Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бихромат способ определения

    Восстановителем по отношению к селену (IV) является также тиомочевина. Реакция между нею и селеном (IV) проходит не мгновенно, поэтому сперва восстанавливают селен (IV) избытком титрованного раствора тиомочевины при 60° С, затем, когда раствор охладится и выделится осадок элементарного селена, титруют избыток тиомочевины бихроматом калия Концентрация кислоты (серной или соляной) должна быть около 6—8 н. Этот способ определения селена оказался наиболее приемлемым при определении селена в сере, содержание селена в которой составляет менее 0,1%. В титруемом объеме может быть до 0,05 мг селена. [c.293]


    К- М. Ольшановой и В. Д. Копыловой [50, 69] был предложен способ определения свинца и ртути на окиси алюминия в анионной форме с применением в качестве осадителей бихромата калия. Авторами изучено влияние различных причин на осадочно-хроматографическое определение. Показаны приемы, позволяющие уменьшить или исключить это действие на образование осадков. Приведена сравнительная характеристика различных методов определения веществ. Отмечено, что осадочно-хроматографический метод с успехом может быть применен для количественных определений указанных ионов. [c.77]

    Принцип, лежащий в основе способа определения неразложимых и резистивных органических веществ [26], сводится к установлению количества окисляющего реактива, используемого в испытании путем обработки пробы раствором бихромата калия в присутствии серной кислоты. [c.274]

    Бихромат аммония. Этот и два нижеуказанных раствора требуются только при хроматном способе определения бария (см. стр. 155). Барий обыкновенно определяется в виде сульфата 100 г бихромата аммония, испытанные на отсутствие сульфата, растворяют в литре воды. [c.21]

    Нами сделана попытка найти простой и быстрый способ определения редокс-емкости электроно- и электроноионообменников с использованием одного из общедоступных окислителей, применяемых в оксидиметрии. В качестве окислителей проверялись перманганат и бихромат калия и иод в статических условиях. [c.242]

    Определение выполняется по методу замещения следующим образом. К раствору окислителя прибавляют сначала избыток йодистого калия, причем выделяется эквивалентное окислителю количество йода. Выделившийся йод титруют раствором серноватистокислого или мышьяковистокислого натрия. Этим способом устанавливают нормальность растворов перманганата, бихромата, бромата и т. д. и определяют свободные галоиды, их кислородные кислоты и соответствующие соли, а также трехвалентное железо, пятивалентный ванадий и т. д. [c.402]

    Сульфоксиды проявляют слабые основные свойства благодаря склонности к образованию водородных связей. Их можно титровать непосредственно как основания хлорной кислотой в уксусном ангидриде. Аналитическими реакциями могут служить также восстановление их в сульфиды и окисление в сульфоны. В качестве восстановителя применяют трихлорид титана, в качестве окислителя — бихромат калия. Другие способы восстановления, пригодные, например, для анализа дисульфидов, для определения сульфоксидов оказываются неэффективными. Сульфоксиды заметно устойчивы к восстановителям более слабым, чем трихлорид титана. Можно проводить восстановление также ионами Сг +. Для окисления таких стойких соединений, как сульфоксиды, требуются также энергичные окислители. [c.590]


    Избыток хлорида титана можно определить двумя способами— прямым титрованием ионом Fe + с роданидом в качестве индикатора или прибавлением в избытке ионов Fe + с последующим титрованием образующегося иона Fe + бихроматом. Более точные результаты дает второй способ, кроме того, он имеет то достоинство, что определение проводится в инертной атмосфере. [c.593]

    Описан весьма большой ряд способов количественного определения этилового спирта основанных на окислении этанола бихроматом или перманганатом в кислых растворах. [c.86]

    При определении бихромат- [63], перманганат- [63, 64], бромат- [63, 65], иодат [63, 65]-ионов и хлорамина Т [63, 65] к анализируемому раствору прибавляют избыточное количество К4 [Ре (СК) ], и образовавшийся К, [Ге ( N),] оттитровывают раствором аскорбиновой кислоты (образующийся при этом осадок не мешает титрованию), у Аналогичным способом определяют хромат-[64], гипохлорит-[65], хлорит- [65], гипобромит [б5]-ионы, хлор [65], бром [65] п иод [65]. [c.245]

