Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация заместителей

    При полимеризации заместители R обычно имеют случайное расположение относительно плоскости основной цепи. В этом случае полимер получается атактической, нерегулярной (неупорядоченной) структуры, например атактический полимер стирола (рис. 60, а). [c.170]

    Для полимеризации циклосилоксанов предложено много различных катализаторов и каталитических систем, включающих главным образом сильные протонные и апротонные кислоты и сильные основания. Выбор катализатора определяется природой заместителей у кремния, влияющих на реакционную способность силоксановых связей, а также числом звеньев в цикле и необх )-димостью исключить возможность отщепления заместителей в процессе полимеризации. [c.473]


    Механизм полимеризации с участием ионных пар можно представить следующим образом (заместители у кремния опущены)  [c.476]

    Для объяснения причин различий экспериментальных и рассчитанных по энергиям связи теплот полимеризации проведен ряд исследований. Их результаты показывают, что этими причинами являются 1) стабилизация электронов в мономере или полимере функциональными группами 2) стерические на- пряжения при полимеризации циклических мономеров 3) образование связей между молекулами мономера или полимера (типа водородных) и сольватация. Наибольшее значение имеет влияние заместителей, вызывающее стабилизацию электронов. [c.261]

    Сравнение рассчитанных и экспериментальных теплот полимеризации показывает хорошее совпадение данных для виниловых мономеров. Исключениями являются 1) полимеризация дизамещенных этиленов, когда оба заместителя связаны с одним С-атомом (изобутен, винилиденхлорид) 2) полимеризация, приводящая к образованию полимеров с очень полярными или объемными заместителями (метилметакрилат) 3) полимеризация циклических соединений с гетероатомами (малеи-новый ангидрид). Вместе с тем видно, что для большинства виниловых мономеров теплота полимеризации находится в пределах от —75 до —96 кДж/моль. [c.262]

    Теплоты гидрирования рассчитать значительно легче, чем теплоты полимеризации, и поэтому применение метода Флори представляется заманчивым. Однако оказалось, что параметр В очень сильно меняется при изменении заместителей у функциональной группы, и предсказать его значение можно лишь со значительной погрешностью. [c.264]

    Вероятность образования кристаллитов зависит прежде всего от строения структурной единицы цепей. Так, гибкость цепей и регулярность их строения благоприятствуют кристаллизации. Если цепь сильно асимметрична, упорядоченное расположение звеньев, естественно, затрудняется. Строение цепи в значительной степени определяется методом и условиями полимеризации, так как в зависимости от них можно получать полимер с более или менее закономерным расположением заместителя относительно самой цепи, особенно если эти заместители невелики. [c.578]

    При кислотной полимеризации реакционная способность олефинов изменяется в обычном порядке, обусловленном индуктивным влиянием алкильных заместителей  [c.56]

    Способность различных виниловых мономеров к полимеризации и сополимеризации определяется стерическими факторами (способностью заместителей экранировать двойную связь) и степенью поляризации. [c.243]


    Способность непредельных соединений к полимеризации зависит от характера заместителей X и У. Стирол полимеризуется самопроизвольно, т. е. при простом нагревании, но все остальные мономеры полимеризуются только под действием инициаторов. [c.934]

    Вследствие поляризующего действия заместителей на двойную связь при ионной полимеризации следует ожидать образования только таких продуктов, в которых боковые алкильные цепи находятся в положениях 1,3, но не 1,2. По той же причине большинство мономеров полимеризуется только по катионному или только по анионному механизму. [c.936]

    ДВОЙНОЙ связи. При таком симметричном расположении заместителей отсутствует поляризация двойной связи, поэтому до сих пор не найдены условия полимеризации дихлорэтилена. Подобные наблюдения были сделаны для многих других веществ, например- [c.111]

    Неспособность к полимеризации непредельных соединений с двумя симметрично расположенными заместителями объясняется также стерическими препятствиями. [c.111]

