Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция замещения изомеризации

    Существует и другая область стереохимии, которой мы не станем касаться, но которая тем не менее вызывает в настоящее время большой интерес. Эта область связана со стереохимическими изменениями, испытываемыми комплексами в реакциях замещения, изомеризации и рацемизации. В этой книге мы не будем пытаться ее обсудить в широком плане, упомянем только, что теория кристаллического поля в этой области применялась с переменным успехом, особенно при интерпретации кинетических данных, а также для понимания механизмов неорганических реакций [1, 2]. [c.449]


    Скорость мономолекулярных реакций распада или изомеризации при давлениях, близких к атмосферному, в Ю" раз больше скорости бимолекулярных реакций замещения или присоединения при условии равенства энергий активации и температур 1212]. Этим можно объяснить возрастающее количество непредельных углеводородов в газах коксования (рис. 7) в первом этапе в отличие от второго и третьего и сравнительно незначительное количество продуктов глубокого уплотнения. Этим же объясняется и непрерывное уменьшение молекулярного веса всех компонентов остатка (масел, смол и асфальтенов). Количество [c.51]

    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Основными реакциями карбкатионов, как и радикалов, являются мономолекулярный распад по р-правилу и бимолекулярные реакции замещения и присоединения. Существенное отличие карбкатионов от радикалов — их способность к изомеризации. [c.242]

    Метод ЭЛ эффективно применяется для изучения скорости сходственных реакций, когда реагент данного типа участвует в реакциях замещения с различными молекулами субстрата или взаимодействует с различными положениями одной и той же молекулы. В последнее время диапазон применений метода ЭЛ значительно расширился и включает не только разнообразные ряды сходственных реакций замещения, но и реакции присоединения и изомеризации. Связь между опытными константами скорости и энергиями локализации для реакций присоединения атомов водорода к олефи-нам, изображенная на рис. 4.3, позволяет определять скорости неизученных реакций данного ряда по вычисленным значениям энер- [c.63]


    Научные исследования посвящены теоретической органической химии, органическому синтезу и нефтехимии. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения (правила Марковникова). Исследовал (с 1880 г.) состав нефти, заложив основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ — нафтены. Ввел много новых экспериментальных приемов анализа и синтеза органических веществ. Впервые изучил переход нафтенов к ароматическим углеводородам. [c.332]

    Генетическое доказательство строения возможно, если равновесия диссоциации и изомеризации комплекса сильно заторможены, т. е. внутренняя координационная сфера существует как стабильное образование длительные промежутки времени. Метод генетического доказательства строения является общим для химии комплексных соединений и органической химии. В химии комплексных соединений его можно применять к инертным комплексам, если реакция замещения не сопровождается внутримолекулярной перегруппировкой. [c.74]

    Для метилацетилена, как и для других ацетиленовых углеводородов, характерна высокая реакционная способность. Он легко вступает в реакции присоединения, замещения, изомеризации и полимеризации. [c.368]

    Из нижеперечисленных реакций укажите те из них, которые свойственны предельным углеводородам а) реакция замещения, б) реакция присоединения, в) реакция изомеризации, [c.189]

    Реакции замещения присоединения гидрирования дегидрирования изомеризации [c.192]

    Биохимические реакции первого типа (реакции замещения) включают все те гидролитические реакции, в процессе которых биополимеры расщепляются до мономеров, а также большинство реакций, приводящих к конденсации этих мономеров с образованием полимеров. Многие реакции присоединения обеспечивают введение атомов кислорода, азота и серы в биохимические соединения, а реакции элиминирования часто служат движущей силой биосинтетических путей. Сложные ферментативные процессы во многих случаях представляют собой сочетания нескольких стадий, включающих замещение, присоединение или отщепление. Реакции, включающие образование или расщепление связей С—С, существенны для биосинтеза и расщепления различных углеродных скелетов, существующих в биомолекулах, в то время как реакции изомеризации связывают между собой другие типы реакций при формировании метаболических путей. [c.91]