    Сейчас для определения ХПК сточных вод применяют исключительно бихроматный метод. Перманганатный метод используется только при анализе органических компонентов природных вод, так как при большом количестве зачастую трудно-окисляемых органических соединений в стоках данный способ непригоден. В то же время бихромат калия в 18 н. серной кислоте в присутствии катализатора — сульфата серебра — способен окислять практически все органические вещества на 95— 100%. Суть метода заключается в обработке предварительно отфильтрованной через бумажный или мембранный фильтр сточной воды раствором бихромата калия и концентрированной серной кислотой с подогревом или без него в присутствии сульфата серебра. Непрореагировавший бихромат после окончания реакции оттитровывают раствором соли Мора, используя в качестве индикатора ферроин или Ы-фенилантраниловую кислоту. ХПК в миллиграммах кислорода на 1 л сточной воды определяют путем простого расчета. [c.123]

    Определению кислорода мешают также вещества, которые выделяют иод или в кислой среде реагируют с иодом. Окисление иодида до иода, приводящее к положительной ошибке определения, вызывают, например, свободный хлор, хлорамин, двуокись хлора, нитриты, бихромат, перманганат, железо (III) и перекиси. Восстановление иода до иодида, Приводящее к отрицательной ошибке определения, вызывают, например, сульфиты и сульфиды. Некоторые органические соединения приводят к отрицательной ошибке при определении кислорода, так как они окисляются выделенным иодом или реагируют с ним (реакции присоединения и замещения). Некоторые неорганические вещества, в частности железо (II), и некоторые органические соединения влияют на определение, поскольку в щелочной среде они легко окисляются растворенным кислородом. Указанные влияния устраняют способом, описанным в п. г. и д . [c.83]

    Заканчивают определение титрованием раствора такого же количества реактивов стандартным раствором бихромата калия до одинаковой с анализируемым раствором окраски или же каким-нибудь другим обычно применяемым колориметрическим или фотометрическим способом измерения. [c.596]

    Карбонаты, растворимые без нагревания, можно обрабатывать кислотой на холоду, в атмосфере двуокиси углерода, благодаря чему уменьшается опасность разложения силикатов, если таковые присутствуют. Если предпочитают титровать бихроматом калия, то в отсутствие двуокиси марганца можно для разложения пробы брать соляную кислоту. В этом случае, конечно, не происходит образования нерастворимой соли кальция, чхо упрощает последующее определение железа (II) в нерастворимом остатке породы. Моншо считать, что ббльшая часть определенного таким способом железа (II), если не все, содержалось в породе в виде карбоната. [c.1059]

    Установка титра раствора тиосульфата натрия. Установку титра раствора тиосульфата можно проводить различными способами. Например, в качестве исходного вещества можно взять иод и установить титр раствора тиосульфата по раствору иода в иодиде калия. В этом случае порядок титрования значения не имеет—можно титровать определенный объем раствора тиосульфата, или наоборот. Обычно титр раствора тиосульфата устанавливают по бихромату калия Ка аОу. [c.153]

    Хотя пригодность способа для определения микроколичеств влаги была подвергнута сомнению [45], тем не менее в настоящее время он принят в качестве стандартного при определении менее 10 % влаги в хладоне-12, основном хладоагенте, применяемом в бытовых холодильниках (ГОСТ 19212—73). Концентрацию аммиака в поглотительном растворе находят с реактивом Несслера путем визуального сравнения окраски исследуемого раствора с окраской стандартных растворов бихромата калия. [c.27]

    Определение функциональных групп с помощью качественных химических реакций. Если после выхода компонента из колонки провести качественную реакцию, то полученный результат в сочетании с данными по удерживанию может служить основой как для групповой, так и для индивидуальной идентификации. На выходе из катарометра (или перед входом в пламенноионизационный детектор, куда поступает лишь часть потока) с помощью игл или другим способом части элюента подаются в сосуды, содержащие реактивы на определенные классы соединений, или на ленты, пропитанные реактивами. Окрашивание какого-либо реактива позволяет отнести вещество к группе определенной химической природы, а для индивидуальной идентификации используют, например, график, связывающий удерживание с числом углеродных атомов для сорбатов установленного гомологического ряда. Таким способом определяют содержащиеся в пробе до 20—100 мкг спирты (реактив — смесь бихромата калия с азотной кислотой), альдегиды и кетоны (2,4-динитрофенилгидразин), сложные эфиры (гидроксамат железа), меркаптаны, сульфиды и дисульфиды (нитропруссид натрия), непредельные и ароматические соединения (смесь формальдегида с серной кислотой) и т. д. Для более детальной идентификации функциональных групп используют реакции с несколькими реактивами. [c.191]


