Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фтор-протонное взаимодействие

    Энергия взаимного притяжения молекул для всех указанных типов взаимодействия приблизительно обратно пропорциональна шестой степени расстояния между молекулами. Указанные взаимодействия в некоторых случаях приводят к ассоциации молекул жидкости (так называемые ассоциированные жидкости). Между молекулами ассоциированной жидкости образуются кратковременные непостоянные связи, К таким связям относится водородная связь, которая создается за счет электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (главным образом к атомам фтора, кислорода, азота, хлора) другой молекулы. [c.163]


    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Наиболее важным случаем ассоциативных взаимодействий является водородная связь (Н-связь) [45]. Водородная связь — это связь между функциональной группой А—Н и атомом или группой атомов В той же или другой молекулы особое участие в этой связи принимает атом водорода, уже связанный с А (связь А—Н. .. В). Водородная связь образуется между двумя функиональными группами. Одна из этих групп (АН) выступает как донор протона, другая (В) — как донор электрона. Чаще всего донорами протона при образовании водородной связи являются гидроксильная (ОН), карбоксильная (СООН), амино- ( НН2) и амидо-(ЫН) группы. Водород групп 8—Н и С—Н (например, водород молекулы хлороформа СНС1з) также способен принимать участие в Н-связи, хотя связи с участием этих групп, как правило, слабее. Могут образовываться водородные связи с участием протона, присоединенного к атому галогена (молекулы НР, например). В качестве электронодоноров могут выступать кислород карбонильной, гидроксильной групп или эфирного мостика, азот в аминах и азотосодержащих гетероциклических соединениях, в некоторых случаях — атомы галогенов (атом фтора молекулы НР). [c.285]


    Ядро фтора обладает такими же магнитными свойствами, как протон. Оно дает ЯМР-спектр, хотя и совершенно при другой комбинации частота — напряженность поля, чем протон. Ядра фтора могут взаимодействовать не только друг с другом, но так- [c.422]

    Вицинальное взаимодействие ПаН—9аР в 9а-фтор-11р-окси-прогестероне LV, равное 9 гц, как и в случае геминального взаимодействия Н—F, больше, чем соответствующие значения / протон-протонного взаимодействия [И]. [c.169]

    Межмолекулярная водородная связь возникает между молекулами, в состав которых входят водород и сильно электроотрицательный элемент — фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водорода сконцентрирован в малом объеме, то протон взаимодействует с неподеленной электронной парой другого атома или иона, обобществляя ее. В результате образуется вторая, более слабая связь, получившая название водородной. [c.67]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

    Водородная связь —особый тип взаимодействия между молекулами — проявляется, когда полярная молекула, содержащая атом водорода, взаимодействует с атомами кислорода, азота или фтора. Энергия водородной связи 4— 40 кДж/моль. Причина образования водородной связи состоит в том, что единственный электрон атома водорода участвует в связи с другим атомом и тем самым экранирование ядра атома водорода ослабляется, что дает возможность к взаимодействию протона с другими атомами. На основании сказанного выделите существенные признаки водородной связи и дайте определение понятия водородной связи. [c.50]

    Подавление спин-спинового взаимодействия. При использовании этой методики насыщают ядра одной из групп А или X) с помощью поля Яа- При этом в спектре ЯМР пропадает тонкая структура сигнала другой группы ядер. Например, если наблюдать резонанс протонов метильной группы и одновременно полем Яа насыщать ядра фтора, то в спектре ПМР вместо дублета СНз-группы будет синглет и, наоборот, если насыщать полем Яа ядра атомов водорода метильной группы, в спектре ЯМР вместо квартета для ядер фтора проявится синглет. Применяя эту методику к нитроэтану, можно видеть из спектра ПМР, что спин-спиновое взаимодействие между протонами метильной и метиленовой групп подавляется, т. е. каждый из сигналов поочередно будет появляться в виде синг-лета вместо квартета (СНа-группа) и триплета (СНз-группа), [c.95]

