XIX в. Ими были получены из дициана щавелевая кислота (Ф. Велер, 1824) из циаповокислого аммония мочевина (Ф. Велер, 1828). Первым полным синтезом органического соединения из элементов оказался синтез уксусной кислоты  [c.239]

    Получающийся по первой пз них трихлороксид фосфора (РОСЬ) представляет собой бесцветную жидкость. Подобно обоим хлоридам фосфора трихлороксид находит применение при синтезах органических веществ. Пары всех трех соединений ядовиты. [c.278]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    Именно это открытие проломило брешь в стене предубеждений, разделявших органическую и минеральную химию, и убедило химиков, что и органические вещества могут быть получены искусственно, без участия гипотетической жизненной силы. Насколько прочно все же держалось это предубеждение, следует из высказывания французского химика Жерара, установившего некоторые основные понятия органической химии, например понятие гомологии, и являющегося одним из авторов закона Авогадро — Жерара. Жерар в 1842 г., когда многие простые органические соединения были уже получены искусственным путем,. ысказал мнение, что синтез столь сложного вещества, как сахар, никогда не сможет быть осуществлен. Это скептическое предсказание было опровергнуто в 1861 г., когда А. М. Бутлеров впервые получил синтетически сахаристые вещества (из формалина). Наряду с этим быстро росло число синтезированных углеродсодержащих веществ, не встречающихся в природе. Так, в 1825 г. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен, а также ряд производных бензола. В 1842 г. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые анилиновые красители — мовеин Перкина и фуксин. [c.12]

    Осаждение, т. е. вьщеление одного из соединений газовой или жидкой Смеси веществ в осадок, кристаллический или аморфный, основывается на изменении условий сольватации. Сильно понизить влияние сольватации и выделить твердое вещество в чистом ввде можно несколькими методами. Первый (простейший) путь состоит в повышении концентрации вещества за счет упаривания растворителя до состояния пересыщения раствора. Тогда при охлаждении такого раствора вещество выпадает в осадок обычно в ввде микро- или макрокристаллов (кристаллизация). Чаще всего для синтеза выбирается такой растворитель, в котором хорошо растворяются (сольватируются) исходные реагенты и трудно растворяется продукт реакции. Тогда он частично или полностью выпадает из раствора в осадок. Раствор, в котором еще остался продукт реакции, может бьтть упарен. С целью максимально полного вьщеления про дукта должны быть сделаны приквдочные расчеты растворимости конечного продукта. Однако это возможно, если известно ставдартное значение его растворимости 5° и энтальпии растворения. Определение растворимости и термодинамических параметров растворения органических веществ в важнейших классах растворителей является первостепенной практической задачей. По существу синтез каждого нового соединения должен сопровождаться определением количественных параметров процесса растворения, что позволило бы оценить и снизить потери вещества. Это важно и в экономическом отношении, и в экологическом плане. [c.91]

    Химия углеводов занимает одно из ведущих мест в истории развития органической химии. Тростниковый сахар можно считать первым органическим соединением, вьщеленным в химически чистом виде. Произведенный в 1861 г. А.М. Бутлеровым синтез (вне организма) углеводов из формальдегида явился первым синтезом представителей одного из трех основных классов веществ (белки, липиды, углеводы), входящих в состав живых организмов. Химическая структура простейших углеводов бьша выяснена в конце XIX в. в результате фундаментальньгх исследований Э. Фишера. Значительный вклад в изучение углеводов внесли отечественные ученые A.A. Колли, П.П. Шорыгин, Н.К. Кочетков и др. В 20-е годы нынешнего столетия работами английского исследователя У. Хеуорса бьши заложены основы структурной химии полисахаридов. Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением. [c.169]

    Используя химические синтезы, удается пометить молекулы соединений в одном или нескольких местах. Прописи для получения радиоактивных органических веществ можно найти во многих руководствах [2, 14, 66], в первую очередь в монографии Меррея и Вильямса [41]. [c.70]