    При определении больших содержаний титана находят применение титриметрические методы, основанные обычно на восстановлении Ti (IV) в ТЛ (III) с последующим титрованием его окислителями. Низкое значение нормального окислительно-восстановительного потенциала системы Ti (III)/Ti (IV), равное 0,04 в [82], обусловливает применение сильных восстановителей металлического цинка, кадмия, алюминия, железа, амальгам металлов. Титрование Ti (III) проводят перманганатом калия [83], бихроматом калия [84], ванадатом аммония [85], сульфатом ванадила [86], сульфатом церия [87], сульфатом железа (III) [88] в присутствии роданида калия [89—94], дифениламина [95], вольфрамата натрия [90], фенилантраниловой кислоты и других индикаторов [71] или потенциометрическим способом [91]. Для предотвращения окисления Ti (III) кислородом воздуха восстановленный раствор титана титруют в атмосфере СО2 или в присутствии трехвалентного железа раствором окислителя [92, 96]. Введение в раствор комплексообразующих веществ (сульфаты, ацетаты, фториды) увеличивает потенциал системы Ti (III)/Ti (IV) до 0,1—0,4 в и позволяет проводить определение более точно и надежно без применения инертного газа [93]. [c.59]

    Титрованные растворы точно известной концентрации таких солей, как бихромат калия, бромат калия, нитрат серебра, хлориды щелочных металлов и др., могут быть приготовлены отвешиванием этих веществ в количествах, равных их эквивалентному весу (или части этого веса), растворением и разбавлением до определенного объема. Но если раствор изменяет концентрацию при стоянии, то, конечно, не имеет смысла приготовлять его таким способом. [c.20]

    Определение по цвету бихромата. Цвет раствора изменяется с изменением его кислотности поэтому кислотность должна быть постоянной. Этим способом можно определять 2—40 мг/л хрома с точностью 0,6%. Максимум светопоглощения лежит в ультрафиолетовой части спектра при л = 349 ммк тогда молярный [c.1137]

    Другие применения. Общий метод определения окислителей основан на обработке пробы известным избытком железа (И) и последующем титровании избытка стандартным раствором бихромата. Этот способ успешно применялся для определения нитрата, хлората, перманганата, бихромата и органических перекисей. [c.386]

    В настоящее время в литерат5фв по эстонским сланцам нет указаний на прямые аналитические определения конституционной воды минеральной части сланца, не улетучивающейся при стандартной сушке. Не опубликованы также и способы определения этой воды. Все имеющиеся сведения основаны на сравнении состава некарбонатной минеральной части эстонского сланца с составами сходных природных минералов. Между тем прямое аналитическое определение конституционной влаги некарбонатной составляющей минеральной части сланцев, в частности кукерсита, представило бы несомненный теоретический и практический интерес. Основная трудность решения этой задачи заключается, очевидно, в том, что имеющимися средствами анализа нока невозможно нацело удалить из сланца минеральную часть, не разрушая керогена и, что более важно, невозможно целиком удалить кероген, не нарушая целостности минеральной части. При этом термическое окисление керогена влечет за собой улетучивание части конституционной влаги глинистых силикатов, применение же мокрого окисления бихроматом, перманганатом и т. д. неизбежно связано с применением сильных кислот, приводящим к выделению свободной кремнекислоты из силикатов (Жукова, 1955). При сжигании навески сланца в печи для элементарного анализа к весу воды, соответствующему содержанию водорода в керогене, частично или полностью прибавляется вес улетучившейся конституционной влаги некарбонатной составляющей минеральной части сланца. В настоящей работе предпринята попытка разработать метод прямого аналитического определения конституционной воды минеральной части сланца, годный для оценки, хотя бы, порядка величин содержания этой воды в сланце. [c.143]

