Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическое нитробензола

    Электрохимические реакции с участием органических веществ, как правило, протекают в несколько стадий с образованием ряда промежуточных продуктов. Так, например, восстановление нитробензола идет по схеме [c.14]

    Одним из наиболее изученных и в то же время сложных объектов электрохимического исследования являются нитросоедине-ния. Уже в начале XX в. Ф. Габером была разработана схема катодного восстановления нитробензола, включающая электрохимические (сплошные линии) и химические (пунктирные линии) стадии процесса  [c.262]


    Поскольку аппаратурные методы исследования в то время отсутствовали, основанием для построения такой схемы послужили результаты препаративного электролиза, сопоставление чисто химических и электрохимических Процессов с участием соответствующих соединений, а также химические способы обнаружения промежуточных продуктов. Так, при электролизе спиртового щелочного раствора нитробензола в присутствии а-нафтола и гид-роксиламина осуществляется электросинтез бензол-азо-а-нафтола (X), образование которого может произойти лишь в результате реакций с участием нитрозобензола [c.263]

    Электрохимическое восстановление ароматических нитросоединений давно привлекает возможностью получения различных продуктов восстановления в зависимости от условий электролиза. Восстановление нитробензола до анилина в промышленности осуществляется под действием железной стружки в серной кислоте. Этот процесс протекает в три стадии с участием на каждой из них двух электронов и двух протонов  [c.450]

    Жесткие условия восстановления железом не позволяют осуществить выделение этих промежуточных продуктов, хотя некоторые из них могут быть целевыми продуктами синтеза. В этих случаях и находит себе применение электрохимический метод восстановления, позволяющий строго регулировать условия процесса. В частности, промышленное получение п-аминофенола, используемого в качестве проявляющего вещества при обработке кинофотоматериалов, осуществляется электрохимически восстановлением нитробензола до фенилгидроксиламина, который в сильнокислой среде перегруппировывается в п-аминофенол  [c.450]

    Электрохимический метод. Низкий (—3,02 В) нормальный потенциал лития исключает возможность его получения из водных растворов солей. Электролиз растворов галогенидов лития в органических растворителях (пиридине, ацетоне, нитробензоле) дает небольшой выход по току (30—40%). Поэтому практическое значение получил только электролиз расплавленных солей. [c.68]

    Восстановление нитросоединений. — Нитробензол. При восстановлении достаточно сильными реагентами (например, хлористым оловом) нитробензол может быть превращен с высоким выходом в анилин. Применяя более слабые восстановители и подбирая соответствующую кислотность или щелочность реакционной смеси, можно получить ряд соединений, представляющих различные промежуточные стадии процесса восстановления нитробензола. Некоторые из этих соединений являются непосредственными продуктами реакции восстановления, тогда как другие образуются в результате вторичных превращений. Особенно тщательно изучены реакции электрохимического восстановления (Габер, 1900), где возможен точный контроль процесса путем регулирования напряжения, плотности тока и концентрации во- [c.212]


    Азоксибензол состоит нз остатков двух продуктов восстановления нитробензола — нитрозобензола и фенилгидроксиламина, связанных через атомы азота, один из которых соединен семиполярной связью с кислородом. Кислород легко отщепляется в процессе электрохимического восстановления или при взаимодействии с порошкообразным железом и водой с образованием азобензола, который в свою очередь способен присоединять два атома водорода, превращаясь в гидразобензол  [c.213]

    В последние годы большой интерес вызывают динамические электрохимические процессы, протекающие на поверхности раздела жидкость/жидкость, поскольку они открывают перед электро-аналитической химией новые возможности. В частности, использование явления переноса ионов через границу раздела двух несмешивающихся жидкостей, например вода/нитробензол, позволяет определять вещества, которые не могут обмениваться электронами с электродом. При этом поверхность раздела жидкость/жидкость по своим свойствам во многих отношениях подобна границе раздела металлический электрод/раствор электролита, хотя механизм отклика здесь иной. С помощью таких электродов можно определять ионы щелочных и щелочноземельных металлов, анионы минеральных кислот, антибиотики, лекарственные вещества, некоторые виды микроорганизмов. [c.408]

    В настоящее время каталитическое и электрохимическое восстановление нитробензола или его восстановление в кислой среде (Ре 1п, Зп) [c.45]

    Новые возможности открывает жидкостная хроматография с электрохимическим детектированием компонентов [7]. Предложены детекторы с несколькими рабочими (микро)электродами, детекторы с переносом ионов через поверхность границы раздела вода / отвержденный нитробензол, химическй модифицированные электроды, катализирующие химические реакции. [c.87]