    При разработке кинетических моделей пиролиза углеводородов имеют место принципиальные ограничения и необходимые допущения. Так, в реакциях замещения чаще всего образуется несколько изомерных радикалов. Их количественное соотношение зависит от прочности С—Н-связи в исходном углеводороде и вероятности изомеризации. Это позволяет рассчитать состав первичных продуктов, полагая, что из углеводорода образовался только один радикал, который распадается по различным маршрутам. В реакциях присоединения радикалов к олефинам получаются те же радикалы, что и в реакциях замещения алканов, но уже не все изомеры, а только два — со свободной валентностью при атомах углерода, соединенных двойной связью. Необходимость включения реакций изомеризации этих радикалов может быть установлена только путем сравнения разных вариантов расчета со специально проведенными экспериментами. [c.40]

    Основными реакциями карбкатионов, как и радикалов, являются мономолекулярный распад по р-правилу и бимолекулярные реакции замещения и присоединения. Существенное отличие карбкатионов от радикалов - способность первых к изомеризации, что объясняется значительным снижением свободной энергии при переходе от первичного к вторичному и третичному карбкатионам. [c.429]

    Углеводы относятся к полифункциональным соединениям, содержащим карбонильную и гидроксильные группы. В химическом отношении они представляют собой весьма лабильные вещества, склонные к множеству разнообразных превращений. Но, рассматривая многочисленные реакции углеводов, можно выделить три основных типа химических реакций моносахаридов. Это, во-первых, превращения карбонильной группы. К ним относятся реакции замещения, окисления и восстановления карбонильной группы, получение производных альдоновых кислот, раскрытие лактольного цикла. Второй ряд превращений затрагивает гидроксильные группы углеводов и связан с получением эфиров кислот, различных карбонильных производных, гликозидов, непредельных и дезоксисахаров, ангидридов ИТ. п. Третья группа реакций относится к изменению углеродного скелета молекулы углевода и включает его удлинение, укорочение, изомеризацию, получение С-производных, трансформацию углеводов в другие классы органических соединений. [c.5]


    Нуклеофильные и электрофильные реакции по направлениям (типу реакции) могут протекать как реакции присоединения, замещения, изомеризации. [c.30]

    Нуклеофильные катализаторы ускоряют реакции замещения, присоединения и изомеризации. [c.443]

    Уровень 6. Дальнейшее развитие понятия химическая реакция осуществляется в курсе органической химии. Понятие о классификации химических реакций дополняется и расширяется. В курсе органической химии вводится новый тип реакции — изомеризация. Самая первая классификация реакций на типы приобретает качественно новое, более глубокое содержание. Например, реакция замещения — галогени-рование алканов приводит не к образованию нового простого и нового сложного вещества, а к образованию двух сложных веществ. Реакция соединения включает в себя целую систему [c.278]

    Метановые УВ в обычных условиях находятся в разных фазовых состояниях С1-С4 — газы, С5-С15 — жидкости, С16 и выше — твердые вещества твердые парафины обычны в нефти до С40, в то же время разветвленные изомеры того же молекулярного веса в зависимости от структуры могут быть жидкими или твердыми. Алканы практически нерастворимы в воде, но хорошо растворимы в ароматических УВ и органических растворителях. Алканы химически наиболее инертная группа УВ, не способная к реакции присоединения, поскольку все связи насыщены, но для них свойственна реакция замещения, особенно с галогенами, а также дегидрирование, окисление, изомеризация. [c.20]

    Во всех реакциях, кроме первой, происходит разрыв или образование химической связи. Реакции типа а н б представляют собой элементарные акты. Реакции замещения, отщепления, присоединения, изомеризации и перегруппировки являются белее сложными и в общем случае состоят из нескольких элементарных актов. [c.67]