    Наиболее распространенный прием определения концентрации восстановителей в воде химическим путем связан с двухчасовым кипячением пробы воды с кислым раствором бихромата и потенциометрическим титрованием неизрасходованного бихромата Fe(H). Найденная таким путем величина носит название химическая потребность кислорода (ХПК), для ее определения выпускаются специальные приборы [204, 280, 281]. Однако в [279] справедливо отмечается, что для оперативного контроля ХПК время анализа велико и кинетическая информация отсутствует, а она может быть не менее значима, чем конечные результаты. Крунчаком с соавт. предложен способ определения восстановительной емкости (вместо ХПК) на основе прямой оксредметрии с использованием щелочных растворов системы [Ре(СЫ)б] " который формально свободен от перечисленных недостатков бихроматной методики [278]. Однако пересчет восстановительной емкости к значениям ХПК требует нахождения корреляционных коэффициентов, специфичных для разного типа вод. Еще более важным является то обстоятельство, что концентрация веществ, способных окисляться [Ре(СЫ)б] при выбранных в [279] условиях, составляет обычно лишь малую долю от определяемой с помощью К2СГ2О7. [c.139]

    При определении перекисных соединений бихроматным способом навеску испытуемого вещества (0,5—1 г) взвешивают в колбе с притертой пробкой емкостью 250—300 мл. Добавляют 40 мл ледяной уксусной кислоты и 10 мл раствора соли Мора (1 г соли на 100 мл дистиллированной воды). Раствор должен быть свежеприготовленным. Колбу со смесью выдерживают на водяной бане с температурой воды 60—70°С в течение 15 мин, при этом притертые пробки перевертывают шлифом наверх. Затем колбу охлаждают и добавляют 60 мл дистиллированной воды и 10 мл смеси кислот (30 мл H2SO4 + 3O мл НРОз + 200 мл дистиллированной воды). Содержимое колбы оттитровывают раствором бихромата калия (1 г сухого бихромата на 1 л воды) в присутствии 6 капель индикатора дифениламина (1 г а 100 мл H2SO4). Титруют до устой- [c.164]

    Для определения остаточного с. о. спектрофотометра За по способу Верпимонта [69] следует несколько раз снять спектры поглощения растворов одного вещества — например, бихромата калия с различными концентрациями. Из полученных данных следует составить матрицу М [уравнение (2.17)] и описанным выше способом определить для нее первое собственное значение Я . Теоретически ранг матрицы М должен быть равен единице. Поэтому остаточное с. о. [c.49]

    Количественно сульфогруппы в таких очищенных соединениях можно определить по способу Мессингера окислением в щелочном растворе марганцевокислого калия (или в солянокислом растворе бихромата). Метод пригоден для определения серы в нелетучих серусодерн ащих соединениях. [c.93]

    Окислители определяют перманганатометрически способом обратного титрования. При определении бихромата калия используют реакцию взаимодействия его с солями двухвалентного железа в кислой среде, избыток которых оттитровывают стандартным раствором КМпО,  [c.307]

    Соль Мора, приблизительно 0,25 и. титрованный раствор. Растворяют 98 г Fe (NH4)a (ЗО г бНаО ч. д. а. в дистиллированной воде, прибавляют 20 мл концентрированной серной кислоты и после охлаждения разбавляют до 1 л дистиллированной водой. Титр раствора устанавливают для каждой серии проводимых определений следующим способом. Отбирают 25 мл 0,25 н. раствора бихромата калия, разбавляют дистиллированной водой приблизительно до 250 мл, приливают 20 мл концентрированной серной кислоты, перемешивают и после охлаждения титруют ja TBopoM соли Мора, прибавив 2—3 капли раствора ферроина или 5 капель раствора vl-фенилантраниловой кислоты. [c.76]

    Тиосульфат натрия, 0,1 н. раствор. Растворяют 24,8 г Na2S20g-5H20 ч. д. а. в 900 мл дистиллированной воды, прибавляют 0,2 г Naj Og ч. д. а. и после растворения доводят дистиллированной водой до 1 л. Поправку к титру определяют способом, приведенным при определении кислорода, по 0,1 н. раствору бихромата (см. стр. 86). [c.190]

    Тиосульфат натрия, 0,02 н. раствор. Смешивают 200 мл 0,1 н. pa TBopa" тиосульфата с 800 мл дистиллированной воды, в которой предварительно растворяют 0,2 г Naa Og ч. д. а. Поправку к титру раствора определяют способом, приведенным при определении кислорода по 0,02 н. основному раствору бихромата (см. стр. 86). [c.190]