    Особое значение имеет величина концентрации ионов водорода при полярографировании органических соединений, потенциал восстановления которых определяется не только их природой, но и в значительной мере кислотностью раствора. Это связано с тем, что в большинстве случаев в реакции восстановления молекул органических веществ принимают участие ионы водорода. Примером может служить восстановление нитробензола, примесь которого в техническом анилине определяется полярографическим методом (см. стр. 270). В кислой среде электрохимическому восстановлению нитробензола (при pH 2) соответствует потенциал полуволны в]/2 = —0,15 в, а в нейтральной Е /2 = = —0,47 в. Повышение кислотности сдвигает потенциал полуволны в сторону его менее отрицательных значений. [c.244]

    В силу принципа наименьшего изменения строения такое превращение при любом способе его осуществления не может проводиться за одну стадию, а должно происходить путем образования промежуточных соединений, которые, по всей вероятности, идентичны соединениям, получающимся в соответствующих условиях при электрохимическом гидрировании или же при действии атомарного водорода. Первоначально при гидрировании на никелевом катализаторе эти промежуточные соединения не были выделены и даже не могли быть обнаружены. Нитробензол дезактивирует никель, что приходится компенсировать значительным повышением температуры (примерно до 200°С). Это вынуждает проводить процесс в условиях, когда промежуточные соединения сами являются весьма реакционноспособными. В качестве единственно доступных для обнаружения веществ в результате превращения образуются анилин и продукты его гидрирования [4]. [c.32]

    Изучены процессы коактивации в реакциях гидрирования акриловой кислоты и нитробензола на смесях порошков платиновой, палладиевой, родиевой и иридиевой черней. Удельная активность механически смешанных катализаторов оказалась выше возможной суммарной. Предложен электрохимический механизм коактивации за счет образования микрогальванических элементов, которые осуществляют ионизацию водорода на наиболее отрицательно заряженном, а иона гидроксония—на наиболее положительном компоненте. [c.461]

    В работах [210, 211] исследовано адсорбционное поведение представителей различных групп спиртов бензилового, циклогексанола и н-гексанола, а также нитробензола на графите и саже. Максимум адсорбции этих веществ на углеродных материалах находится в интервале потенциалов 0,1—0,2 В, что близко к положению точки нулевого заряда (рис. 33). При сдвиге потенциала как в анодную, так и в катодную сторону наблюдается снижение адсорбции. Адсорбция нитробензола уменьшается при увеличении адсорбируемости ионов в ряду ЫОз > >СЮ4 >-504 - и повышении концентрации фонового электролита. В случае сажи наклон Г, -кривых выше по сравнению с графитом. Это обусловлено, по-видимому, большей адсорбцией ионов и электрохимически активных газов на саже и более легким вытеснением адсорбированных органических веществ. [c.84]


    Основные научные работы посвящены химии и технологии аммиака. Изучал (с 1904) каталитическую реакцию образования аммиака из азота и водорода при высоких температурах и давлениях. Впервые получил (1908) на полузаводской установке жидкий аммиак. Под его руководством был организован (1913) завод по фиксации атмосферного азота. Работал над созданием отравляющих веществ. Выполнил также исследования в области электрохимии. Изучал (1900) электрохимическое восстановление нитробензола в анилин. Изобрел (1909) стеклянный электрод, применяемый для измерения кислотности растворов. [c.122]

    АЗОБЕНЗОЛ eH N = N jHs - оранжево-красные ромбические кристаллы, т. пл. 68° С не растворяется в воде, растворяется в спирте, лигроине, эфире, ледяной уксусной кислоте, концентрированной серной кислоте. Транс-А. (см. Изомерия) при интенсивном освещении переходит в нестойкую ч с-форму, более насыщенного цвета, плавящуюся при 71° С и самопроизвольно снова превращающуюся в транс-изомер. А. получают восстановлением нитробензола или азоксибензола цинковой пылью, электрохимическим восстановлением нитробензола и др. При восстановлении цинком в щелочной среде А. превращается в гидразобензол, в уксуснокислой среде — в анилин. Окислителями А. окисляется до азоксибензола. [c.9]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Окисление ведется прн помощи реагентов (окислителей), действие которых заклк>чается в отнятии электронов от окисляемого вещества. Мерой активности окислителя является его электрохимический потенциал. Действие окислителя на органические соединения зависит от его химического, характера, а также от химической природы окисляемого вещества, температуры, концентрации реагентов, концентрации ионов водорода и т. д. Например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде— анилиновый черный, перманганатом калия в нейтральной или щелочной среде—азобензол и нитробензол, хлорноватистой кислотой—нитробензол, а хлорноватой кислотой—и-аминофенол. Аналогично при Окислении многих органических соединений в зависимости от природы окислителя и условий реакции получаются различные продукты окисления. [c.655]