    Одной из наиболее интересных разновидностей диполь-дипольного взаимодействия является водородная связь. В обычных условиях валентность водорода равна 1, и он способен обобществлять с другими атомами одну электронную пару, образуя самую обычную ковалентную связь кроме того, атом водорода может присоединять электрон, образуя гидрид-ион Н . Однако, будучи связан с каким-либо сильно электроотрицательным атомом, например с фтором, кислородом или азотом, атом водорода приобретает относительно высокий положительный заряд (естественно, не превышающий единицы ). Поскольку этот заряд сосредоточен на чрезвычайно малом атомном остове (представляющем собой в данном случае просто протон), он может сильно приближаться к какому-нибудь другому атому, несущему на себе небольшой отрицательный заряд. Это вызывает образование довольно сильной диполь-дипольной связи, хотя, конечно, она гораздо слабее нормальной ковалентной связи. Возникающее при образовании водородной связи расположение частиц показано на рис 8.20. [c.142]

    Особое взаимодействие, промежуточное между вандервааль-совым и химическим — водородная связь. Она образуется между атомом водорода некоторой группы ХН (гидроксильная, карбоксильная группа, амино- и амидогруппы и др.) и протон-акцепторной группой X (кислород гидроксильной, карбонильной и карбоксильной групп, азот амино- и амидогрупп, фтор молекулы НР и др.). Обозначение X —Н У показывает, что атом Н прочно связан с группой X и менее прочно с группой У (несимметричная водородная связь, возникающая между нейтральными молекулами) .  [c.123]


    Электрофильный катализ. Среди связей углерод — галоген наиболее стабильной является связь С—Р, которая инертна по отношению к многим реакциям, в том числе 8к 1 и 8м 2. Этим отчасти объясняется практическое использование ТФЭ (тефлон или фторопласт — полимер тетрафторэтилена) и других фторированных углеводородов (например, фреонов). Тем не менее реакции нуклеофильного замещения алкилфторидов можно осуществить, если процесс проводить в кислой среде, т. е. в условиях, когда фтор образует сильную водородную связь с протоном. В данном случае уходящей группой служит НК, а не РЭ. Это пример ускорения реакции электронодефицит-пыми соединениями электрофилами), с которыми мы уже ранее встречались при рассмотрении взаимодействия трет-бутилового спирта с НВг (разд. 5.4). [c.205]

    Резонанс ядер F. Как мы уже видели, ядро фтора является идеальным объектом для наблюдения ЯМР. Благодаря высокой реакционной способности этот элемент образует большее число соединений, которые, будучи жидкостями при обычных условиях, удобны для исследований. Диапазоны значений констант спин-спинового взаимодействия и химических сдвигов для фтора значительно больше, чем у протонов. Это приводит к тому, что соединения с несколькими группами неэквивалентных ядер со спин-спиновым взаимодействием в большинстве случаев имеют спектры первого порядка. [c.79]

    Тогда магнитная информация передается по короткому проводу , где нет формальной связи. Так, в соединении 70 наблюдается спин-спиновое взаимодействие протонов На и Нь в 1,1 Гц. Эти протоны разделены шестью а-связями в конфигурации, неблагоприятной для обычного дальнего спин-спинового взаимодействия. Поэтому очень вероятно прямое спин-спиновое взаимодействие между Ь-орбиталями двух атомов водорода. Этот механизм, который называют связыванием через пространство, имеет большое значение для спин-спинового взаимодействия между протоном и ядром фтора, а также между ядрами фтора (см. гл.Х). [c.139]

    Подобно тому как химические сдвиги фтора больше протонных химических сдвигов, константы спин-спинового взаимодействия ядер фтора также больше соответствующих констант [c.381]

    Взаимодействие между ацетоном и хлороформом, которое приводит к отрицательным отклонениям от закона Рауля, состоит в образовании слабой водородной связи между кислородом ацетона и водородом хлороформа. Водородная связь — это особый тип связи между двумя молекулами или двумя частями одной молекулы, когда протон оказывается связанным с двумя атомами, один из которых обычно фтор, кислород или азот (разд. 14.8)  [c.117]