    При действии видимого и УФ-света М. претерпевают различные превращения. Заряженные М. погибают или превращаются в нейтральные М. Аллильные М. ( макс 255 мл) в полиэтилене и полипропилене превращаются в алкильные (А- акс = 215 нм). При действии света М. вступают в реакции замещения, изомеризации, рекомбинации и диссоциации. Кинетика фото химич. превращений М. описывается ур-ниями первого и второго порядка. Эффективная энергия активации таких превращений аллильных и нерекис-ных М. в полипропилене и политетрафторэтилене составляет О—12,6 кдж/молъ (О—3 ккал/моль). [c.65]

    Вопросы устойчивости комплексов металлов сложны и разнообразны [3—8]. Влияние большого числа факторов, обусловленных видом и характером центрального ато1ма М и лиганда Ь, а также непостоянство температуры и других условий создает трудности при изучении устойчивости комплексов. Единственный приемлемый метод исследования устойчивости состоит в фиксировании наибольшего числа переменных с последующим изучением устойчивости в узкой области. С самого начала надо указать, что есть два разных вида устойчивости — термодинамическая устойчивость и кинетическая устойчивость. Поэтому вначале нужно установить, с какой точки зрения нам интересно рассматривать вопросы устойчивости с термодинамической или кинетической. В первом случае придется иметь дело с энергиями связи металл—лиганд, с константами устойчивости или с окислительновосстановительными потенциалами, которые характеризуют стабилизацию валентного состояния (см. гл. 8) во втором—для комплексных ионов в растворе — со скоростями и механизмами химических реакций (замещения, изомеризации, рацемизации и реакций с переносом электрона), а также с термодинамическими характеристиками, описывающими образование промежуточных частиц или активных комплексов. [c.449]

    Полагают, что строение этого соединения аналогично известным в настоящее время я-аллильным комплексам солей палладия [27]. В связи с этим имеет безусловный интерес отмеченный в работе [3] факт, что миграция двойной связи при гидрировании замещенных циклоалкенов происходит лишь в присутствии водорода. Это перекликается с аналогичной зависимостью в случае ал-кенов с открытой цепью [28—30], а также с закономерностями, обнаруженными нами при изучении реакций конфигурационной изомеризации диалкилциклоалканов [31], Сз-дегидроциклизации алканов [32] и некоторых превращений алкенил- и алкилиденциклобутанов [33]. Об этом речь пойдет в следующих разделах. [c.30]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Интересной областью использования активирования олефинов при их изомеризации является присоединение к ним галоген- и кислородсодержащих соединений. Выше было отмечено, что по радикальному механизму возможно образование аддуктов, но они-рассмотрены применительно к олефинам с внутренней двойной связью. Аналогичным будет и возбуждение а-олефинов, но его нельзя выявить по изменению химического состава олефинов. Вместе с тем если концентрация присоединяющихся радикалов, а следовательно, и радикалообразователей будет достаточно высока, образующиеся радикалы-аддукты будут в заметных количествах участвовать в реакциях замещения с образованием стабильных продуктов. . - [c.81]

    В условиях более высоких давлений начинают играть роль реакции замещения, в которых участвует более сложный радикалРеакция/ 2+Л1 -<-> является причиной того, что с переходом к более высоким давлениям в составе продуктов крекинга появляются более сложные алканы, чем метан. Вместе с тем, усиливается роль рекомбинации радикалов путем тройных столкновений, что необходимо учитывать при отыскании кинетических зависимостей, действующих при высоких давлениях. Что касается поведения радикалов Rz, то ввиду их достаточной сложности, они распадаются,, и для фиксации Rz уже в случае пропил-раДикалов необходимы более высокие давления. В отношении развития цепи Rz в реакции Rz + М + / з сам по себе является (бесполезным или недеятельным, так как он регенерируется, не изменяя состава. Однако Rz развивают цепи путем распада, а также посредством изомеризации Rz, которая может повести к заметным изменениям в течении крекинга. Изомеризация Rz может происходить междумолекулярным путем rib выше записанной реакции Rz с молекулами М или интрамолекулярным путем, если строение радикала это позволяет)  [c.132]

