Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конфигурации эффект

    Ультрафиолетовые спектры (рис. 5) показывают, что если для системы 155 возможна копланарная конфигурация, эффект кросс-сопряжения на спектры поглощения может оказаться значительным. [c.604]

    Стереохимия реакций присоединения имеет значение лишь тех случаях, когда возникают два асимметрических атома углерода, а также у циклических соединений, в которых затруднено вращение вокруг простой связи С—С. Закрепляющий конфигурацию эффект электрофильного агента, присоединившегося к олефину на первой стадии реакции, возрастает при повышении его поляризуемости в ряду С1<Вг<1. [c.352]


    Эффект напряженной конфигурации (эффект дыбы ) заключается в том, что фермент может вызывать изменения, уменьшающие прочность связей в молекуле субстрата (повышающие ее реакционноспособность в определенном направлении) путем смещения электронов (поляризация связей), а также связывания субстрата в напряженной конфигурации. [c.141]

    Коттона низколежащего й —> -перехода платины не зависит от присутствия оптически активного амина и от относительного расположения олефинового и аминного лигандов в комплексах. Оказалось, что этот переход отражает абсолютную конфигурацию хиральных углеродных атомов, координированных с металлом [380, 1119, 1120,1123]. Таким образом, когда олефиновые углеродные атомы имеют (В, ВЗ-конфигурацию, наблюдают отрицательный. знак эффекта Коттона и при (3, -конфигурации эффект Коттона имеет положительный знак. Это описывается в соответствии с правилом квадрантов следующим образом [380, 1127, 1128]  [c.358]

    Но атомы металлов третьего переходного ряда, от Ьи до Н , не настолько больше атомов соответствующих металлов второго переходного ряда, как можно было бы ожидать. Причина этого заключается в том, что после Ьа вклиниваются металлы первого внутреннего переходного ряда-лантаноиды. Переход от Ьа к Ьи сопровождается постепенным уменьшением размера атомов по причине возрастания ядерного заряда-этот эффект носит название лантаноидного сжатия. Поэтому атом гафния оказывается не столь большим, как следовало бы ожидать, если бы он располагался в периодической таблице непосредственно за Ьа. Заряд ядра у 2г на 18 единиц больше, чем у Т1, а у НГ он на 32 единицы больше, чем у 2г. Вследствие указанного обстоятельства металлы второго и третьего переходных рядов имеют не только одинаковые валентные электронные конфигурации в одинаковых группах, но также почти одинаковые размеры атомов. Поэтому металлы второго и третьего переходных рядов обладают большим сходством свойств между собой, чем с металлами первого переходного ряда. Титан напоминает 2г и НГ в меньшей мере, чем Zr и НГ напоминают друг друга. Ванадий отличается от МЬ и Та, но сами названия тантал и ниобий указывают, как трудно отделить их один от другого. Тантал и ниобий были открыты в 1801 и 1802 гг., но почти полвека многие химики считали, что имеют дело с одним и тем же элементом. Трудность выделения тантала послужила поводом назвать его именем мифического древнегреческого героя Тантала, обреченного на вечный бесцельный труд. В свою очередь ниобий получил свое название по имени Ниобы, дочери Тантала. [c.438]


    Независимо от типа катализаторов первичным актом химического превращения, протекающего на их поверхности, является адсорбция реагентов, поэтому активность гранулы катализатора зависит не только от химического состава активных компонентов, но и от структуры кристаллической решетки, конфигурации и размера пор и их распределения. Существенное значение имеют также эффекты, связанные с транспортом массы и тепла необходимо учитывать влияние возникающих градиентов концентраций и температур. Таким образом, необходимо детальное изучение адсорбционных процессов, сопутствующих химическим реакциям. [c.21]

    Конфигурацию исследовали очень тщательно. В октаэдрическом поле основным состоянием является -Е . Ожидается большой ян-телле-ровский эффект, позволяющий регистрировать спектр ЭПР при комнатной температуре. В тетрагональных комплексах основным состоянием является г , (оси х и ) направлены на лиганды) и наблюдаются узкие линии. Отметим, что в этом эксперименте можно обнаружить квадрупольное взаимодействие спина с ядром меди (см. гл. 9). Данные исследования методом ЭПР согласуются со спин-гамильтонианом [c.245]

