Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетерогенные катализаторы удельная поверхность

    Гетерогенно-каталитические процессы более распространены в промышленности, чем процессы гомогенного катализа. Это обусловливается тем, что гетерогенные катализаторы более удобны в производстве, их легче отделять от газовой или жидкой фазы в непрерывно действующих реакторах. Активность гетерогенного катализатора существенно зависит от площади поверхности раздела фаз 5 катализатора и фазы, в которой находятся реагенты. Важной характеристикой катализатора является его удельная поверхность. Удельной поверхностью катализатора 5уд называется площадь поверхности раздела фаз, отнесенная к одному грамму или одному кубическому сантиметру катализатора  [c.634]


    В гетерогенном катализе удельной каталитической активностью называют каталитическую активность, отнесенную к единице поверхности S твердого катализатора  [c.408]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рё, N1, Со, Ад). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь. [c.83]

    Активность кобальтовых и железных катализаторов синтеза из окиси углерода и водорода оценивается по выходу углеводородов на 1 синтез-газа, а активность окиси алюминия — по константе скорости дегидратации этилового спирта до этилена при определенной температуре. Помимо активности свежеприготовленного катализатора, часто необходимо знать их каталитическую стабильность после регенерационных операций или кратковременного нагрева до высоких температур. В частности, для алюмосиликатных катализаторов определяют индекс стабильности, под которым понимают индекс активности катализатора после шестичасовой его обработки паром при 750° С. При определении стабильности не ограничиваются подсчетом выхода целевой фракции до 200° С, а определяют также выход газа и его плотность и выход остатка после 200° С. Так как активность гетерогенных катализаторов решаюш им образом зависит от величины и состояния их поверхности, то в ряде случаев контроль их качества проводится по величине удельной поверхности (в м г), которая определяется методом адсорбции толуола или других, чаще всего красящих веществ. [c.305]

    Активность гетерогенного катализатора зависит от площади поверхности раздела фаз. Важной характеристикой катализатора является его удельная поверхность. Удельной поверхностью катализатора 5ул называют площадь поверхности раздела фаз, отнесенную к одному грамму или одному кубическому сантиметру катализатора  [c.297]

    Влияние дисперсности катализатора. При гомогенном катализе скорость процесса пропорциональна концентрации катализатора. При гетерогенном же катализе важное значение имеет величина удельной поверхности катализатора. Поскольку величина удельной поверхности зависит от степени дисперсности, то ее изменение резко отражается на активности катализатора, а иногда — и на направленности реакции. [c.101]


    Удельная поверхность любого пористого вешества (катализатора или адсорбента) определяет количество соединения, адсорбируемого единицей массы этого вещества, и играет главную роль в гетерогенном катализе, определяя величину адсорбции и т. д. Установление величины удельной поверхности позволяет также судить о количестве и протяженности активных центров, о величине активной поверхности, об образовании моно- или полислоя в результате адсорбции, о характере поверхностных реакций,—т. е. способствует пониманию сути гетерогенных каталитических реакций. [c.40]

    Следствие неизбежной адаптации катализатора к реакционной среде было сформулировано Г.К. Боресковым в виде особого правила, согласно которому в стационарных условиях удельная каталитическая активность гетерогенного катализатора (т.е. скорость каталитической реакции, отнесенная к единице доступной поверхности каталитически активной фазы) является для заданных температуры и состава реакционной среды величиной примерно постоянной, зависящей только от химического состава активной фазы. [c.380]

    Для большей эффективности гетерогенного катализатора необходимо, чтобы он обладал высоко развитой поверхностью. Удельную поверхность катализатора увеличивают, применяя его в виде тонкоизмельченного порошка. Для уменьшения механических потерь катализатора в виде пыли часто применяют трегеры — высокопористые инертные носители (асбест, пемзу и т.п.), поверхность которых покрывают слоем катализатора. [c.138]

