Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор определение в газе

    Определение фосфора в газе. Метод основан на поглощении фосфора, содержащегося в газе, бензолом и последующем окислении фосфора до фосфористой кислоты раствором иода, взятым в избытке. Избыток иода оттитровывают раствором тиосульфата,. индикатором при титровании служит сам иод. По его расходу определяют содержание фосфора в анализируемой пробе. Анализируемый газ протягивают через поглотители и замеряют его объем с помощью градуированного аспиратора или лабораторной воздуходувки. [c.206]


    С помощью спектрального анализа возможно определение всех известных металлов. Определение газов, галоидов, а также углерода, серы и фосфора также возможно однако, определения этих элементов значительно менее чувствительны и в настоящее время редко применяются. [c.9]

    Определение фосфора в газе. Для отбора пробы газа применяют прибор, показанный на рис. 105. К трубке 1 (молибденовая сталь), вводимой в газоход и снабженной краном, резиновым шлангом присоединена металлическая цилиндрическая воронка 2, наполовину заполненная тонкоизмельченным кварцем и закрытая резиновой пробкой со стеклянной трубкой. Нижний конец воронки присоединен к аспиратору 3, снабженному термометром и манометром. [c.219]

    Печной газ содержит элементарный фосфор и поэтому обладает способностью самовоспламенения, и при определенном соотношении с кислородом исключительно взрывоопасен. [c.417]

    Для определения количества воды в нефтепродуктах в зарубежной практике применяют анализатор, основанный на кулонометрическом методе. Из оп меренного дозировочным насосом определенного количества продукта путем продувки сухим азотом отделяется влага. Газ с извлеченной влагой поступает в датчик анализатора. Чувствительным элементом датчика является спиральная стеклянная трубка с прикрепленной к ее внутренним стенкам спиралью из двух тонких платиновых проволочек, не соединенных между собой. Промежутки между витками проволочек покрыты тонким слоем твердой пятиокиси фосфора, которая интенсивно поглощает влагу. К проволочкам подведено напряжение от источника постоянного тока. [c.74]

    Очистку или высушивание газов жидкими реагентами проводят в склянках для промывания газов, которые одновременно используют как счетчики пузырьков при определении скорости прохождения газа. Прямую или и-образную трубку или колонку, в которую можно поместить большее количество твердого осушителя, заполняют осушителем в виде гранул или зерен, например СаСЬ, и закрывают с обеих сторон пробками из стекловаты. Порошкообразные осушители, такие, как пентоксид фосфора, смешивают со стеклянными бусинами или глиняными черепками, используемыми в качестве носителей для предотвращения спекания осушителя при взаимодействии с проходящим газом. Наиболее часто применяемые осушители представлены в табл. Е 3. [c.503]


    Для получения спектров в далекой УФ-области (длины волн от 0,8-10- —3,3 10- м) применяют вакуумные спектрографы. Вакуумирование необходимо потому, что в этой области спектра поглощают молекулы многих газов и паров, входящих в состав воздуха. На рис. 7.20 дано схематическое изображение вакуумного спектрофотометра ДСФ-31 со спектральным диапазоном в далекой УФ-области 1,6—3,3-10 м и дифракционной решеткой, выступающей в качестве диспергирующей системы. Регистрация спектра в нем осуществляется фотоэлектрическим способом. Прибор рассчитан на определение в анализируемых пробах таких легких элементов, как углерод, фосфор, мышьяк, сера и др. [c.178]

    Объемный метод. Определенный объем воздуха пропускался через поглотитель I ислорода. Кислород поглощался окисью азота в щелочной среде, нагреванием со ртутью, фосфором на холоду и при нагревании, пирогаллолом в щелочной среде. Оставшийся объем газа принимался за азот. [c.516]

    Органолептический метод основан на определении примесей по цвету и запаху человеком и дает лишь приблизительное представление о составе смеси. Запах имеют сероводород, хлор, аммиак, диоксид серы, оксиды фосфора, углеводороды и многие органические вещества. Окрашенные газы — фтор, хлор, диоксид азота. [c.365]