    Тиосульфат натрия, 0,02 н. раствор 200 мл 0,1 н. раствора тиосульфата смешивают с 800 мл дистиллированной воды, в которой предварительно растворяют 0,2 г КагСОз ч.д. а. Поправку к титру раствора определяют способом, приведенным при определении кислорода по 0,02 н. основному расгвору бихромата (0,9807 г К2СГ2О7 ч. д. а., высушенного при 105°С, растворяют в дистиллированной воде и доводят при Й0°С до I л). [c.208]

    Для определения небольшого количества спирта, которое образуется в результате этой реакции, чаще всего пользуются двумя методами. Один из них основан на колориметрическом определении красителя, полученного на основе спирта, сульфаниловой кислоты и нафтиламина [64], или же комплекса спирта с азотнокислым раствором церийаммонийнитрата [64—68]. Другой способ заключается в окислении спирта бихроматом калия с последующим обратным электрометрическим титрованием избытка КаСгзО, стандартным раствором (КН4)2Ге(304)2 [69] или обратным объемным титрованием избытка КаСгзО, тиосульфатом натрия [70—73]  [c.138]

    При отсутствии уверенности в достаточной чистоте бихромата калия его надо очистить следующим способом. Самый чистый продажный препарат перекристаллизовывают по крайней мере 3 раза, полученные кристаллы высушивают при 150° С, после чего растирают их в тонкий цорошок и снова высушивают при 150° С до постоянной л ассы. Очищенный таким способом препарат сохраняют в банке с притертой пробкой. Если нужен раствор бихромата калия точно определенного титра, то лучше точно взвесить соответствующее количество очищенного препарата, растворить в воде и разбавить раствор до точного объема или массы, чем полагаться на установку титра его титрованием. Если, как это часто бывает, титр раствора неизвестен, то его лучше всего устанавливать но стандартному образцу материала, проводя его через все операции предполагаемого к применению метода Растворы бихромата калия очень стойки [c.218]

    Примечания. 1. Можно определение проводить другим способом [13] испытуемый газ пропускают со скоростью 5 л мин до перехода желтого окрашивания силикагеля в розовое, после чего сравнивают полученную окраску с искусственной шкалой (силикагель, окрашенный хроматом калия, бихроматом калия и метилового красного). 2. Определению не мешают аммиак и азот. 3. Для регенерации использованного силикагеля его прокаливают 2 при 700° С или отмывают водой, затем кипятят 20—30 мин с Н2О2 и вновь отмываю. [c.162]

    В кислой среде бихромат способен окислять многие органические вещества. Избыток бихромата определяют затем фотометрически либо по его собственной окраске, либо по окраске, появившейся после добавления дифенилкарбазида, дифенилкарбазона или дианизидина. Таким способом определяют, например, глицерин, глюкозу, декстрин, диэтиленглнколь, мальтозу, пропиленгли-коль, уксусный альдегид, формальдегид, цистеин, этиленгликоль, этиловый спирт [72—80]. Анализ, основанный на определении остатка бихромата, не отличается специфичностью. Предпочтительны такие реакции окисления, которые приводят к образованию окрашенных продуктов. [c.241]

    Анилиновый черный является нроявляюш имся красителем он получается непосредственным окислением анилина на хлопковом волокне в кислой ванне. Согласно более старому способу, крашение проводят в ванне, содержащей анилин, бихромат натрия, соляную кислоту и сернокислую медь в качестве катализатора окисления. В более новых способах применяют ванны, содержащие хлоргидрат анилина, хлористый аммоний (в качестве генератора кислоты), хлорат натрия и соль ванадия или меди. Прочность анилинового черного к свету и к хлору сравнима с прочностью значительно более дорогостоящих кубовых красителей поэтому этот краситель все еще широко применяется. Однако полотно, окрашенное определенными сортами анилинового черного, зеленеет в восстанавливающей атмосфере (например, в 80з), частично превращаясь в лейкопроизводное. Это обусловлено неполным окислением и может быть устранено адекватным проведением процесса окисления. Анилиновый черный применяется также как пигмент. [c.509]