    Большую роль для изучения хемосорбции, скоростей и механизма гетерогенных реакций сыграла разработка методов измерения [34] величины удельной поверхности катализаторов, размера и пористости частиц . В дополнение к этому были найдены методы исследования атомной геометрии поверхности и распределения молекул промотора в объеме и на поверхности катализатора. Целесообразно кратко описать здесь некоторые из этих методов характеристики катализаторов некоторые приложения этих методов упоминаются в последующем изложении. [c.165]

    Для большей эффективности гетерогенного катализатора необходимо, чтобы он обладал высоко развитой поверхностью. Удельную поверхность катализатора увеличивают, применяя его в виде тонкоизмельченного порошка. Для уменьшения механических потерь катализатора в виде пыли часто [c.182]

    Рассмотрим прежде всего кинетику гетерогенных каталитических процессов. В этом случае реакция протекает на границе раздела фаз, например, на поверхности твердого катализатора. Следовательно, скорость таких реакций зависит от величины поверхности. Поэтому, как правило, в качестве катализаторов применяют вещества с большой удельной поверхностью, с развитыми порами и достаточно измельченные. [c.334]

    Поверхность соприкосновения взаимодействующих веществ в гетерогенной системе определяется гидродинамическими условиями процесса. При сильном перемешивании поверхность соприкосновения в системах Г — Т и Ж — Т в пределе равна поверхности всех твердых частиц, омываемых газом или жидкостью. Для пористых частиц (адсорбентов, катализаторов) учитывается и внутренняя поверхность пор. Для насадок, зерен катализатора или адсорбента поверхность контакта фаз выражается F=SJf v, где 5уд — удельная поверхность насадки (зерен), м /м  [c.59]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со, А ). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. На роль носителей бифункциональных катализаторов указывалось выше. [c.419]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]


    В гетерогенном катализе на твердом катализаторе промежуточное химическое взаимодействие реактантов с катализатором осуществляется лишь на его доступной для молекул реагирующих веществ так называемой реакционной поверхности посредством адсорбции. Удельная реакционная поверхность гетерогенного катализатора определяется его пористой структурой, то есть количеством, размером и характером распределения пор. [c.421]

    Гетерогенные катализаторы воздействуют на реагенты своей поверхностью, которая может составлять некоторую долю общей поверхности твердого тела (носителя), например, в случае нанесенных катализаторов. Поэтому каталитическую активность твердого катализатора (активного компонента) оценивают величиной его поверхности, экспериментально определяя удельную поверхность - площадь поверхности катализатора, отнесенную к единице его массы. При получении катализаторов стремятся достигнуть не только высокой каталитической активности и селективности единицы поверхности катализатора, но и высокоразвитой поверхности. Высокую удельную поверхность обеспечивает пористая структура твердого тела. Стенки пор, уходящих от внешней по- [c.644]

    Гетерогенные катализаторы поэтому используют либо в виде порошка с тем или иным размером частиц, либо в виде пористых зерен. Представляет интерес удельная поверхность катализатора, т. е. величина его поверхности в расчете на единицу массы. [c.18]

    Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее она полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией. [c.202]

    Связь между изменением удельной поверхности и образованием фаз твердых растворов подтверждается еш,е одним фактом. Каждый катализатор с концентрацией компонентов, промежуточной между концентрациями обоих насыщенных твердых растворов, состоит из двух фаз. Изменение химического состава внутри этой гетерогенной области приводит только к изменению соотношения между количествами этих двух фаз постоянного состава. Если каждая из этих фаз имеет характерную для нее величину удельной поверхности, то величина общей удельной поверхности должна [c.98]

    Из опытных данных видно, что мелкоизмельченные металлы, применяемые как катализаторы, обнаруживают повышенную активность, если они получены восстановлением при низких температурах. Металлы, полученные восстановлением при низких температурах, имеют большую удельную поверхность, которая может быть значительно уменьшена сплавлением частиц при высоких температурах, это так называемый эффект спекания. Как правило, гетерогенные катализаторы — это вещества с очень высокими температурами плавления оптимальные температуры, применяемые в адсорбционном катализе, должны быть всегда значительно ниже температуры плавления. Серебро, медь, железо, платина, палладий, осажденные электролитически в высоко дисперсном виде, показывают явление спекания при более низких температурах, чем их обычные температуры плавления [103]. Температура плавления изменяется не только в связи с высокой степенью дробления, но также с давлением пара и с растворимостью. Полагают, что эффект спекания обязан ненормально высокому давлению пара и растворимости мелкодиспергированного вещества. Кроме температурного фактора, важную роль в эффекте спекания играет старение катализатора. [c.122]