    Определение пористости окисла. Установка для хлорного травления (рис. 85) состоит из источника хлора, системы осушки и высокотемпературной реакционной камеры. Хлор получают в колбе Вюрца с капельной воронкой 1 при взаимодействии перманганата калия с концентрированной соляной кислотой. Капельную воронку приоткрывают настолько, чтобы обеспечить постоянный и равномерный поток хлора. Для осушки газа используют две склянки Тищенко 2 с концентрированной серной кислотой и пятиокисью фосфора, нанесенной на стеклянную вату. Осушенный хлор поступает в реактор 6, [c.135]

    Определение молекулярных масс показало, что молекулы простых газов состоят из двух атомов (Нг, Fa, I2, О2, N2), а молекулы благородных газов — из одного атома (Не, Ne, Аг, Кг, Хе, Rn). Для благородных газов понятия молекула и атом равнозначны. Однако молекулы некоторых других простых веществ состоят из трех и более атомов, например молекулы озона О3, фосфора Р , паров серы при невысоких температурах Sj. [c.24]

    Общее содержание фосфолипидов в масле облепихи, определенное по количеству фосфора [14], составляет 1%. Идентификация их произведена хроматографией в тонком слое силикагеля-гипса. Газо-жидкостной хроматографией исследованы жирнокислотный состав фосфолипидов. [c.374]

    Сернистый газ. Бесцветный, термически устойчивый. Хорошо растворяется в воде медленно создает слабокислотную среду, но не образует определенного соединения. Химически активный в растворе медленно окисляется. Типичный восстановитель, слабый окислитель. В жидком состоянии — неводный растворитель для азота, хлоридов металлов, галогенидов фосфора. Получение см. 412, 413 , 416, 424 - , 837 . [c.217]

    Нитхромазо применен для определения сульфатной серы в экстракционной фосфорной кислоте [49], в лимонной и винной кислотах [175], в котловой воде [51], сточных водах гальванических цехов, в электролитах меднения, хромирования [22] и матового никелирования [237], в теллуристых растворах [483] для определения серы в трехсернистой сурьме [481 ], в полупроводниковых пленках на основе сульфида и селенида кадмия [485], в сульфидах урана [166], в горных породах и минералах [1467], в углеродистых материалах [267] для определения серной кислоты в газах контактных сернокислотных цехов [53] и в башенных газах в присутствии окислов азота [199] для оценки содержания серы в удобрениях [47], овощах [258], биологических материалах 378], расти,-тельных объектах [257] для определения серы в фосфор- и мышьяксодержащих органических соединениях [50, 304]. [c.93]

    В определенном смысле твердое состояние представляет собой прямую противоположность газообразному. В газах изменение внешнего давления в два раза вдвое меняет объем, а силы взаимодействия между молекулами настолько малы, что чаще всего ими можно пренебречь. В твердых телах изменение давления в тысячи раз приводит к изменению объема всего на доли процента, а силы взаимодействия между частицами настолько велики, что чаще всего нашими воздействиями на твердое вещество можно пренебречь. Следует подчеркнуть, что термин твердое тело, отличающий состояние вещества от жидкости и газа, весьма неопределенен, поскольку одно вещество может образовывать несколько, порой весьма различных по свойствам твердых тел. Наиболее характерные и известные примеры - графит и алмаз - два твердых тела, образуемых углеродом, или красный и белый фосфор. Диоксид кремния -8102 образует несколько кристаллических тел и кварцевое стекло - аморфное твердое тело. [c.80]


    Более высокую чувствительность и точность определений фосфора можно получить, работая в ближней вакуумной области спектра (160,0—200,0 нм). Работа в этой области также налагает свои специфические требования на особенности конструктивного решения прибора. Оптическая часть прибора откачивается до вакуума 1,10 мм рт. ст. и изготовляется из материалов, не поглощающих излучений. Регистрирующая часть делается фотоэлектрической, чтобы исключить поглощение в слое желатина. Штативная часть выполняется отдельно и заполняется газом, не поглощающим излучение в данной области спектра (обычно аргоном), а также облегчающим условия прохождения разряда. [c.74]

    Приведенное выше определение стандартных условий должно быть дополнено. Стандартное состояние для газа — состояние чистого газа при 10 Па для жидкости — состояние чистой жидкости при 10 Па для твердого вещества — наиболее устойчивое при давлении 10 Па кристаллическое состояние, например графит у углерода, ромбическая сера, белый фосфор, О2 (а не озон ) у кислорода и т. п. [c.56]