    В случае РРз взаимодействие между фосфором и фтором достаточно велико, порядка нескольких кГц. Для ядер константа спин-спинового взаимодействия существенно меньше. Так, в алифатическом фрагменте константа взаимодействия составляет примерно 125 Гц. В этаноле, ще наблюдаются взаимодействия между протонами СНг- и СНз-групп, разделенных тремя связями, константа порядка 7 Гц. [c.32]

    Возможность образования водородной связи является результатом особых свойств атома водорода, а именно — наличия у него одного единственного электрона. Если облако отрицательного заряда электрона сильно смещается к другому атому (что происходит, когда водород соединен ковалентной связью с сильно электроотрицательным элементом), то остается мало закрытый электронным облаком протон — частица с единичным зарядом и очень малым радиусом. Это создает возможность для донорно-акцепторного взаимодействия между протоном и неподеленной электронной парой сильно электроотрицательных элементов, таких как фтор, кислород, азот, входящих в состав другой молекулы. [c.128]

    Протоны эффективно взаимодействуют с фтором (/=7г) в органических соединениях (Jh f 60 гц /нссг Сигналы ЯМР протонов, взаимодействующих с фосфором ( Ф, / 7г)> расщеплены на дублеты с большой константой взаимодействия (200—70Э гц). Взаимодействие с фосфором, хотя и ослабленное, молгет наблюдаться на расстоянии по меньшей мере четырех ковалентных связей. [c.112]

    В отличие от почти изотропных СТВ с р-протонами взаимодействие с р-атомами фтора сильно анизотропно. Наблюдаемый большой вклад анизотропного взаимодействия возможен только в том случае, если на р-орбитали атома фтора имеется ненулевая спиновая плотность. Спиновая плотность на 5-орбитали дала бы только изотропное СТВ. Расположение главных осей тензоров СТВ с р-атомами фтора позволяет сделать вывод, что взаимодействие, которое влечет за собой появление спиновой плотности на р-орбиталях Р-атомов фтора, определяется непосредственным перекрыванием этих орбиталей с 2ргорбиталью атома углерода. О важности таких р—л-взаимодействий свидетельствуют также некоторые другие данные по спектрам ЯМР и ЭПР в растворах [54, 222 . [c.188]

    Спин-спиновое взаимодействие аллильного фтора у атома С-6 с винильным протоном у атома С-4 проявляет пространственную зависимость, по-видимому, идентичную с соответствующим протон-протонным взаимодействием [40]. Так, в до сих пор изученных бр-фторстероидах ЬП резонансный сигнал протона С-4 появляется в виде дублета (7=5,0—5,5 гц) при 5,8 м.д., тогда как соответствующий резонансный сигнал в ба-фторсоеди-нениях LHI имеет вид синглета при 6,0 м.д., уширенного (ширина линии 4,5 гц) вследствие взаимодействия с бр-протоном и, возможно, небольшого взаимодействия с ба-фтором. [c.168]

    Хиральные растворители используются в ЯМР-спектроскопии для определения абсолютной конфигурации оптически активных соединений. С этой целью рацемат растворяют в хи-ральном растворителе. При этом отдельные энантиомеры (5) и (R) взаимодействуют с хиральным растворителем по-разному и потому дают неодинаковые спектры ЯМР. Так, если в качестве хирального растворителя использовать (5)(+)-2,2,2-три-фтор-1-фенилэтанол, а в качестве субстрата взять рацемический а-арилэтиламин, то в его спектре ПМР сигнал метинового протона 5-энантиомера попадает в более слабое поле, чем сигнал соответствующего протона Л -энантиомера. [c.74]

    Ядерные реакции под действием дейтеронов протекают иначе. Дейтерон — сравнительно рыхлая частица. У него большой размер и довольно слабая связь между образующими его нуклонами. При приближении к ядру в результате поляризации и кулоновского отталкивания связь между нуклонами в дейтероие еще больше ослабляется и происходит распад дейтерона. Освобождающаяся при этом энергия приводит к вылету протона. Примером такого типа взаимодействия может служить реакция облучения фтора дейтеронами  [c.419]