    Для многих молекул о симметрии равновесной конфигурации (но не о расстояниях) удается судить уже по самому существованию или отсутствию спектра. Так, ИК-вращательный спектр аммиака указывает на пирамидальное строение молекулы, поскольку плоская молекула ХУз не имеет дипольного момента и неактивна в ИК-спектре. Аналогично существование вращательного ИК-спектра молекулы НгО указывает на нелинейность молекулы, так как линейные симметричные молекулы неполярны. Так как ИК- и МВ-вращательные спектры связаны с наличием дипольного момента, то, изучая эффект Штарка в МВС, можно определить дипольный момент люлекулы. [c.170]

    Выражение стерического фактора через энтропию процесса активации является общим и лишь показывает, что этот множитель всегда связан с организующими или дезорганизующими химический процесс факторами (в смысле упорядочения и разупорядочения), выражаемыми изменением энтропии. Несмотря на общность такой интерпретации стерического фактора, в ней отсутствует явный учет влияния квантовых эффектов на скорость реакций или квантовая эффективность столкновений, хотя энтропия активации должна вычисляться на основе квантовой статистики. До появления метода переходного состояния, являющегося естественным результатом развития квантовой химии, не было воз- можности вычислить фактор, содержащий изменение энтропии конфигурации в общем виде , и изложенная теория по-прежнему обладала точностью, определяемой энергетическим [c.167]

    С помощью изогнутых по спирали лопаток (см. рис. 6.12, б) можно уменьшить диаметр радиального диффузора, требуемый для обеспечения торможения потока до заданной скорости, по сравнению с диаметром диффузора, изображенного на рис. 6.12, а, увеличив длину криволинейного участка канала. Лопатки предотвращают образование больших вихрей в окрестности внешнего периметра, возникающих в результате неравномерности распределения окружной скорости. Эти вихри закручиваются вокруг осей, параллельных оси входного канала. В любом случае во избежание отрыва потока скорость изменения площади проходного сечения канала вдоль линии тока должна быть такой же, как у конического диффузора с углом раскрытия Т. Если накладываются ограничения на радиальный размер диффузора, можно использовать конусообразные лопатки, с помощью которых достигается примерно такой же эффект, что и в конфигурации, изображенной на рис. 6.9, в. [c.124]

    Если диполь имеет обратное направление, то следовало бы ожидать приближения атакующего иона с той стороны молекулы, где расположена вытесняемая группа, что должно было бы привести к сохранению конфигурации. Однако, вопреки этому, замещение четвертичной аммониевой группы опять-таки ведет к обращению конфигурации. Квантовомеханический эффект, управляющий реакцией, преобладает над электростатическим  [c.371]

    Индивидуальное движение дислокаций возможно до достижения их плотности порядка 10 -Ю м [90]. Далее начинаются коллективные эффекты, связанные со стремлением образовывать энергетически выгодные конфигурации, запасанием энергии, переходящей впоследствии в энергию свободной поверхности [91]. [c.144]

    Каждое предыдущее структурное образование как элемент беспорядка в системе, отличается высоким уровнем собственной структурной упорядоченности. Подобные структурные образования, находящиеся в беспорядке локализуются в некотором числе отдельных точек системы, после чего начинается их упорядочение в новые структурные конфигурации. Если система условно разрежена, то локальные эффекты проявляются некоторым спонтанным образом. В насыщенных системах на локальные эффекты могут оказывать влияние взаимодействия близлежащих частиц. Речь идет о [c.174]