    Хлорид аммония смешали с гашеной известью и нагрели. Выделившийся газ объемом 1000 мл в определенных условиях подвергли разложению на простые вещества, при этом произошло увеличение объема газа в 1,5 раза. Неразложившийся газ растворили в 98,83 г воды и добавили оксид фосфора (V) такой массой, что в растворе образовался только гидрофосфат. Определите массовую долю гидрофосфата в растворе. [c.223]

    Перечисленные выше производные кислот фосфора в основном применяются для определения влажности газов, причем соединение I представляется наиболее подходящим, хотя для завершения реакции при его использовании требуется несколько часов. Определению мешают гидроксилсодержащие соединения, которые, как и вода, обычно количественно реагируют с фосфинами. [c.47]

    В некоторых вариантах метода высушивания предусматривается поглощение удаляемой влаги какими-либо высушивающими агентами. Предварительно высушенный азот, другой инертный газ или воздух проходит над пробой при повышенной температуре и далее направляется в тарированную поглотительную трубку (обычно с перхлоратом магния или с пентоксидом фосфора). Трубку взвешивают и определяют увеличение ее массы после поглощения влаги. Увеличение массы в конце опыта является мерой содержания воды в изучаемом образце. Такая техника эксперимента, по существу, повторяет метод определения содержания водорода (и углерода) путем сжигания вещества и поглощения продуктов сгорания. Описанную схему эксперимента удобно применять и для определения влажности различных инертных газов [60]. В целом данный метод определения воды более специфичен, чем методы, основанные на оценке потери массы. Однако здесь возможны ошибки такого же типа, как и в других методах. Кроме воды могут поглощаться и другие летучие вещества. С другой стороны, вода, образующаяся при термическом разложении анализируемой пробы, также будет поглощаться, что приведет к завышенным результатам. [c.171]

    Выбирая стандартное состояние для фосфора, во-первых, можно экстраполировать температурную зависимость давления чистого жид кого фосфора до исследуемого интервала температур. Состояние, соот ветствующее перегретому жидкому фосфору, будет гипотетическим Во-вторых, при температуре выше критической, полагая парообраз ный фосфор идеальным газом, можно оценить температурную аависи мость давления пара чистого фосфора на основании закона ГЪй Люссака. Любая экстраполяция при оценке стандартного состояния связана с определенной погрешностью, что приводит к ограничениям в использовании известных соотношений. [c.43]

    Определение. Анализируемый газ-для осушки пропускают со скоростью 5—6 лЫас через колонку с хлоридом кальция и и-образную трубку, наполненную пятиокисью фосфора. Осушенный газ поступает в две поглотительные У-образные трубки, наполненные аскаритом или натронной известью. Для улавливания воды, образующейся при реакции, присоединяют третью трубку, наполненную Р2О5 или СаС12- Схема установки показана на рис. 67. Поглотительные трубки предварительно продувают исследуемым газом и взвешивают на аналитических весах. По окончании пропускания газа снимают поглотительные трубки и снова взвешивают их. Отмечают объем пропущенного газа, его температуру и барометрическое давление. [c.121]

    С помощью фотоумножителя. Этот метод пригоден для определения активности в индивидуальных пиках в отдельности или для непрерывного интегрального счета. В настоящее время данный метод, вероятно, является наилучшим для измерения поскольку он чувствителен и позволяет избежать затруднений, связанных с конденсацией паров растворенных веществ. В непрерывном интегральном методе [118] газ-носитель из колонки поступает в ловушку для пара, заполненную раствором фосфора (дифенил-оксазола) в толуоле. Соответствующий прибор изображен на фиг. 39. Газ входит в ловушку через отросток е, и его давление препятствует обратному току жидкости из ловушки в хроматограф. Пузырьки газа (со скоростью 40—1б0жл/лмм) проходят через отвод а ловушки и выходят из прибора через трубку д, а растворенные вещества при прохождении цотока газа поглощаются раствором фосфора. Поток газа вызывает циркуляцию жидкости в ловушку в направлении, указанном стрелками, благодаря чему обеспечивается тщательное перемешивание растворенных веществ со сцинтилля-ционной жидкостью. Трубка фотоумножителя расположена между бив (изображена пунктирным кружком). Выходной сигнал с фотоумножителя усиливают и измеряют с помощью измерителя скорости счета, а уровень активности непрерывно записывают. Поскольку радиоактивные вещества постоянно накопляются в растворе фосфора, полученная запись является интегральной и высота каждой ступени пропорциональна радиоактивности в отдельном хроматографическом пике (фиг. 40). [c.126]