    Присутствие полярного заместителя в молекуле мономера влияет не только на скорость роста макрорадикала, но и на строение макромолекулы. При полимеризации такого мономера конечное звено макрорадикала также поляризовано, поэтому при- [c.112]

    Во многих случаях двойные связи в молекуле диолефина инициируются при различных условиях. Рост цепи при полимеризации таких мономеров происходит вначале вследствие размыкания только одной, наиболее ослабленной, двойной связи. Благодаря сопряжению или влиянию полярного заместителя образующаяся макромолекула сохранит двойные связи в каждом звене и будет иметь линейное строение. Изменением дальнейших условий полимеризации можно вызвать разрушение оставшихся в макромолекуле двойных связей и продолжить процесс вплоть до образования [c.115]

    Реакционная способность мономера в процессе совместной полимеризации, как и в случае гомополимеризации, зависит от строения мономера. Сопряжение двойной связи в молекуле мономера, количество и взаимное расположение заместителей, их поляризующее влияние на двойную связь определяют участие данных мономеров в реакции сополимеризации. Ряды активностей, составленные по результатам изучения совместной полимеризации мономеров и по данным изучения их гомополимеризации совпадают  [c.117]

    Вернемся вновь к монозамещенным непредельным углеводородам. При построении полимерной цепи в процессе полимеризации заместители Я могут располагаться относительно плоскости одинарных связей различным образом. В одном из возможньтх случаев эти заместители располагаются беспорядочно по обе стороны плоскости такие полимеры называют нерегулярными или атактическими  [c.22]

    Расиространено мнение, что в случае целлюлозы стабилизация наступает иосле отщепления 40—65 концевых звеньев [172, 751]. Это связано с тем, что реакция р-окснэлимннирования происходит значительно медленнее, чем р-алкоксиэлиминирования. В реакции отслаивания концевых групп глюкоманнана отмечено, что концерне звено (манноза) изомеризуется несколько медленнее, чем глюкоза в случае целлюлозы. Однако распад глюкоманнанов прорекает в значительно большей стеиени, чем распад целлюлозы, тто обусловлено их аморфным строением и низкой степенью полимеризации. Заместители у 6-го углеродного атома, в частности шенья галактозы у галактоглюкоманнана хвойных, не влияют на реакцию пилинг . [c.316]

    Влияние заместителей в фенильной группе на полимеризацию производных стирола различно в зависимости от типа заместителя и положения его в бензольном ядре. В большинстве случаев заместитель ускоряет процесс полимеризации, особенно если он находится в орто-положении к винильной группе. С увеличением размера заместителя появляются пространственные затруднения для реакции полимеризации. Заместители, находящиеся в пара-положении, отделены от винильной группы, и влияние их на скорость полимеризации значительно меньше. Поэтому в ряду 4-алкокси-стиролов не наблюдается четко выраженной тенденции к уменьшению скорости полимеризации с увеличением размера замещающего радикала. Все это в равной степени относится и к галоген-, циан- и аминозамещенным стирола. [c.455]

    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]


    Из органических перекисей широко известна перекись бензоила. Механизм ее разложения весьма сложен и зависит от ряда факторов природы растворителя, наличия примесей и др. Эффек тивность производных перекиси бензоила как инициаторов полимеризации определяется их природой. Нуклеофильные замести-т лй в бензольном кольце увеличивают ее электронную плотиосхь, понижают устойчивость и тем самым повышают скорость полимеризации. Электрофильные заместители приводят к противоположному действию. [c.135]

    В последние годы обнаружен принципиально новый путь синтеза регулярно построенных ненасыщенных полимеров — полимеризация циклоолефинов с раскрытием кольца. В зависимости от строения исходного циклического мономера этим способом могут быть синтезированы различные полимеры общей формулы [—СН = СН(СН2) —]р, где га—целое число, р — степень полимеризации, а вместо атомов водорода могут быть заместители различной природы (углеводородные радикалы, галогены, разнообразные функциональные группы и т. д.). Такие полимеры в соответствии с номенклатурой ШРАС принято называть полиалкенамерами [1]. [c.317]