    Коллоидальный никель, яиляющписи катализатором реакции замещения, одновременно способствует н реакции изомеризации дво11Ной связи. Это его способность полностью подавляется добаикой углеводородов ряда ацетилена, что обеспечивает получение олефинов-1, совершенно не содер/кащих изомеров. [c.692]

    Для. взаимодействия с 1 молем тригалогенида фосфора можно брать 3 моля спирта, однако последний моль спирта превращается в галогенпроизводное с большим трудом. В этом случае действуют те же ограничения, что и при образовании алкилгалогенидов из спиртов и галогеноводородов — изомеризация или перегруппировка, Успехи, достигнутые в проведении этих реакций замещения, позволяют до некоторой степени контролировать, пойдет ли разрыв связи с образованием продуктов по механизму S l или возникновение связи приведет к образованию продуктов по механизму 5 2,. Один из наиболее мягких мтетодов — образование комплекса между трифенилфосфином и четырех хлористым углеродом [15] [c.376]

    Катализаторы межфазного переноса особенно широко используют в реакциях нуклеофильного замещения и присоединения, значительно в меньшей степенн — в реакциях элиминн-рованпя. Описаны отдельные примеры использования этих катализаторов в процессах изомеризации. Ниже последовательно рассмотрено применение межфазного катализа в нуклеофильных реакциях замещения с участием неорганических и органических анионов, в нуклеофильных реакциях присоединения органических анионов по кратным связям (включая последующие превраш,ения продуктов присоединения, например элиминирование и циклизацию), в реакциях присоединеиия дигалогенкарбенов по простым (внедрение) н кратным связям, в реакциях элимнпнрования и некоторых других превращениях. [c.50]

    Существуют разл. системы классификации Р. х. В зависимости от путей возбуждения реагентов в активное состояние Р.х. по дразделяют на плазмохим., радиационно-хям., термич., фотохим., электрохим. и др. Кинетич. классификация Р.х. учитывает молекулярность реакции (число молекул, участвующих в каждом элементарном акте,-обычно моно-, би- и тримолекулярные р-ции), порядок реакции (степень, в к-рой концентрация в-ва входит в кинетическое уравнение р-ции, устанавливающее зависимость скорости Р. х. от концентрации реагентов). По формальным признакам (изменение степени окисления, перераспределение связей, фазовому состоянию, топологии и др.) Р. X. делятся на окислительно-восстановительные реакции, присоединения реакции, замещения реакции, гетерогенные реакции, гомогенные реакции, реакции в растворах, реакции в твердых телах, топохимичес-кие реакции, перегруппировки молекулярные,, элиминирования реакции и т.д. Классификация по формальным признакам обычно не зависит от механизма р-ции. Напр., р-ции присоединения объединяются общим внеш. признаком-образованием одного нового соед. из двух или неск. исходных в р-циях замещения один фрагмент молекулы замещается на другой, при изомеризации происходит перераспределение связей между атомами в молекуле без изменения ее состава и т.д. [c.212]

    В такой сверхосновной системе многие реакции удается осуществить в гораздо более мягких условиях, а другие реакции идут исключительно в присутствии таких оснований. Здесь будут приведены только несколько примеров, представляющих интерес с препаративной точки зрения и связанных с ионизацией связей С—Н или N—Н. Образующиеся в реакции карбанионы могут далее претерпевать электрофильное замещение, изомеризацию, элиминирование или конденсацию [321, 322]. Недавно Бернас-кони и др. [769] опубликовали результаты систематического изучения влияния среды на собственные константы скорости реакций переноса протона между С—Н-кислотами и карбоксилат-ионами, а также аминами в качестве оснований в водном диметилсульфоксиде при различных концентрациях последнего. [c.330]