    Все описанные соотношения справедливы не только для кислородсодержащих соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI,1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определении теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рассматриваемого соединения нз простых веществ. Практически это замечание относится главным образом к сере, так как для нее параметры реакций образования и, в частности, теплоту образования -в настоящее время часто относят к исходному состоянию ее в виде газа с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетнь1х величин дает возможность при выражении влияния температуры на параметры реакций образования избежать искажающего влия ния изменений агрегатного состояния серы при повышенных температурах. К тому же при сопоставлении серусодержащих соединений с аналогичными кислородными соединениями параметры реакций образования с участием 5г(г), естественно, показывают более закономерные соотношения, чем параметры реакций образования с участием серы ромбической. [c.210]

    Подобно азоту, фосфор проходит в природе определенный цикл превращений. При образовании земной коры часть фосфора была, вероятно, связана металлами, причем получившиеся фосфиды вошли в состав более глубоких слоев земной оболочки. Другая часть соединилась с ( ислородом в Р2О5. Этот кислотный ангидрид, комбинируясь с окислами металлов, образовал затем ряд минералов, в большинстве которых наряду с РгОа оказались включенными и другие кислотные онислы. Подобные фосфорнокислые или смешанные минералы в последующие геологические эпохи постепенно разлагались под действием воды и углекислого газа с частичным выделением растворимых солей фосфорной кислоты. [c.462]

    Определение молекулярных масс показало, что молекулы ирос гых газов состоят пз двух атомов, а каждая молекула благородных газов состоит нз одного атома (Не, N6, Аг, Кг, Хе, Rп). Однако молекулы некоторых простых вещесгв состоят пз трех п более атомов, например озона Од, фосфора Р , паров серы при невысо1И1Х температурах [c.13]

    Наиболее характерный для фосфора оксид — дифосфорпентоксид (фосфорный ангидрид, Р2О5) представляет собой белый порошок, не имеющий запаха и при сильном нагревании возгоняющийся. Определение его молекулярной массы в парах указывает на удвоенную формулу — Р4О10, которой отвечает приводимая на рис. 1Х-18 пространственная структура. Фосфорный ангидрид чрезвычайно энергично притягивает влагу и поэтому часто применяется в качестве осушителя газов. [c.276]

    В детекторе по электронному захвату газ-носитель (азот) ионизируется под воздействием потока частиц от радиоактивного источника. Концентрацию образующихся электронов измеряют с помощью системы электродов, подобной использующейся в пламенно-ионизационном детекторе. При попадании в детектор вещества, захватывающего свободные электроны, ток между электродами уменьшается пропорционально концентрации этого вещества. Особенно высока чувствительность детектора к соединениям, содержащим галогены и фосфор, а также к металлор-ганическим соединениям. К углеводородам (кроме ароматических полиядерных), спиртам, аминам и многим другим соединениям этот детектор нечувствителен. Высокую чувствительность (до 10 з г) электроннозахватного детектора используют при определении микроколичеств галоген- и фосфорсодержащих пестицидов. [c.620]

    Электрохимические (кулоно-, кондукто-, потенциометрические, полярографические) методы могут быть успешно применены для определения содержания воды. Наиболее распространены кулонометрические и меньше кондуктометрические. Кулонометрические методы основаны на способности чувствительного к воде реагента образовываться на электроде ячейки, а также на измерении продуктов реакции при электролизе. В этом случае массу воды определяют по количеству тока, пошедшего на электрохимические процессы в соответствии с законом Фарадея. Реально применяют метод кулонометрии, основанный на взаимодействии воды с тонкой пленкой пятиокиси фосфора. Механизм процесса заключается в электрохимическом разложении образовавшейся метафосфорной кислоты. При электролизе опять образуется исходная пятиокись фосфора, поэтому химический и электрохимический процессы протекают совместно и воду можно определять непрерывно с высокой разрешающей способностью и чувствительностью (до 0,001 %). Основным недостатком метода является необходимость применения для экстракции воды предварительно осущенного инертного газа. [c.305]