    Полимеризация кислыми катализаторами в настоящее время находит лишь ограниченное применение. Из большого числа катализаторов этого типа [3, с. 42] в промышленности используются только каталитические системы, содержащие серную кислоту. Концентрированная N2864 была применена при синтезе первого описанного в литературе высокомолекулярного ПДМС. Полимеризация Д4 в присутствии 1—3% (масс.) Н28О4 проходит при комнатной температуре за 2—8 ч, после чего в полимер добавляют воду (около 50% от массы взятой кислоты). При этом молекулярная масса полимера резко падает, а затем в процессе выдерживания (дозревания) в течение 20—60 ч медленно возрастает до нужного значения (4- 6)-10 . Дозревший полимер отмывают от кислоты водой и сушат. Аналогично полимеризуют другие циклосилоксаны. Электроноакцепторные или стерические емкие заместители замедляют полимеризацию. [c.473]

    На скорости полимеризации сказываются и, стерические и, особенно, электронные влияния заместителей у кремния. Она увеличивается при замещении метильных групп в Дз и Д4 электро-ноакцепторньти группами, облегчающими нуклеофильную атаку активным центром атомов кремния в цикле благодаря повышению их дробного положительного заряда. Сильно ускоряют полимеризацию фенильные группы Аз полимеризуется в 10,7 раза, а А4 — в 32,5 раза быстрее, чем Дз и Д4 соответственно [45, 46]. Слабее влияют 3,3,3-трифторпропильные группы (скорости возрастают в 3—4 раз при переходе от Дз к Фз и от Д4 к Ф4) [33, 40], что связано, вероятно, с противоположным действием сильных отрицательного индуктивного и стерического эффектов этих групп. Исключительно сильное ускорение полимеризации вызывают цианоалкильные группы [47]. Электронодонорные заместители, напри- [c.478]

    Особо следует остановиться на предельно допустимых концентрациях примесей титана в каучуках. Этот вопрос имеет большое практическое значение, так как большинство катализаторов стереоспецифической полимеризации содержат в своем составе трехвалентный титан. Известно, что окисление трехвалентного титана проходит через стадию образования свободных радикалов. При окислении трехвалентного титана кислородом наблюдается деструкция полибутадиена и полиизопрена [43]. В этой же работе было показано, что многие антиоксиданты, применяемые для стабилизации каучуков, не оказывают ингибирующего действия на процесс деструкции, вызываемый окислением трехвалентного титана кислородом. В этом случае ингибиторами являются такие соединения, как нитробензол, азобензол, бензохинон (которые, как известно, окисляют трехвалентный титан в четырехвалентный) или дифенилпикрилгидрозил, образующий с треххлористым титаном нерастворимый комплекс, выпадаюп1,ип в осадок. Совокупность данных по влиянию титана на стабильность полибутадиена и полиизопрена позволяет считать, что предельно допустимая концентрация этого металла лежит близко к 0,01% (масс.). Для каучуков, имеющих в основной цепи полярные заместители (например, для нитрильных каучуков) предельно допустимые концентрации примесей металлов переменной валентности могут быть несколько более высокими (это не относится к примеси железа). [c.632]

    Нужно отметить, что значения энергий связи, приводимые разными авторами, отличаются довольно значительно, вследствие использования различных подходов при промежуточном расчете теплоты атомизации графита. Если дополнительно сопоставить измеренные для реальной полимеризации и рассчитанные для газофазной гипотетической полимеризации теплоты (см, табл. 67 и 68), то становится ясным сильное влияние на АЯм природы заместителей у винильной, группы. [c.261]

    В 60-х годах в нефти были обнаружены углеводороды изопреноидного строения. К алифатическим изонреноидам относятся алифатические нолитерпены, обладающие нолиизопреновым скелетом, с характерным чередованием метильных заместителей в цепи через три метиленовые группы, которые можно рассматривать как продукты полимеризации изопрена. Принятое название изопреноидные углеводороды нефти весьма условно отнесено к алканам разветвленного строения, явл гющимся гидрированными аналогами изопреноидов. [c.107]