    ЯМР-СПЕКТРОСКОПИЯ. Наличие фтора можно показать с помощью ЯМР-спектроскопии либо прямым наблюдением за ядром фтора, либо паблюдепием за расщеплением сигналов протона под действием ядра фтора. Резонансная спектроскопия фтора в данной книге не обсуждается, хотя можно сослаться на гл. 29. Некоторые типичные константы спин-спинового взаимодействия ядер водорода и фтора приведены в табл. 6-2. Влияние галогенов на химические сдвиги протонов обсуждается в гл. 29. [c.245]

    Правила, выведенные для спин-спинового взаимодействия протонов, в общем нельзя использовать при интерпретации соответствующих взаимодействий ядер фтора, поскольку для них эффективен дополнительный механизм. Существует ряд экспериментальных данных, указывающих на передачу спин-спинового взаимодействия l F, F пе только через электроны химических связей, но и непосредственно через пространство. Как указывалось уже в разд. 2.4, гл. IV, речь при этом идет не о диполярном взаимодействии ядерных магнитных моментов, а о скалярном спин-спиповом взаимодействии за счет перекрывания несвязанных орбиталей (механизм через пространство ). [c.383]

    В табл. 28 приведены величины констант взаимодействия / для идер со спинами 72- Наибольшее значение наблюдается при взаимодействии с ядрами фтора. Константы I при взаимодействии прото-ион не превышают величины 20 гц. Величина констант взаимодей-(Тння заметно уменьшается с увеличением числа связей между иаимодействующими ядрами и в том случае, когда протоны раз-/ц лены пятью и более одинарными связями, это взаимодействие практически можно не учитывать. [c.105]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    Хотя в случае этанов, претерпевающих быстрые поворотные переходы, химический сдвиг между геминальными ядрами усредняется, его усреднение до нулевого значения необязательно, если только время жизни в каждой из зеркальных конформаций (при геминальном сдвиге, не равном нулю) не будет одинаковым. Например, геминальные атомы фтора в СВгРг—СНВгС не эквивалентны по величине химического сдвига при температурах вплоть до 200° [76, 79], хотя степень неэквивалентности изменяется с температурой, так как относительное время жизни также зависит от температуры. Аналогично этому [79] метиленовая группа 2,3-дибром-2-метилпропионового эфира дает резонансный квадруплет, в то время как спектр более симметричного производного — 1, 2-ди бром-2-метилпропана — содержит одну четкую линию метиленовой группы. Следует подчеркнуть, что даже в тех случаях, когда геминальные протоны эквивалентны в отношении химического сдвига за счет усреднения, из-за вращения эти протоны не всегда характеризуются эквивалентным спин-спиновым взаимодействием с соседними протонами. Спектр высокого разрешения 1,2-хлорбромэтана [66] мо- [c.311]

    Спектр протонного магнитного резонанса (рис. 66) показывает, что справедлива ормула II. Напомним, что ядра Р имеют спин но их сигналы в спектре ЯМР лежат совсем в другой области, чем сигналы протонов. Спин-спиновое взаимодействие между Н и Р такого же порядка, как и менаду протонами. Формула I отпадает потому, что тогда спектр должен содержать два экиивалептных протона и, следовательно, им должен отвечать один мультиплет (из восьми линий). В действительности имеется два мультиплета. В мультиплете протона В должно быть восемь линий (расщепление сигнала на трех ядрах фтора СРз-группы и на ядре фтора —СР-группы каждого из этих сигналов). В мультиплете протона А должно быть 14 линий но не все видны на спектре в связи с тем, что крайние линии муль гиплета малоинтенсивны. [c.604]