    Вальта [11], изучая свечение паров фосфора в присутствии кислорода при низких давлениях, обнаружили, что при пуске кислорода в откачиваемый сосуд наступает свечение не сразу, а по достижении определенного критического давления кислорода. Даль нейшие опыты показали, что при давлениях кислорода ниже критического реакция между фосфором и кислородом практически не идет, а пои давлениях выше критического начинает бурно развиваться. Такое же изменение скорости реакции наблюдалось в результате добавления инертного газа или при малом изменении диаметра сосуда. Все эти факты резко противоречат существующим представлениям о скорости реакции как величине, непрерывно изменяющейся от изменения давления, температуры и концентрации. Н. Н. Семенов объяснил явления резкого перехода от практически полной инертности химической системы к бурно развивающемуся процессу тем, что реакция кислорода с парами фосфора является цепной, причем цепи обрываются при соударении ведущих реакцию атомов и -радикалов со стенками реакционного сосуда. Тогда отсутствие реакции при малых давлениях вызвано тем, что активные частицы, легко достигая стенок сосуда, гибнут, в результате чего происходит обрыв цепи. То же явление наблюдается в химической системе при малом диаметре сосуда. [c.68]

    Количественное определение. Помещают в колбу для кипячения, как описано в разделе Определение метоксильных групп (т. 1, с. 155), 0,5 мл уксусного ангидрида Р, 0,05— 0,10 г фенола Р, 0,20 г красного фосфора Р и 5,0 мл йоди-стоводородной кислоты (—970 г/л)ИР соединяют колбу с холодильником, медленно пропускают равномерный поток углекислого газа Р через раствор и нагревают в течение 60 мин. Охлаждают в течение 10 мин и прибавляют 0,035 г (точная навеска) высушенного вещества, полученного при определении потери при высушивании. Далее поступают с этой смесью, как описано в разделе Определение метоксильных групп (т. 1, с. 155). Для расчета берут среднее трех определений. Каждый миллилитр раствора тиосульфата натрия (0,1 моль/л)ТР соответствует 1,018 мг С2Н5О2. [c.340]

    Определение примеси малых количеств Оа в инертных газах проводят с помощью шарика белого фосфора 1[9]. Появление белого дыма вокруг шарика позволяет выявить до 0,002 об.% Оа, конечно, при отсутствии мешающих газов HaS, SOa, галогенов, N2O4, СаН . В работе [10] описана простая и удобг ная установка для определения следов Оа. [c.385]

    В эксикатор 1 насыпают раздробленный сухой лед 11 и подводят, поток Аг, который смешивается с испаряющимся СО2. Холодная смесь газо поднимается наверх и предотвращает утечку паров фосфора из горячей зоны печи. Для этой же цели служат влажные асбестовые прокладки на керамической трубке 4. Для получения возможно более гомогенного продукта реакции Ln с Р лучше, чтобы реакция быстро начиналась при определенной температуре и также быстро протекала. Температура воспламенения-смеси должна быть в интервале 700—800 °С. Для этого печь предварительно нагревают без тигля с веществом до 1000 С и регулируют поток инертного газа таким образом, чтобы пространство печи равномерно им продувалось, сохраняя при этом нужную температуру. Реакционный тигель подве шивают на хромоникелевой проволоке 13, опускают его в горячую печь и-закрывают печь керамической крышкой 6. Температура печи вначале падает до 800°С, но за 1—2 мин восстанавливается, что является признаком начала реакции. Избыток фосфора в виде паров удаляется из peaKHnoHHofr смеси, потоком инертного газа частично выносится наверх и сгорает на воз- духе, а частично конденсируется в нижней холодной части прибора. Через несколько минут реакционный цилиндр вынимают, быстро охлаждают ег в сосуде с сухим льдом и в боксе извлекают образовавшийся фосфид РЗЭ Полученное вещество необходимо нагреть в вакууме при 600 °С для удаления следов свободного фосфора. [c.1201]

    Рентгенофлуоресцентное определение фосфора в различных горных породах [146] ведут в гелиевой среде. Счетчик проточный пропорциональный, счетный газ — смесь метана с аргоном. Для устранения влияния межэле- [c.120]