    Скорость полимеризации дивинила, его производных и некоторых непредельных олефиновых углеводородов и их производных зависит от характера, числа и положения заместителей в цепи. Для дивинила и его гомологов эти вопросы были выяснены С. В. Лебедевым [40], который пришел к следующим выводам 1) при переме-1цении заместителей от крайних атомов сопряженной системы к средним скорость полимеризации в рядах изомеров возрастает, ири обратном перемещении—убывает 2) циклизация цепи, имеющей сопряженную систему двойных связей, повышает скорость полимеризации 3) увеличение в гомологическом ряду массы заместителей у средних атомов сопряженной системы повышает скорость полимеризации, если нагревание вести при соответствующих температурах. Эти выводы, проверенные рядом других исследователей, оказались правильными. [c.605]

    Среди высокомолекулярных соединений значительную роль играет стирол (фенилэтилен). Он широко применяется для полимеризации в полистиролы и для сополимеризации с дивинилом в бутадиен-стирольные каучуки типа буна S и буна SS. Кроме того, известны другие сополимеры стирола, например с акрилонитрилом, фумаро-нитрилом, rt-бромстиролом. Исключительное внимание уделяется получению производных стирола (метилстирол, галогенпроизводные, нитропроизводные, алкоксистиролы, алкилстиролы и т. д.). Введение заместителей позволяет изменять скорости полимеризации и свойства получаемых полимеров. Интересно отметить, что введение заместителей возможно также и в молекулы различных полистиролов [49 . [c.612]

    Прежде чем использовать карбодиимиды в пептидном синтезе, следует уделить внимание выбору заместителя Н. Устойчивость алифатических и ароматических карбодиимидов зависит от природы заместителей, так что при хранении могут иметь место разложение или полимеризация. Длина алкилыюн цепи незначительно влияет на устойчивость карбодиимидов. Напротив, разветвленность алкильных заместителей при атомах азота существенно увеличивает стабильность соединений. Так, если диэтилкарбодиимид полимеризуется при храпении в течение нескольких суток, то дициклогексилкарбодиимид может храниться месяцами. Именно этот реагент и нашел наиболее широкое применение в белковом синтезе. Дициклогексилкарбодиимид (ДЦГК) можно использовать для синтеза пептидных связей  [c.84]

    Заместители при двойной связи, притягивающие и-электронную пару (карбалкоксильные, нитрильные, нитро- или винильные группы), поляризуют двойную связь таким образом, что незамещенный атом углерода приобретает катионоидный характер. Этот цвиттерион может присоединять анион (например, ОН или анионы металлорганических соединений) к незамещенной метиленовой группе, в результате чего у замещенного атома С появляется отрицательный заряд. Образовавшийся карбанион присоединяется к поляризованной двойной связи молекулы мономера и т. д. На растущем конце цепи имеется отрицательный заряд. Обрыв цепи вызывают способные к присоединению катионы, например Н+ перенос цепи вызывают молекулы, способные образовывать анионы, например ЫНз при полимеризации стирола под действием ЫаЫНг. Полимеризация нитроэтилена вызывается даже водой. [c.936]

    С увеличением размера замещающих групп в производных этилена возрастают пространственные затруднения, препятствующие сближению молекул мономера и радикала. Во многих случаях размеры замещающих групп в молекуле мономера могут быть столь велики, что рост цепей, т. е. образование полимера, становится невозможным. При наличии в мономере только одного заместителя полимеризация происходит во всех случаях, вне зависимости от размера замещающей группы, но скорость роста цепи убывает по мере увеличения размера заместителя. Исследования показывают, что полимеризация возможна для любых мо-новинильных производных, даже содержащих весьма громоздкие заместители, например  [c.106]