    Определение оптимального химического состава — еще пе окончательное решение задачи создания эффективного промышленного катализатора. Удельная активность, характеризующая активность единицы поверхности катализатора, —величина специфичная для данного химического состава — пе единственный фактор, определяющий производительность катализатора. Большинство катализаторов гетерогенно-каталитических процессов обладают высокоразвитой пористой структурой. Чтобы достичь активной поверхности внутри зерна, реагенты должны продиффундировать в поры катализатора. Поэтому диффузия реагентов и продуктов реакции внутри зерна катализатора является одной из стадий гетерогенно-каталити-ческих реакций. В работах [1, 2] было показано, что скорость гетерогенно-каталитической реакции в общем случае — результат взаимодействия диффузии реагентов внутри зерна катализатора и химической реакции на поверхности катализатора. Величина внутренней поверхности и скорость диффузии реагентов внутри зерна катализатора зависят от строения пористой структуры. Недостаточная скорость диффузии приводит к неполному использованию внутренней поверхности катализатора и, в конце концов, к снижению эффективности катализатора. Очевидно, регулируя пористую структуру, можно создать условия наиболее полного использования внутренней поверхности катализатора и обеспечить максимальную его производительность. [c.153]

    Внутренняя структура адсорбентов и катализаторов, как уже упоминалось, ответственна за скорость процессов, протекающих на их поверхности, кинетику установления сорбционных равновесий, эффективность каталитических реакций, избирательность сорбции и т. д. Короче говоря, структурный фактор, особенно в условиях динамического опыта, играет одну из главных ролей, связанных с явлением диффузии молекул реагирующего вещества к внутренней поверхности твердого тела [79—85]. При этом влияние структуры дифференцированно крупные поры, обладая незначительной удельной поверхностью, выполняют главным образом роль транспортных каналов, по которым обеспечивается доставка реагирующих молекул к внутренним слоям пористого тела и отвод продуктов реакций (в случае гетерогенных каталитических процессов) в объемную жидкую или газообразную фазу. Перенос реагирующих веществ к внутренней поверхности зерен катализатора, как показано выше, осуществляется путем диффузии и оказывает большое влияние на протекание контактных процессов. Если диаметр пор превышает среднюю длину свободного пробега молекул (около 10- см при атмосферном давлении), в порах происходит нормальная диффузия в соответствии с уравнением [c.221]

    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]

    Мы решили проверить, нельзя ли путем промотирования увеличить удельную поверхность образцов и таким образом получить не только повышенную удельную активность гетерогенных железо-никелевых сплавов (как это имело место в работе [2]), но и катализаторы, производительность которых выше, чем у современных промышленных контактов. [c.110]

    Одновременно с развитием хроматографических методов определения изотерм адсорбции и удельной поверхности появились работы по определению специфических особенностей катализаторов. К этим работам относятся прежде всего исследования по определению металлической поверхности и кислотности гетерогенных катализаторов. Существуют различные способы определения удельной поверхности металлической фазы катализатора по адсорбции окиси углерода [57], водорода [58], кислорода 59]. [c.115]

    Основой процесса Филлипс , отличающей его от процесса высокого давления и по условиям полимеризации, и по свойствам продукта, является катализатор. Гетерогенный катализатор имеет большую удельную поверхность, а для полимеризации требуются лишь умеренные температура и давление. [c.163]