    Как известно, Бутлеров придавал большое значение условиялг проведения органических реакций. Начиная свои синтезы посредством цинкорганических соединений, он говорил, что правильность его заключений о химическом строении веществ можна всего лучше будет основывать на изучении способов их синтетического образования — и преимущественно — на таких синтезах, которые совершаются при температуре мало повышенной и — вообще — при условиях, где можно следить за ходом постепенного усложнения химической частицы [13]. В самом деле,— продолжал Бутлеров,— между синтезом муравейной кислоты из окиси углерода и воды,— уксусной кислоты из натрий-мэфила и углекислоты, и между синтетическим образованием углеводородов при сухой перегонке существует подобное же различие, как между происхождением мэфильного алкоголя из масла гольтерии и образованием его при сухой перегонке дерева в первом случае можно сделать положительные выводы о натуре разлагающегося вещества, во втором — почти никаких [13]. Поэтому принцип соблюдения мягких условий проведения реакций лег в основу всех экспериментальных работ Бутлерова и. его учеников. [c.31]

    Научные исследования посвящены теоретической органической химии, органическому синтезу и нефтехимии. Получил (1862—1867) но-ные данные об изомерии спиртов и жирных кислот, открыл окиси ряда олефиновых углеводородов, впервые синтезировал галоген- и оксипроизводные изомеров масляной кислоты. Результаты этих исследований послужили основой его учения о взаимном влиянии атомов как главном содержании теории химического строения. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения (правила Марковникова). Показал особенности двойных и тройных связей в непредельных соединениях, заключающиеся в большой прочности их по отношению к ординарным связям, но не в эквивалентности двум и трем простым связям. Совместно с сотрудником Г. А. Крестовниковым впервые синтезировал (1879) ци-клобутандикарбоновую кислоту. Исследовал (с 1880) состав нефти, заложив основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ — нафтены. Показал, что наряду с гексагидробензольными углеводородами Вредена существуют углеводороды ряда циклопентана, циклогептана и других циклоалканов. Доказал существование циклов с числом углеродных атомов от 3 до 8 впервые получил (1889) суберон установил взаимные изомерные превращения циклов в сторону как увеличения, так и уменьшения числа атомов в кольце открыл (1892) первую реакцию изомеризации циклических углеводородов с уменьшением цикла (циклогептана в метилциклогек-сан). Ввел много новых экспериментальных приемов анализа и синте- [c.325]

    Первой ступенью в развитии гетерогенно-каталитического синтеза являются исследования Сабатье [4]. В них затрагивается целый ряд органических реакций, но наиболее разработанной областью является гидрогенизация органических соединений. Применяя в качестве катализатора свежевосстановленный никель, Сабатье уже тогда показал преимущества гетерогенного катализа. Реакции гидрогенизации происходили в одну стадию с применением газообразного водорода и часто приводили к количественным выходам целевых продуктов алканов из ал-кенов, циклоалкаыов из бензола и его гомологов, спиртов из альдегидов и кетонов. Отпала необходимость в сложном оформлении синтезов методика экспериментов Сабатье состояла в основном в пропускании смеси паров органического вещества с водородом через трубку с катализатором. [c.98]

    У Крама и Хэммонда основной скелет учебника — реакции, их систематика и механизм, образование и разрыв химических связей, в особенности связей с углеродом, а собственно систематический материал органической химии — соединения, их родственные связи и т.д. — сообщается попутно и поэтому эпизодичен. Лишь некоторые большие группы соединений сконцентрированы в шести специальных главах (22—27). Это гетероциклы (в весьма лаконичном, чтобы не сказать поверхностном, изложении), углеводы и фенольные соединения растительного происхождения, аминокислоты, пептиды и алкалоиды, липиды, терпены и стероиды, полимеры, углеводороды нефти. Как видно, эти главы, посвященные отдельным группам соединений, носят выборочный характер и объединяют иногда непривычно разнородный материал — аминокислоты и пептиды с алкалоидами, углеводы с фенольными продуктами и т. д., используя те или другие линии логической связи разных групп веществ, которые всегда можно найти в органической химии — в первом случае, например, биогенез алкалоидов из аминокислот. Главы эти не могут содержать сколько-нибудь систематического материала, имея более чем скромный размер, однако в них приводятся очень свежий и интересный материал, причем сосредоточивается внимание в большей степени на новом и отбрасывается старое. Так, в разделе об алкалоидах подробно рассмотрено исследование строения хинина и цинхонина и дан исключительно громоздкий синтез резерпина, и, в сущности, этим исчерпывается раздел. В гл. 23 среди прочего материа.да о веществах, родственных сахарал , приводятся структуры стрептомицина, тетрациклина, левомицетина, но бегло и без доказательств. Хотя и эти главы (22—27) читаются с интересом, их роль чисто иллюстративная и весь центр книги сосредоточен на предыдущих главах, после необходимого фундамента (гл. 1—8) посвященных реакциям. Поскольку такое изложение ново, оно интересно отнюдь не только для начинающего изучать органическую химию. Книгу с интересом прочтет и взрослый химик. Этот интерес усугубляется тем, что подбор реакций очень свежий и здесь нашли место многие новые реакции крупного значения. Особенно важно то, что воедино систематически собраны по признаку механизма реакции, которые в обычном изложении оказываются резбросанными по курсу. Механизму реакций уделяется то пристальное внимание, которое характерно для нынешнего этапа развития органической химии. В связи с этим и стереох1Шии течения реакций уделяется большое место. Таким образом, этот раздел книги представляет собой наибольшую ценность независимо от того, действительно ли такое построение с педагогической стороны наиболее целесообразно. Сомнение в этом закрадывается на том основании, что нри таком изложении физиономия химического индивидуума расплывается и [c.5]