    Окисление и восстановление среды. Доступная для электрохимических исследований область потенциалов и остаточный ток. На /.Е-кривой преде,.1ьиый ток отсутствует, если ток обус ловлен окислением или восстановлением растворителя или фо нового электролита, концентрация которого всегда высока. В этих случаях вблизи электрода сохраняется некоторая конечная коицеитрация окисляющегося или восстанавливающеюся вещества. Такие кривые получают, если потенциал рабочего электрода имеет очень отрицательные или очень положительные значения. На рис. 2.10 схематически показана кривая, полученная при погружении платинового электрода в раствор нитробензола, содержащий моль/л перхлората тетраэтиламмония. Установлено [7], что реакция, обуславливающая резкий подъем тока при потенциале около 1,5 В (отн. А /Л С104 5-10 моль/л), представляет собой восстановление растворителя до его анион-радикала. В положительной области резкое увеличение тока при 1,5 В, очевидно, следуст отнести к окислению иона С1О4 [8]. [c.39]

    Одновременное изучение характеристик молекулярных орбиталей органических соединений и их электрохимических свойств дает информацию, которую можно использовать не только для получения описанных пыше соотношений. Примером может служить одноэлектронное окисление н восстановление нитробензола (6) в органической среде на платиновом электроде [87]. Образовавшиеся соответственно катион-радикал и анион-радикал достаточно стабильны для получения их спектров ЭПР (см гл. 3). По этим спектрам было установлено, что для атома азота константы взаимодействия Сд равны 37,0 и 7,97 Гс для катион-радикала и аннон-радикала соответственно. Такую большую разницу можно объяснить, лншь предположив, что в Катион-радикале неспаренный электрон локализован иа группе N0 (0-радикал), тогда как в анион-радикале он делока-лизован по всей системе л-орбиталей молекулы (зх-радикал). Эти результаты проясняются при рассмотрении электронной структуры группы N0 (рис 2.29). Неспаренный электрон катион-радикала должен находиться на ла-орбитали эта орбиталь из-за нелинейности группы СНО, колланарной с бензольным ядром, не может быть сопряжена с л-системой бензольного кольца. Наоборот, песпаренный электрон аннон-радикала находится на л -орбиталн, которая сопряжена <- л-системой ароматического Кольца. [c.81]

    Этот пример иллюстрирует, как, ксмбиЕШруя электрохимический метод с подходящим физическим методом, можно точно охарактеризовать интересующую нас электронную систему б данной электрохимической реакции. Тот факт, что при окислении нитробензола получается о-радикал, показывает, что электрон переходит с л -орбитали нитрозогруппы. [c.82]

    Восстановление азоксибензолов до гидразобензолов представляет препаративный интерес [155, 117] из-за легкости превращения гидр азобензолов в бензндины и аналогичные соединения. Описано [146] превращение нитробензола в азоксибен-зол и далее в гидр азобензол. С точки зрения охраны окружающей среды электрохимическое восстановление в будущем может с успехом конкурировать с восстановлением под действием порошков металлов. [c.311]

    Наиболее часто используют реакции катодного восстановления, примером которого может служить реакция электрохимического восстановления нитробензола в аминобезол, протекающая по следующей схеме  [c.206]

    Растворители участвуют в электрохимической реакции только в тех случаях, когда их молекулы способны к диссоциации или образуют водородные связи (пиридин, метанол). К растворителям промежуточной группы, влияющим на реакцию нейтрализации в некоторой степени, относятся ацетон, ацетонитрил, нитрометан и др. Для определения кислот пригодны растворители инертные (бензол, толуол, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), основные и про-тофильные (этилендиамин, н-бутиламин, пиридин, диметилацетамид, диметилформамид, 1,4-диоксан, трет.-бутанол, изопропиловый, этиловый, метиловый спирты, пропиленгликоль). Для определения оснований применяют растворители инертные (н-гексан, циклогексан, диок-сан, четыреххлористый углерод, бензол, толуол, хлороформ, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), кислотные и протогенные (муравьиную, уксусную и пропионовую кислоты, уксусный ангидрид, нитробензол, этиленгликоль, изопропиловый спирт). Растворители, участвующие в неводном титровании, не должны содержать примесей кислот и оснований и воды. [c.302]