    Вместе с тем многообразие и большое своеобразие органических реакций приводит к необходимости и целесообразности их классификации по другим признакам 1) по электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции замешения или присоединения) 2) по изменению числа частиц в ходе реакции (замещение, присоединение, диссоциация, ассоциация) 3) по частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, формилирование, карбоксилирование и декарбоксилирование, энолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.) 4) по механизмам элементарных стадий реакций (нуклеофильное замещение 8м, электрофильное замещение 8е, свободнорадикальное замещение 8к, парное отщепление, или элиминирование Ё, присоединение Ас1е и Ас1к и т. д.). [c.184]

    В предыдущих разделах при обосновании теории переходного состояния мы опирались на кривую потенциальной энергии реакции замещения, но полученные результаты могут быть без труда обобщены на случаи реакций других типов, Некатализируемая чис-/пра с-изомеризация может быть представлена как вращение одного ненасыщенного атома углерода вместе с примыкающими к нему группами вокруг связи, которая соединяет его с другим ненасыщенным атомом углерода. Подходящей координатой реакции является угол вращения 0, и зависимость потенциальной энергии от 0 буд1ет иметь тот же вид, что и кривая на рис. 5.2. Картина опять-таки будет упрощенной, так как одновременно с изменением 0 изменяются другие углы между связями и межатомные расстояния. Но снова будет существовать единственный набор значений этих переменных, которому при данном угле 0 соответствует минимальная возможная потенциальная энергия. На графике изображается ход изменения именно этой минимальной возможной энергии. [c.142]

    Реакции замещения полндентатных лигандов протекают по описанным выше механизмам образования и разрыва координационных связей, но скорости каждого из этих процессов различны. Например, если в бидентатных лигандах за разрывом первой связи быстро следует разрыв второй, то хелатный лиганд распадается. Если же разрыв второй связи происходит медленно, то промежуточный продукт, являющийся монодентатным лигандом, существует в течение более длительного времени. Обычно время его существования увеличивается при повышении заряда центрального иона. Такие промежуточные продукты играют важную роль в процессах изомеризации и рацемизации комплексов, содержащих хелатные кольца. [c.249]

    Комплексы с группой PtBr l и асимметричными лигандами dmen и рп (см. п. 4) при растворении в воде при комнатной температуре способны изомеризоваться, поскольку при обратной реакции замещения лигандов в промежуточном аквакомплексе возможно изменение геометрического положения ионов С1 и Вг по сравнению с исходным. Кроме изомеризации, эти комплексы при растворении в воде могут давать дихлор- и дибромпроизводные  [c.109]

    Пиролиз — процесс высокотемпературного термического разложения углеводородного сырья. Термическое разложение углеводородов можно представить как ряд последовательно и параллельно протекающих химических реакций, в результате которых образуется большое число продуктов. На первой стадии идут первичные реакции расщепления алканов и циклоалканов, на второй — образовавшиеся алкены и диены подвергаются реакциям дегидрирования, дальнейшего расщепления и конденсации с образованием циклических ненасыщенных и ароматических углеводородов. При этом первичные реакции термического разложения исходных веществ можно рассматривать как реакции первого порядка. В условиях пиролиза реакции разложения углеводородов осуществляЕотся в газовой фазе через образование свободных радикалов по моно- и бимолекулярному механизмам. С участием радикалов имеют место реакции замещения, присоединения, раснада, изомеризации, рекомбинации и диспропорционирования. [c.802]


Смотреть страницы где упоминается термин Реакция замещения изомеризации: [c.284]    [c.274]    [c.274]    [c.107]    [c.478]    [c.4]    [c.66]    [c.120]    [c.410]    [c.190]    [c.249]    [c.283]   
История стереохимии органических соединений (1966) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции замещения

Реакция изомеризации



© 2025 chem21.info Реклама на сайте