    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

    Интересен вопрос о закрытых конфигурациях с неравноценным расположением лигандов здесь уточняется постулат о полной равноценности всех связей в комплексном ионе с одинаковыми лигандами. На первых этапах развития координационной химии комплексные соединения рассматривали как возникшие в результате объединения нескольких валентно-насыщенных молекул и записывали, например, в виде 2КС1Р1С14 вместо современной записи К2 [Р1С1а]. После того как выяснилось, что все шесть атомов хлора координируются платиной, встала задача определить, отличаются ли в комплексном ионе свои четыре атома хлора от чужих . Исследование показало, что ион представляет собой октаэдр, в котором все лиганды равноценны. Это привело к представлению о том, что все связи (по крайней мере в конфигурации с одинаковыми лигандами) в комплексных ионах равноценны, И действительно, связи металл—лиганд совершенно не зависят от происхождения лиганда. Что же касается их равноценности в статическом (длина, направленность, полярность, энергия и т. д,) и динамическом (реакционная способность) смысле, то этот вопрос требует уточнения с двух точек зрения. Во-первых, некоторые квантово-механические эффекты ведут к более или менее сильному искажению симметричных конфигураций (эффект Яна — Теллера). Во-вторых, лиганды принципиально неравноценны в некоторых бипирамидах и пирамидах с центральным расположением иона металла. При одинаковых лигандах конфигурация тригональной бипирамиды осуществляется в пентакарбоннле железа Ре(СО)з, в ионе [СиСи] - и т, п. Три связи в горизонтальной плоскости расположены здесь под углом 120 °С друг к другу с остальными двумя связями каждая из них составляет угол 90°, При этом даже если длины всех связей одинаковы, положения 1 н 5 и 2, 3, 4 неравноценны. Если при реакциях замещения конфигурация бипирамиды сохранится, то можно ожидать появления двух однозаме-шенных геометрических изомеров — экваториального и аксиального. Так, комплекс Мп(СО)4МО в кристаллической фазе при —110°С имеет симметрию С21., те. является экваториальным изомером, в газовой же фазе и в растворах он существует в виде аксиального изомера. [c.165]

    Согласно классификации, предложенной Н. А. Плата с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества I) реакции, присущие только полимерному состоянию вещества распад макромолекул на более мелкие образования или до исходных молекул мономеров и межмакромолекулярные реакции 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации ( эффект соседа ) 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов. [c.220]

    Заметим, что конфигурация иона бромония сохраняется, а поэтому одно и то же эритросоединение получается независимо от места присоединения нового иона Вг . Огг и Нозаки [85] нашли, что в ледяной уксусной кислоте константы скорости реакции второго порядка бромирования аллил-хлорида, винилбромида и аллилнитрила пропорциональны концентрациям Ь1Вг или ЫС1 в растворе, причем последний почти вдвое эффективнее первого. Хотя авторы рассматривают это как результат реакции третьего порядка с участием Вг или СГ, более вероятно, что они наблюдали солевой эффект в реакции нормального галогенирования. [c.501]

    Во всех случаях наибольший эффект оказывает введение первой двойной связи в кольцо (от 6,8 до 8,9 мл/моль). Введение третьей двойной связи связано примерно с таким же изменением молярного объема (6,4 мл/молъ), как и в табл. 9 при введении в -гексан врутренней двойней связи с образованием траис-конфигурации (6,5 мл/моль). Сопряжение и резонанс связей не оказывает никакого заметного влияния на молярный объем при переходе от циклогексана к бензолу или при соответствующем переходе алкильных производных. [c.244]

    В заключение необходимо отметить, что установленные закономерности позволяют при конструировании машин, в зависимости от поставленных задач, целенаправленно выбирать или изменять параметры колеблюш,ейся системы для достижения определенного эффекта. Например, при проектировании центробежных машин с быстровра-ш,ающимися роторами предпочтительны гибкие валы это определяет выбор типа опор, схемы расположения ротора по отношению к ним и т. п. Следует, однако, иметь в виду, что при расчете критических скоростей приходится схематизировать реальные конструкции пренебрегать в отдельных случаях массой каких-либо элементов, заменять конические участки валов ступенчатыми, детали сложных конфигураций, установленные па валах, представлять в виде комбинации простых тел. Не всегда удается учесть податливость опор и несу-ш,их конструкций, трение в опорах. Все это вносит погрешности в расчет критических скоростей. [c.81]

    Как говорилось в гл. 9 (см. рис. 9.18), взаимодействие магнитного диполя электронного спинового момента с орбитальным моментом Ь 8 представляет собой спин-орбитальное взаимодействие. Изменение величины спин-орбитального взаимодействия в различных электронных конфигурациях также приводит к расщеплению термов, о которых уже шла речь. При рассмотрении этого эффекта широко используются две схемы так называемая схема взаимодействи.ч Рассела — Саундерса, нлк xe.ua Р 8-взаимодействия, и схема ] -взаимодействия. Если электрон-электронные взаимодействия приводят к большим энергетическим расщеплениям термов по сравнению с расщеплениями, обусловленными спин-орбитальным взаимодействием, пользуются первой схемой. В этом случае мы по существу рассматриваем спин-орбитальное взаимодействие в качестве возмущения энергий отдельных термов. [c.67]