    Вообще сопоставление результатов, получаемых методом фотоэлектронной эмиссии (ФЭС) при исследовании электронного строения молекул в газовой фазе, с результатами электрохимических превращений позволяет достаточно убедительно интерпретировать механизм химических и электрохимических превращений веществ. Китаев [И, с. 93—94], сопоставив данные методов ФЭС и электроокисления для адамантана и его производных, выявил корреляцию между локализацией положительного заряда в катион-радикалах этих соединений и их электрохимическим поведением. В ряде работ проведено параллельное изучение различных соединений при помощи полярографии и метода ЯМР. Например, Беннет и Эльвинг [56] на примере различных алифатических и ароматических соединений показали,, что линейная зависимость между 1/2 и параметрами смещения ЯМР (величинами химических сдвигов, вызываемых заместителями) наблюдается во всех случаях, за исключением алифатических бромпроизводных, нескольких алифатических нитрозаме-щенных, нитробензолов и эфиров хлоруксусной кислоты. Нарушение линейной зависимости в этих случаях может быть связано, по мнению авторов, с влиянием на 1/2 более тонких эффектов — пространственных особенностей строения молекул [c.56]

    Однако для синтеза промежуточных продуктов нитробензола (любого АгЫОз, а не только анилина С5НбМН2, наиболее подходяицш является электрохимическое восстановление на катоде в кислой или щелочной среде (схема 18.1)  [c.541]

    Замечательно, что методом электрохимического восстановления в растворе нейтральных электролитов (N35304, MgS04) из нитробензола можно получить иитро-зобензол 30. Повидимому образование последнего — вторичная реакция, связанная с окислением иа аноде предварительно образовавшегося фенилгидроксиламина  [c.139]

    Уменьшение константы скорости обратимых и квазиобратимых электрохимических реакций при добавлении в раствор адсорбирующихся веществ вызывает резкое снижение высот пиков на полярограммах с наложением переменного тока по Брейеру [425— 427]. Торможение электродных процессов в присутствии адсорбирующихся веществ проявляется также в изменении форм кривых осциллографической полярографии на основании исследования осциллополярограмм восстановления нитробензола в присутствии камфоры [428] оказалось возможным подтвердить правильность точки зрения Холлека, что адсорбированное вещество тормозит дальнейшее восстановление промежуточного продукта, образующегося при переносе одного электрона на молекулу нитросоединения. [c.92]

    Сдвиг 4 при изменении буферной емкости, т. е. влияние кинетики предшествующей протонизации, как и следовало ожидать, уменьшается по мере увеличения степени обратимости электрохимической стадии, т. е. повышения скорости переноса электрона, в ряду от нитропронана к нитробензолу. О степени обратимости в первом приближении свидетельствуют обратные величины наклонов логарифмических графиков волн в координатах Е — /( д— [c.112]

    При исследованиях кинетики электродных процессов, особенно с участием органических веществ, перспективно применение электронного парамагнитного резонанса (ЭПР), который является чувствительным методом обнаружения и количественного определения радикалов. При электрохимических исследованиях чувствительность меньше, чем при измерениях в объеме раствора, так как в первом случае радикалы необходимо отвести от электрода на достаточное расстояние (путем диффузии или конвекции), чтобы их можно было обнаружить. Поэтому методом ЭПР можно изучать только относительно стабильные радикалы. Впервые этот метод был использован в электродной кинетике независимо Маки и Геске [64, 65] и Галкиным, Шам-фаровым и Стефанишиной [66]. Теперь в исследования такого типа включились многие лаборатории, в частности группа Адамса [67—70], но, по-видимому, большая часть этих работ нацеливается на использование электролиза как источника радикалов. Использование ЭПР совместно с различными чисто электрохимическими методиками должно оказаться плодотворным (см. работы Адамса). Недавно появился обзор исследований полярографического восстановления нитробензола, выполненных с использованием метода ЭПР [71]. Полезно ознакомиться также с обзорной статьей Адамса [74]. [c.211]