    При введении второго заместителя часто не только снижается скорость роста цепи, но и экранируется двойная связь. В этих условиях становится невозможным соединение радикала, обра- ювавшегося в результате распада инициатора, с мономером, и способность последнего к полимеризации утрачивается. Внешний радиус таких заместителей, как Р, С1, Вг, Л, СН,, не превышает [c.106]

    Активные мономеры образуют малоактивные начальные радикалы, так как в радикале сопряжение заместителя с непарным электроном приводит к смещению облака непарных электронов к другим 7С-СВЯЗЯМ, которые и нужно нарушить для протекания реакции присоединения. Активность мономера под влиянием сопряжения нарастает медленнее, чем снижается активность начального радикала, что следует из значений термохимического эффекта сопряжения мономеров и радикалов. Этим объясняется часто наблюдаемая большая скорость полимеризации мономеров, неактивных, но образующих реакционноспособные радикалы, по сравнению со скоростью полимеризации более активных мономеров, образующих нереакцпонноспособные радикалы. Ниже приведены значения термохимического эффекта сопряжения некоторых радикалов  [c.108]

    Введение третьего атома галоида уменьшает несимметричност расположения заместителей относительно двойных связей, что при водит к заметному снижению скорости полимеризации. Скорост полимеризации 1,2,3-трихлорбутадиена-], 3 [c.110]

    Если вторым заместителем в молекуле галоидзамещенного дивинила является алкильный или арильный радикал, то скорость полимеризации возрастает в меньшей степени, чем для ди-галоидзамещеиных, особенно если замещающая группа находится в положении 1 или имеет значительные размеры  [c.110]

    Полярные заместители в молекулах производных этилена или бутадиена вызывают поляризацию двойной связи, что еще более повышает активность мономера. Поляризация двойной связи в молекулах мономеров возрастает с увеличением асимметричности расположения заместителей относительно положения двойной связи в соединении. Так, при полимеризации хлористого винилидена требуется меньшая затрата энергии, чем при полимеризации хлористого винила, несмотря на возрастание стерических препятствий в первом случае. В молекулах дихлор тилена и хлористого винилидена количество атомов хлора одинаково, но в дихлорэтилене они расположены симметрично относительно [c.110]

    Влияние полярности заместителей и сопряжения двойных связей наряду со стсрическим эффектом способствует образованию полимерных молекул с относительно однородным сочетанием отдельных звеньев, го есть макромолекул более или менее одинакового строения. При полимеризации винильных соединений присоединение несимметрично построенной молекулы мономера к макрорадикалу может происходить по двум направлениям  [c.113]

    При совместной полимеризации мономеров, один из которых содержит заместитель К, повышающий электронную плотность около двойной спязи, т.е. нуклеофильную группу, а второй мономер—заместитель X, снижающий электронную плотность, т. е. электрофильную группу [c.117]

    При совместной полимеризации мономеров, близких по активности или содержащих различные полярные заместители, один из которых является донором электронов, а другой их акцептором, образуются макромолекулы сополимера, в среднем сохраняющие молярное соотношение мономеров в исходной смеси. В этом случае соотношения звеньев различных мономеров в макромолекулах сополимера, образующихся в начале и в конце реакции, аналогичны. Примером таких систем может служить сополимер винилиденхлорида и метилакрплата. [c.118]

    Наиболее активные в реакциях катионной полимеризации мономеры содержат электроположительные (электронодонорные) заместители при одном из углеродных атомов, соединенных двойной связью. По катионному механизму поликеризуются многие винильные соединения, в том числе изобутилен, простые виниловые эфиры, ие иолимеризующиеся по радикальному механизму. Под влиянием катализаторов катионного типа могут полимеризоЕзаться также циклические соединения. [c.135]


Смотреть страницы где упоминается термин Полимеризация заместителей: [c.641]    [c.12]    [c.141]    [c.144]    [c.473]    [c.190]    [c.610]    [c.106]    [c.129]    [c.134]   
Химия искусственных смол (1951) -- [ c.182 ]




ПОИСК







© 2025 chem21.info Реклама на сайте