    Усилия химиков-органиков конца девятнадцатого столетия вплоть до первой мирово войны были направлены на установление законов, управляющих структурой органических соединений и их образованием. Этот захватывающий классический период был ознаменован двумя крупными открытиями синтезом соединенрш посредством органических реакций, выяснением структур органических веществ с помощью деградации молекул. В течение этого времени использование шаростержневых моделей органических соединений (в которых шары представляют атомы, а стержни — связи) позволило химику отчетливо представить себе структуру органических соединений. [c.17]

    Шведский химик Берцелиус первый предложил (1807) называть вещества, получаемые из живых организмов, органическими соединениями. То, что эти вещества состоят из ограниченного числа определенных элементов, резко отличает их от неорганических веществ. Кроме того, органические соединения горючи и многие из них чувствительны к умеренному нагреванию и действию кислот или щелочей. Так как органические соединения, известные в начале XIX века, являлись продуктами жизнедеятельности, то Берцелиус, Жерара и другие ведущие химики того времени считали, что органические вещества могут возникать только при воздействии жизненной силы , присущей живым клеткам. В то время как неорганические соединения получались искусственным путем в лаборатории, осуществить химический синтез органических соединений представлялось невозможным. Однако в 1828 г. немецкий химик Вёлер обнаружил, что при упаривании водного раствора неорганической соли—цианата аммония образуется мочевина, идентичная выделенной из мочи  [c.13]

    Александр Михайлович Бутлеров (1828—1886). Создал теорию химического строения, заложив тем самым основы современной органической химии. Впервые осуществил синтез сахаристого вещества (метиленитана) Открыл класс третичных спиртов, выпо лнил блестящие исследования химических превращений иодистого метилена. Исследованиями в области полимеризации изобутилена положил начало синтезу высокомолекулярных полимерных соединений. Является автором первого учебника, построенного на принципах теории химического строения. [c.57]

    Ацетилен С2Н2 образуется при нагревании простейших углеводородов— метана, этана и этилена —до высоких температур, а также при сухой перегонке многих органических веществ. Он является постоянной составной частью светильного газа каменноугольного происхождения. Ацетилен был открыт в 1836 г. Дэви подробному исследованию ацетилен и его соединения подверг Вертело (1860). Исторически очень большое значение имел произведенный Вертело синтез ацетилена из элементов, так как это был первый прямой синтез простейшего углеводорода. Вертело показал, что если создать электрическую дугу между угольными электродами в атмосфере водорода, то последний соединяется с углеродом. При температуре около 2500° С (как [c.386]

    Качество твердого топлива характеризуется различными константами и в первую очередь теплотой сгорания. Последняя определяется в калориметрической бомбе по ГОСТ 147—54, согласно которому предусматривается сжигание вещества под давлением кислорода. Развивающиеся при этом высокая температура ( 1000°) и большое давление способствуют ие только сгоранию органического вещества, но и химическим изменениям минеральных соединений, всегда присутствующих в твердом топливе. В бомбе проходит окисление дисульфида железа, идет дегпдрация гидратных форм и наблюдается процесс дпссоциащш карбонатов. Возможно предположить синтез силикатов из окислов металлов и кремнезема. [c.226]


Смотреть страницы где упоминается термин Органические вещества соединения первые синтезы: [c.299]    [c.451]    [c.184]    [c.167]    [c.527]    [c.253]    [c.670]    [c.111]    [c.9]    [c.824]   
Органическая химия (1956) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Органические вещества соединения

Органические соединения вещества органических соединений

Первые органические синтезы

Синтез органических соединений

Соединение первого



© 2025 chem21.info Реклама на сайте