    Маки и Джеске [14] изучили полярографические характеристики динитробензолов в растворах ацетонитрил — перхлорат тетра-н-пропиламмония и записали спектры ЭПР электрохимически генерированных анион-радикалов. Все три изомера дают но три волны восстановления, причем первые две, по-видимому, соответствуют последовательным обратимым переносам одного электрона. Третья волна в каждом случае имеет значительно большую высоту и является необратимой. Потенциалы полуволны приведены в табл. 11.2. Динитробензолы восстанавливаются легче нитробензола, причем порядок восстановления изомеров такой же, как в системе вода — этиловый спирт, для которой наблюдается одна четырехэлектронная стадия. По-видимому,, при восстановлении динитробензолов образуются как моно-, так и дпанионы, и последующий, еще не исследованный, процесс является более сложным. Для исследований методом ЭПР проводили электролиз при контролируемом потенциале, на 0,1 В более отрицательном,. чем Еч, первой волны. [c.324]

    Описанные выще результаты получены при потенциалах достаточно анодных, чтобы мог реагировать перхлорат. Однако известны примеры, когда перхлор-пон участвовал в реакции даже при потенциалах, менее анодных, чем необходимо для его прямой реакции. Кокви и др. [119] наблюдали спектр ЭПР двуокиси хлора при окислении нитробензола в растворе нитрометан — перхлорат лития. Образование двуокиси хлора было приписано реакции ка-тион-радикала нитробензола с ионами перхлората. Коттрелл и Манн [120] установили, что перхлорат-ион участвует в реакции электрохимического окисления диалкилсульфидов. Этот вопрос обсуждается в гл. 12. Отсюда видно, что пользоваться перхлоратами как фоновыми электролитами нужно осмотрительно, поскольку эти соли не всегда являются инертными, как это часто считают. Эту трудность можно обойти, если для анодных реакций в качестве фонового электролита использоватьтетраалкиламмонийтетра-фторборат. [c.452]

    Харвуд и др. Sia восстанавливали н.итробензол электрохимическим способом на ртутном катоде при различных регулируемых потенциалах в кислых электролитах. В качестве католита они использовали двухнормальный раствор H2SO4 в водном спирте. (Спирт повышает растворимость нитробензола и про-.цуктов его восстановления.) В качестве анолита применялся [c.174]

    Реакция электровосстановления нитробензола была открыта Габером 15 1898 г. Еще ранее, в 40-х годах прошлого столетия Кольбе изучил некоторые процессы электрохимического окисления и восстановления органических веществ. Нанример, он установил, что ири электролизе щелочных солей алифатических карбоновых кислот с илатиновым.анодом среди различных продуктов электролиза находятся продукты димеризации углеводородных радикалов. Эта реакция получила название синтеза Кольбе 2СНз (СНа) СОО- — 2ё СНд (СН2)а СНз -Ь гСОз] [c.38]

    При исследовании электрохимического и каталитического восстановления я-нитронроизводных бензофенона (I) и дифенилоксида (II) [1] было отмечено ослабление электронного влияния заместителя на иитрогруипу ио сравнению с серией нитробензола (III). [c.118]

    Проводимость растворов галогенидов лития и бромида, иодида и роданида калия в пиридине, хинолине и нитробензоле измеряли Мандел и сотрудники. Было изучено по одному [раствору для каждой соли в данном растворителе в связи с опытами по электрохимическому выделению лития [991. [c.18]

    Электрохимические исследования выполнялись и во многих растворителях, не обсуждаемых здесь. Например, в качестве возможных растворителей для электролитов внимание исследователей привлекали нитрометан [441], фтористый нитрознл [434] и фтористые галогениды [433]. Использовалось множество растворителей с низкими диэлектрическими постоянными, особенно при изучении органических и металлоорганических соединений, обладающих наибольшей растворимостью в этих растворителях. К ним относятся ацетон, диэтиловый эфир, 1,2-диметоксиэтан (глим) [113, 190, 376,410], бнс-(2-метоксиэтил)эфир (диглим) [321, 436], хлористый метилен [25, 27, 196, 343, 348, 373, 403], тетрагидрофуран [175], нитробензол [278, 286], этилендиамин [226, 275, 379, 380, 386] и пиридин [78, 107, 135, 301, 358, 419, 420,435]. Природа частиц в растворителях с низкой диэлектрической постоянной значительно усложнена вследствие образования ионных пар, поэтому эти среды остаются за пределами настоящего обзора, охватывающего лишь растворители с высокими диэлектрическими постоянными, в которых соли, как правило, полностью диссоциированы. [c.210]


Смотреть страницы где упоминается термин Электрохимическое нитробензола: [c.71]    [c.514]    [c.545]    [c.22]    [c.174]    [c.210]   
Основные начала органической химии Том 2 1958 (1958) -- [ c.250 , c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Нитробензол



© 2024 chem21.info Реклама на сайте