    Серьезным подтверждением также служит тот факт [96], что при образовании комплекса состава 1 1 из п-фторнитробензола и п-фторнитрозобензола (константа равновесия около 1) сигналы обоих атомов фтора сдвигаются в сторону слабых полей по сравнению с их сигналами в свободных компонентах. Сдвиги равны примерно —1,80 м. д. для нитрозосоединения и —1,06 м. д. дл нитросоединения. В противоположность этому во всех равновесиях с переносом протона, с образованием водородной связи и с взаимодействием кислоты и основани Льюиса сигнал атома фтора кислого компонента сдвигается в сторону сильных полей, а сигнал атома фтора основ- [c.332]

    Фенилендиамин и 2-аминофенол первоначально дают Н-арилимидоил-фторид, элиминирование фтористого водорода и последующая внутримолекулярная нуклеофильная циклизация которого приводят к перфторалкильным производным бензимидазола и бензоксазола соответственно. В случае 2-аминотиофе-нола реакция идет по атому серы с образованием карбаниона. В случае если Кр является фтором, то карбанион дестабилизирован за счет взаимодействия неподе-ленных пар электронов фтора с центром, и реакции стабилизации протекают с участием протона. Когда же Кр является трифторметильной группой, происходят делокализация отрицательного заряда на трифторметильную группу и увеличение стабильности карбаниона. При этом имеют место элиминирование фторид-иона и последующая внутримолекулярная нуклеофильная циклизация. [c.44]

    Авторы [134] обнаружили, что при взаимодействии перфтор-4-ме-тил-2-пентена с пирролидином образуется 4-пирролидинперфтор-2-ме-тил-2-пентен 74, который в отсутствие оснований при хранении превращается в 2,4,4-трис(трифторметил)-3-фтор-1-азабицикло[3.3.0]окт-2-ен 75. Образование соединения 75 можно объяснить следующим образом. Подвижный атом фтора при углероде, связанном с атомом азота, в соединении отщепляется в виде аниона, давая соль 76. Стабилизация катиона соли 76 протекает за счет отщепления протона от а-углеродного атома пирролидинового кольца под действием фторид-иона и приводит к цвиттер-иону 77, внутримолекулярная нуклеофильная циклизация которого ведет к продукту реакции 75. [c.81]

    Первый класс первой группы был рассмотрен в предыдущих параграфах, причем оказалось, что индивидуальные свойства очень сильно зависят. от размера ионов. Взаимодействия специфического характера, которые выэы-вают обращение последовательности коэффициентов активности для катионов в присутствии ионов фтора и гидроксила, согласно Скэтчарду и Прентису, также обусловлены очень малыми размерами этих ионов. Хотя точные экспериментальные данные для фторидов почти совершенно отсутствуют, все же можно полагать, что ион фтора является акцептором протонов, так как осмотический коэффициент 1 М раствора фтористоводородной кислоты почти такой же, как осмотический коэффициент муравьиной кислоты при той же концентрации. Если это допущецие правильно, то механизм взаимодействия катионов с растворителем (водой), рассмотренный в 5, может иметь существенное значение. В анионе большого размера, вроде ацетат-иона, заряд расположен, повидимому, на значительном расстоянии от центра иона. С этим обстоятельством может быть связана способность этих анионов соединяться о протонами и явление обращения последовательности коэффициентов активности для различных катионов. [c.372]


Смотреть страницы где упоминается термин Фтор-протонное взаимодействие: [c.148]    [c.164]    [c.229]    [c.148]    [c.206]    [c.155]    [c.332]    [c.55]    [c.510]    [c.224]    [c.529]    [c.32]   
Применение ямр в органической химии (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие между фтором и ангулярными метильными f протонами

Фтор-протонное взаимодействие аддитивность возрастания

Фтор-протонное взаимодействие аллильное

Фтор-протонное взаимодействие в замещенных бензолах

Фтор-протонное взаимодействие вицинальное

Фтор-протонное взаимодействие геминальное

Фтор-протонное взаимодействие дальнее

Фтор-протонное взаимодействие механизм

Фтор-протонное взаимодействие через карбонильную группу



© 2025 chem21.info Реклама на сайте