    Для достижения лучшего эффекта протекторной заш,ить[ необходимо учитывать ряд факторов конфигурацию защищаемой коиструкци[1, радиус де/ 1ствия протектора, который в значительной мерс записнт от электропроводности среды, и др. [c.302]

    Суммарный эффект этих двух поправок таков, что, например, для молекул, содержащих атомы водорода (быстрое вращение, малая приведенная масса ц), л оказывается заметно мепьше л,, и соответствующее этому уменьшение параметра 0 в (14.2) обусловливает сильное возрастание вероятности несмотря на малую долю предпочтительных конфигураций. Например, для столкновения НС1 с Аг эффективная масса fi оказывается равной (в зависимости от выбора потенциала взаимодействия) 3 или 4 вместо приведенной массы [X = 19. При подстановке в параметр OJT) l> вместо величины х вероятность дезактивации НС1 (у = 1) нри столкпов(Ч[иях с Аг попадает в полосу модели SSH (см. рис. 19). [c.88]

    Погружной способ широко применяют для удаления загрязнений с деталей сложной конфигурации, когда другие способы не обеспечивают очистки поверхности. Этим способом удаляют покрытия, асфальтосмолистые отложения, полимерные пасты, остатки формовочных смесей с поверхности отливок, обезжиривают д Ьтали. Пофужной способ позволяет использовать эффективные моющие средства с высоким содержанием ПАВ, а также высокоэффективные растворяюще-эмульгирующие моющие средства на основе углеводородных и галогенсодержащих органических растворителей, других афессивных, вредных и легко-испаряющихся очищающих агентов. Для интенсификации очистки применяют колебания платформы с объектами очистки относительно моющей жидкости и наоборот, ультразвуковое облучение, подачу тока на очищаемые поверхности, электрогид-равлический эффект винтов, сжатого воздуха и др. Оборудование отличается простотой консфукции, удобством и экономичностью его эксплуатации. [c.38]

    Р1/2 (Е = 16 972 см 1). Переход электрона из состояния 5 в состояния Рз/2 и Р1/2 дает поэтому две линии, лежащие в спектре на очень близком расстоянии— 26 см 1. Это знаменитая двойная желтая линия натрия. Она и указывает на дублетность терма Изучение спектра позволяет таким образом определять мультиплетность термов. Еще более полные сведения об электронных конфигурациях дает изучение расщепления спектральных линий в магнитном и электрическом полях (эффекты Зеемана и Штарка). [c.42]

    Квасняк [11а] исследовал эффекты конденсации и испарения при ректификации в насадочных колоннах, предположив, что в любом поперечном сечении колонны между паром и жидкостью всегда имеется разность температур. Поэтому несмоченные участки поверхности насадки можно рассматривать как поверхность теплообмена. Элементы сравниваемых насадок имели идентичную конфигурацию, но одни элементы представляли собой сплошные медные пластинки, а другие — пластмассовые пластинки, облицованные медью, благодаря чему обеспечивались различные коэффициенты теплопроводности. Пластинки были размещены в насадке так, что нх нижняя сторона в процессе ректификации не орошалась. Насадки очень сильно различались ио разделяющей способности, что можно объяснить эффектами конденсации и испарения, возникающими на сплошных медных пластинках. Влияние подобных эффектов следует всегда учитывать. Основываясь на этих результатах, Квасняк разработал новую регулярную насадку, состоящую из зигзагообразно изогнутых и различно ориентированных металлических листов. Такая конструкция обеспечивает дополнительную турбулизацию жидкой и газовой фаз и лучшую смачиваемость рабочей поверхности. [c.48]

    Для этильных радикалов было отчетливо показано, что рекомбинация радикалов происходит по механизму голова к голове [284, 286], а диспропорционирование — по механизму голова к хвосту . Вследствие конфигурации голова к голове при рекомбинации радикалов может возникнуть взаимное отталкивание орбит С—Н связей при сближении радикалов, которое позволит перекрыться орбитам связывающихся электронов. Этот энергетический барьер должен быть того же порядка величины, что и барьер, препятствующий вращению вновь образующейся связи при рекомбинации радикалов, как это было принято для модели, описывающей реакцию рекомбинации. Наблюденная величина энергии активации рекомбинации приписывается целиком этому эффекту. [c.233]