    Определение р- и уцеллюлоз. Метод основан на окпс-лепии бихроматом калия гемицеллюлоз, растворенных в щелочном фильтрате после определеш я а-целлюло-зы, и определении избытка бнхромата калия нодометри-чески способом. При этом протекают следующие реакции  [c.148]

    Раствор Б для этой цели использовать нельзя, так как соединения закисного железа в процессе его подготовки полностью окисляются. Раствор, содержащий закисное железо, должен быть получен из породы способом, исключающим окисление. Определение закисного железа в растворе со времени разработки этого метода Л. А. Сарве-ром в 1927 г. 12] не претерпело существенных изменений. Его сущность заключается в титровании раствора стандартным раствором бихромата с индикатором дифениламином до появления фиолетовой окраски. В ряде случаев трудно установить конец реакции, так как эта окраска исчезает. При работе с автоматическим титратором (см. рис. 21) реакция фотоэлемента настолько быстра и чувствительна, что этот фактор полностью сглаживается. Если анализируемый образец содержит очень малое количество FeO, конечную точку титрования делают более четкой путем добавления небольшого количества раствора соли Мора. [c.104]

    Количественный анализ в общем ведется по известным способам разделения, но предложены также различные специальные методы, особенно для определения гремучей ртути, Гремучая ртуть лучше всего извлекается разбавленным раствором тиосульфата. Сернистую сурьму после тщательного промывания растворяют при кипячении в небольшом количестве концентрированной соляной кислоты. После прибавления 2—3 мл раствора винной кислоты раствор смывают в эрленмейеровскую колбу, приблизительно нейтрализуют содой, прибавляют избыток двууглекислой-соды и титруют 0,05 н. раствором иода. Стеклянный порошок остается в осадке, а хлорат калия в этом случае определяется по разности. По> Phillip y гремучую ртуть извлекают из 0,05 г ударного состава посредством 0,01 н. раствора тиосульфата, содержащего на литр 50 г иодистого калия, нейтрализуют серной кислотой и оттитровывают неизрасходованный гипосульфит 0,01 н. раствором иода, точно установленным по бихромату калия и по гипосульфитному раствору. [c.687]

    Насколько полно в относительно чистых питьевых и поверхностных водах реагируют органические загрязнения при окислении перманганатом, показывает следующее исследование [199]. Если сравнить окисляемость, определенную перманганатным методом, со значением ХПК, определенным бихроматным способом (см. разд. 5.5.2), то окажется, что при окислении КМПО4 расходуется лишь около 25% необходимого для полного окисления количества кислорода. Следовательно, для оценки количества органических примесей в пробе воды определение ХПК с бихроматом значительно более пригодно. Этим методом органические загрязнения окисляются практически полностью. Однако определение перманганатной окисляемости обычным методом может быть все же полезным для рядового ускоренного анализа питьевой воды. [c.61]

    Основным, чаще всего применяемым методам разложения органических веществ является окисление. В простейшем оформлении оно заключается в сожжении органического вещества в кислороде [86] без катализатора или в присутствии платины [604] по Копферу [364]. Прегль [555] и другие авторы [63, 236, 306, 595, 648 применили в микроанализе метод сожжения в кислороде в присутствии платинового катализатора. Кариус [98—101] впервые применил окисление органического вещества концентрированной азотной кислотой под давлением. Этот способ, несмотря на многие недостатки, сохранился по сей день как классический метод определения галоидов. Эмих и Донау [171] приспособили этот метод для микроаналитических определений. Бобиньи и Шаванн [26] разработали способ окисления органического вещества концентрированной серной кислотой и бихроматом калия. Эта методика пригодна только для определения хлора и брома, так как иод остается в окислительной смеси в виде нелетучей йодноватой кислоты. В дальнейшем эта методика была лриспособлена для микроанализа [151, 506, 662, 729]. Фольгард [687] окислял органическое вещество, нагревая его с карбонатом натрия и селитрой. Прингсгейм [559] применил нагревание с перекисью натрия. [c.96]


Смотреть страницы где упоминается термин Бихромат способ определения: [c.141]    [c.455]    [c.358]    [c.166]    [c.368]    [c.95]    [c.138]    [c.381]    [c.167]    [c.165]   
Химико-технические методы исследования Том 1 (0) -- [ c.178 , c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Бихромат,

Бихроматы, определение



© 2024 chem21.info Реклама на сайте