    Для определения различных соединений пятивалентного фосфора, образующихся в процессе пиролиза NaH2P02, применен фотометрический метод, основанный на образовании синей фосфорномолибденовой кислоты [1198]. Пробу после пиролиза в атмосфере инертного газа обрабатывают водой и разделяют соединения фосфора методом хроматографии на бумаге. Отдельные пятна на хроматограмме вырезают, каждое из них растворяют в NH4OH подкисляют, восстанавливают желтую фосфорномолибденовую кислоту до синей раствором S11 I2, экстрагируют последнюю изобутанолом и заканчивают анализ фотометрически. [c.163]

    Навеску фосфора сжигают в кварцевой трубке в токе 0 -Ь [969] с последующим определением образовавшегося СО3 методом газовой хроматографии. Смесь газов предварительно очвщают пропусканием через насыщенный раствор К2СГ2О7 через трубки, заполненные кварцем (3—10 меш) и окисью меди и нагретые до 1000 и 800° С (соответственно), и затем через раствор КОН. Приемником образовавшегося СО2 служит П-образная трубка, охлаждаемая в сосуде Дьюара жидким кислородом. Хроматографирование проводят стальной колонке, заполненной силикагелем температура колонки 50° С, газ-поситель — гелий. Калибровочный график строят для 0,005—0,1 мг углерода относительная ошибка при определении 3-10 и 4-10 % С составляет 6,7 и 4,6% соответственно. Нижний предел определения углерода 10 ч. на 1 млн. [c.169]

    Наиболее широко хемилюминесцентные методики применяются при определении диоксида азота (10 -10 мол. %), а при использовании термических конверторов — оксида азота до (10 мол. %). Известны методики определения арсина и фосфина (2-10 -2-Ю мол. %), а для определения этих примесей в воздухе рабочей зоны используются модификации газоанализатора Платан . Метод применяется также для определения диоксида серы в воздухе (10 мол. %), фосфора в инертных газах (10 мол. %). Примером методики тушения может служить методика определения кислорода в различных газах, на основе которой создан газоанализатор ФФ5101 с диапазоном измерения (4-10" -10 МО л. %). [c.921]

    Для определения конца реакции ток хлора пре фащают, соединив реакционное пространство с манометром. Если в течение 10-15 мин в реакторе давление газов не уменьшится значительно, то можно считать, что весь треххлористый фосфор перешел в пятихлористый. фи зтой пробе температура реакционной массы должна быть одинаковой с температурой окружающего пространства  [c.13]

    Желтый фосфор, являющийся хорошим пох лотителем для кислорода, не может быть рекомендован для определения кислорода в углеводородных газах. При наличии в газе следов непредельных уг.леводородов, аммиака и сернистых соединений поглош ение кислорода не происходит. [c.69]

    ПортландцвьЕнтшй клинкер и технологический газ чаще всего получают во вращающихся печах. Добавками служат различные материалы, содержащие углерод, оксиды алюминия, кремния и железа, которые часто являются попутными продуктами химических и иных производств (кокс, магнетит, П1фитные огарки, золы, глины). Кальцинированный фосфогипс и добавки измельчают, смешивают в определенных пропорциях и обжигают. Готовый клинкер охлаждают воздухом и измельчают. Газ из П0ЧИ, состоящий из 5 , , 4 > и водяного пара, очищают от шиш в циклонах, электрофильтрах и скруббере. Влажный газ после мокрых электрофильтров осушают и подают в контактный аппарат о ванадиевым катализатором, а затем в абсорбционное отделение, где завершается цикл производства серной кислоты. На установке производительностью 1000 т/сут расходные коэффициенты на 1 т серной кислоты составляют Са 01 - 1,611 т глина - 0,144 т песок - 0,080 т кокс - 0,115 т вода - 85 м электроэнергия - 140 кВт/ч топливо - 63 МДж /Вэ/. Клинкерные щ-нералы образуются при температуре на 50 - 70 °С ниже, чем обычно, что объясняется к аталитическим влиянием восстановительной среди и наличием соединений фосфора и фтора. Клинкер отличается пористой структурой и легче размалывается /ВО/. [c.22]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]


Библиография для Фосфор определение в газе: [c.129]   
Смотреть страницы где упоминается термин Фосфор определение в газе: [c.73]    [c.8]    [c.248]    [c.49]    [c.62]    [c.78]   
Термическая фосфорная кислота (1970) -- [ c.219 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите



© 2025 chem21.info Реклама на сайте