    Приведем некоторые общие основные правила по получению информации о структуре молекулы из спектров ДОВ и КД. Согласно правилу смещения Фрейденберга, если две сходные молекулы А и В превращаются одним и тем же химическим путем в А и В, то разности в величинах молекулярного вращения А — А и В — В будут иметь один и тот же знак. А по правилу аддитивности для любой длины волны оптическое вращение равно сумме вращений всех оптически активных хромофоров. Наиболее большой вклад в эту сумму дает хромофор, максимум поглощения которого находится ближе всех к длине волны, на которой производят измерение. Однако эти правила следует применять с большой осторожностью. Например, при изменении конфигурации части молекулы, расположенной близко к центру асимметрии, величина оптического вращения может измениться очень сильно. Это явление называется вицинальным эффектом, который приводит к трудно оценимым изменениям оптического вращения. Наряду с этими общими правилами оценки структуры веществ методами ДОВ и КД существует ряд эмпирических правил определения конфигураций для различных классов веществ (например, правило октантов для кетоиной группы в молекулах с жестким скелетом). [c.38]

    На участках 1-7 и 8 - 14 в системе происходят структурные превращения, обусловливающие различие конфигураций элементов пространственной структуры, и соответственно проявление системой принципиально новых физико-механических и физико-химических свойств. Изменяется прочность структурных образований, химический состав, порядок расположения молекул, межмолекулярные силы взаимодействия и т.п. Например, можно предположить, что участок 1-3 включает зону упруго-хрупких (1-2) и упруго-пластичных (2-3) гелей. На участке 3-7 могуг проявляться зоны кинетически неустойчивого состояния золя (4-6) или кинетически устойчивого состояния (6-7). На участке 1 - 7 Moiyr проявляться эффекты плавления (зона 6-7), стеклования (зона 3-4). [c.63]

    Рассмотренные выше фазовые переходы в нефтяных системах также сопровождаются тепловыми эффектами с изменением энтропийного фактора. Очевидно, в нефтяных системах можно зафиксировать несколько фазовых переходов первого рода. Каждый такой переход характеризует кризисное состояние системы и приводит в конечном итоге к определенной новой упорядоченности элементов внутренней структуры системы. Таким образом, характерной особенностью кризисного состояния нефтяной системы является непрерывное изменение ее энтропии от начального до конечного значений, причем такие переходы в нефтяных системах могут наблюдаться в нескольких температурных интервалах. Характерно, что для значений по функциональной оси в последовательной серии кризисных состояний может нарушаться условие монотоности, что связано с различными факторами воздействия на систему в предшествии фазового перехода, и соответственно возможности изменения конфигурации и упаковки структурных элементов системы в момент фазового перехода. [c.181]

    Мезофазные сферы в момент их возникновения и при последующем росте, по данным световой микроскопии в поляризованном свете, а также дифракционного и рентгеноструктурного анализов, являются оптически одноосными положительными кристаллами гегсагональной системы. Показанные на рис. 2-4, а изгибы слоев приводят к тому, что на краях они перпендикулярны к касательной поверхности сферы. Это, по-видимому, способствует начальной коалесценции. В условиях относительно низкой подвижности мезофазы и случайной взаимной ориентации коалесцирующих сфер образования простой слоистой структуры не происходит. При этом возникают структуры, отличающиеся множеством дефектов упаковки слоев линейных, изгибов, нарушений непрерывности. Исследования профилей рефлексов (002) рентгенограмм мезофазы с учетом эффектов гьбсорбции и поляризации рентгеновских лучей, а также фактора рассеяния атомов углерода показывают, что средние значения межслоевого расстояния 002 равны примерно 0,350 нм [2-89]. Отдельные пачки слоев с разными значениями межслоевого расстояния имеют размеры до 2 нм. При нагревании сферы мезофазы могут расщепляться и приобретать относительно плоскую конфигурацию. То же происходит и при графитации мезофазы. Флуктуация межслоевых расстояний у графитирующейся мезофазы наивысшая. [c.46]


Смотреть страницы где упоминается термин Конфигурации эффект: [c.106]    [c.636]    [c.185]    [c.296]    [c.303]    [c.359]    [c.90]    [c.240]    [c.440]    [c.277]    [c.111]    [c.125]    [c.93]    [c.202]    [c.345]    [c.120]    [c.98]   
Инфракрасные спектры неорганических и координационных соединений (1966) -- [ c.200 ]




ПОИСК







© 2025 chem21.info Реклама на сайте