    Переходя к рассмотрению некоторых черт механизма окисления водорода на переходных металлах, следует прежде всего отметить, что наличие корреляции между скоростью окисления водорода и позволяет, как и в случае окислов, постулировать разрыв связи Ме—О в лимитирующей стадии реакции. Однако, в случае металлов, судя по зависимости активности и от энергии связи Ме—Н, в лимитирующей стадии реакции происходит также разрыв связи Ме—Н. Следовательно, состав активированных комплексов лимитирующей стадии процесса окисления водорода на окислах и на переходных металлах различен, эти вещества в рассматриваемой реакции неоднотипны [42, 211]. Это подтверждается тем, что зависимости скоростей окисления на металлах и окислах различаются (рис. 40). Приведенные на этом рисунке данные об активности металлов относятся к кинетической области протекания реакции окисления водорода. Необходимо подчеркнуть также, что характерной чертой этого процесса на металлах является возможность его осуществления по гетерогенно-гомогенному механизму. В то же время, даже на одном из наиболее активных катализаторов окисления водорода — платине — эта реакция, во всяком случае в отсутствие свободных объемов, при температурах ниже 100° С протекает чисто гетерогенно. Это подтверждается практическим постоянством величин удельной каталитической активности платиновых катализаторов, удельные поверхности которых различаются примерно на 4 порядка [261]. В этих условиях реакция окисления водорода на платине осуществляется, по-видимому, по стадийному механизму через взаимодействие кислорода с поверхностью с образованием ОН-групп и их последующую реакцию с водородом, приводящую к выделению воды. Во всяком случае, протекание окисления водорода по такому механизму однозначно показано на пленках серебра при комнатной температуре [44, 217, 262—264]. [c.246]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    Нормальной эволюции наших представлений о катализе, теорий каталитических процессов, выводов и обобщений, несмотря на огромное количество исследований по генезису, активности, активации и отравлению катализаторов, сильно мешает отсутствие единого взгляда. Разные авторы подходили и подходят к разрешению сложных вопросов гетерогенного катализа и поведения поверхностей в рамках субъективно выбранных ими условий. В силу этого многие исслецов ния дают разноречивые результаты. Лишь в последнее время вырабатывается единое мнение, что теоретические исследования в области катализа необходимо вести в стандартизованных условиях, учитывая такие параметры, как величина удельной поверхности, удельная каталитическая активность веществ разного состава, являющихся катализаторами, всестороннее изучение свойств поверхностных соединений химическими, физическими, оптическими и другими методами. [c.168]

    Для заметного каталитического действия обычно достаточно очень малого количества катализатора. Одна молекула катализатора может заставить вступить в реакцию миллионы молекул реагирующих веществ в секунду. В гомогенном катализе скорость реакции чаще всего пропорциональна концентрации катализатора. Влияние катализатора на скорость реакции характеризуется удельной каталитической активностью, за меру которой принимается скорость реакции в присутствии катализатора, отнесенная в годюгенном катализе к единице количества катализатора, а в гетерогенном — к единице поверхности катализатора. [c.266]

    Механизм координирующего действия поверхности позволяет объяснить полимеризацию, протекающую без участия больших удельных поверхностей. В этом случае представляется вполне возможным рост полимера вверх от поверхности. Эта гипотеза аналогична координирующему механизму, но позволяет более детально объяснить способ внедрения олефинов в цепь полимера и важное значение поверхности. Он учитывает также большое сходство кристаллического строения двух- и треххлористого титана и окислов металлов,, применяемых в процессах, проводимых на предварительно приготовленных твердых катализаторах. Вследствие слоистого строения кристаллов, присутствующих в гетерогенных нолимеризующих катализаторах, представляется весьма вероятной адсорбция на ребрах, дефектах или дислоцированных участках кристалла, соответствующая гипотезам связанного радикала или координирующего действия поверхности. [c.301]

    В промышленности гидратацию олефинов проводят в присутствии гомогенных кислотных катализаторов - кислот Бренстеда (главным образом, в присутствии Н2804) и гетерогенных кислотных катализаторов (Н3РО4 на носителях, например, силикагеле, алюмосиликатах, цеолитах). Чаще всего используют широкопористый силикагель, обработанный водяным паром, с целью снижения удельной поверхности и уменьшения побочных реакций. Среди гетерогенных кислотных катализаторов также используют сульфокатиониты (например, сульфированный сополимер стиро- [c.832]

    Гетерогенный катализатор имеет большую удельную поверхность (450 мVг), хром находится в состоянии Сг(У1) на носителе. От размера и концентрации хрома(У1) в катализаторе зависят каталитическая активность и молекулярная масса образующегося полимера. Количество Сг(У1) в катализаторе может варьироваться от нескольких сотых процента до 0,5-1 %. Как правило, хром диспергируют на носителе из водных растворов методом пропитки (оксидом хрома(У1), хроматом, бихроматом, нитратом, сульфатом, галогенидами хрома и т. д.) с последующей сушкой и нагреванием в потоке воздуха при температуре 500-1000 °С. На поверхности носителя образуются силилхроматы  [c.856]

    В производстве катализаторов процесс измельчения включен во многие технологические схемы, так как от величины удельной поверхности твердых материалов зависят скорость гетерогенных химических процессов и интенсивность многих операций, сопро-вождаюш,ихся массообменом. От размера частиц во многом зависит однородность смешения при подготовке различных формовочных смесей, а также условия гранулирования и таблетирования катализаторов. Конструкции, методы расчета и вопросы эксплуатации помольно-дробильного оборудования подробно рассмотрены в работах [190—192]. Для измельчения используют различные машины, выбор которых для конкретных процессов определяется необходимой степенью измельчения, размером исходных кусков (частиц) материала, его физико-химическими свойствами. Последние во многом обусловливают выбор способа измельчения. [c.212]

    Однако уже в одной из первых систематических работ, посвященных спеканию платиновой черни, Леви и Хаардт[1] обнаружили факт роста удельной (отнесенной к единице поверхности) активности с увеличением температуры предварительного прокаливания катализатора в интервале от 50 до 225°С. Позднее еще более интересные данные были получены по спеканию серебряного катализатора Ринеккером с сотрудниками [2], обнаружившими в интервале температур прогрева от 150 до 800°С отчетливый максимум удельной активности примерно при 600°С. Рост удельной активности платинированной платины с увеличением температуры прогрева от. комнатных температур до 500°С был получен А. И. Шлыгиным и М. И. Николаевой [3]. Эти экспериментальные факты, во-первых, показывают, что спекание не является просто монотонной дезактивацией с увеличением температуры, а во-вторь1Х, свидетельствуют о несостоятельности еще иногда высказываемых воззрений об универсальности правила постоянства удельной активности , в крайнем своем выражении отрицающих даже существование активных центров у гетерогенного катализатора [4]. [c.159]

    Н. И. С. еменов выдвинул плодотворную идею о возможности су1цествоваппя ионного гетерогенного катализа, которая находит экспериментальное подтверждение в работах Н. М. Чиркова и других ргсследователей. В этом случае катализ обусловливается ионами, адсорбированными на поверхности носителя с высокой удельной поверхностью, что характерно для реакций полимеризации олефинов в присутствии фосфорной кислоты на носителях и силикатных катализаторах, активированных кислотами. Разработанная Н. Н. Семеновым цепная теория химических реакций способствовала пониманию процессов полимеризации, протекающих по цепному механизму. [c.8]

    Пока не имеется достоверных сведений о ирироде этих двух типов центров. Бо.пьшинство исследователей считает, что главным действующим лицом является иротон, закрепленный на поверхности твердого тела. Поэтому для определения удельной каталитической активности надо знать, сколько кислотных центров содержится на поверхности и какова их структура. Количество ионов в.одорода в растворах, или кислотность, легко измерить обычным методом титрования щелочью. Таким же образом можно определить кислотность гетерогенного катализатора титруется раствор, в котором находится взве.сь твердого кислотного катализатора. Однако метод неточен, и количество [c.35]


Смотреть страницы где упоминается термин Гетерогенные катализаторы удельная поверхность: [c.443]    [c.855]    [c.45]    [c.65]    [c.40]    [c.395]   
Теория химических процессов основного органического и нефтехимического синтеза Издание 2 (1984) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализатор

Катализатора поверхность

Катализаторы удельная

Поверхность удельная



© 2025 chem21.info Реклама на сайте