Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие внутренних вращений

    Термодинамическая гибкость цепи и вращение в боковых группах. Существует определенная корреляция между гибкостью изолированной цепи и Тс. Но поскольку одновременно с уменьщением гибкости растет, как правило, и меж-молекулярное взаимодействие, то неясно, влияет ли она в действительности на температуру стеклования полимеров. Увеличение свободы внутреннего вращения в боковых группах понижает Тс, даже если при этом привески становятся все более массивными [2]. [c.44]


    Размеры макромолекулы в 0-условиях называют невозмущенными. Невозмущенные размеры макромолекулы данной степени полимеризации в растворе зависят только от химического строения цепи числа и длины связей в основной цепи, валентных углов и энергии невалентных взаимодействий близких по цепи атомов и атомных групп, которые обусловливают заторможенность внутреннего вращения звеньев. Эти факторы определяют способность изолированной цепи к конформационным превращениям, т. е. ее гибкость. Поэтому при заданной степени полимеризации невозмущенные размеры могут служить мерой равновесной термодинамической гибкости (жесткости) цепи. [c.91]

    Условия внутреннего вращения, в значительной степени влияющие на размеры молекулярных цепей, определяются структурой связей и взаимодействием между атомами и группами, являющимися близкими соседями в цепи (разделенными не более, чем несколькими связями). Эти взаимодействия называют взаимодействиями ближнего порядка в отличие от взаимодействий дальнего порядка (объемных эффектов), обусловленных случайным сближением в пространстве структурных единиц, удаленных друг от друга по цепи [2, 3]. [c.31]

    В этом разделе мы не будем рассматривать молекулы с несколькими степенями свободы внутреннего вращения. К ним, в частности, относятся циклоалканы псевдовращение или инверсия колец в этих молекулах является результатом одновременного вращения вокруг нескольких связей С—С. Остановимся лишь на простейшем примере, в котором уже начинает проявляться взаимодействие внутренних вращений — молекуле пропана НзС—СНз—СНд. Потенциальная функция внутреннего вращения этой молекулы может быть записана в виде [145] [c.58]

    Первое положение, принятое только для упрощения расчета, не имеет места в действительности. Полимерная цепь представляет собой единое целое, систему волчков на полчках , и внутренние вращения вокруг соседних связей не являются независимыми. Очевидно, что взаимодействие внутренних вращений особенно существенно для соседних связей, так что потенциал вращения для /с-й связи зависит по крайней мере от двух соседних углов [c.247]

    Спектроскопия ЯМР широко и успешно применяется для исследования равновесных химических превращений и обменных процессов, при которых периодически меняется строение, а значит, электронное окружение магнитных ядер и спин-спиновое взаимодействие ядер, т. е. химические сдвиги б и константы /. К таким процессам относятся как внутримолекулярные превращения (заторможенное внутреннее вращение, инверсия пирамидальной системы связей у азота, инверсия циклов, таутомерия и т. д.), так и межмо-лекулярные обменные и другие равновесные химические реакции (протонный обмен в водных растворах карбоновых кислот, аммиака, лигандный обмен, рекомбинация ионов, биохимические взаимодействия фермент — субстрат и т. д.). [c.40]


    Приближенная оценка внутреннего интеграла, входящего в (2.42), позволяет упростить это выражение. Напомним, что N y) есть статистический вес колебательных и вращательных (в дальнейшем — внутренние вращения) степеней свободы активированного комплекса. Примем, что энергия взаимодействия вращений мала и будем считать вращения, как и колебания, независимыми. [c.36]

    Приведенные соображения позволяют вычислить вращательную статистическую сумму для активированного комплекса. Однако в связи с большим растяжением образующейся связи следует учесть свободные внутренние вращения в комплексе. Эти вращения появляются при возникновении новой связи взамен одного крутильного и четырех деформационных колебаний (само валентное колебание сйс-с заменяется на движение вдоль координаты реакции). Крутильное колебание переходит в свободное вращение двух фрагментов друг относительно друга вокруг возникшей связи. Статистическая сумма Q B.B.Bp, соответствующая этой степени свободы, определяется (8.14). Атом неона ввиду слабого взаимодействия не участвует в образовании жесткого остова, и внутреннее вращение происходит как бы в отсутствие третьей частицы. Далее предположим четыре вращения фрагментов (радикалов) вокруг собственных осей с дополнительными моментами инерции /< > соответствующие статистические суммы обозначим Q .b.bp Таким образом, полная вращательная сумма может быть представлена в виде [c.131]

    Для объяснения чрезвычайно малой энтропии активации таких реакций авторы работы [335] предлагают модель жесткого циклического переходного состояния с очень сильными концевыми взаимодействиями, что обусловлено взаимодействием атома водорода с обоими концами радикала. В этом случае силовые константы низкочастотных колебаний в комплексе сильно возрастают, что вызывает понижение энтропии активации реакции дополнительно к уменьшению энтропии от потери внутренних вращений. [c.199]

    Химическая структура и стереоизомерия (конфигурация), а также заторможенность внутреннего вращения влияют на значение дипольного момента макромолекул и полимеров в блоке. Эффективные дипольные моменты обычно определяют с помощью разбавленных растворов, экстраполируя получаемые результаты к бесконечному разбавлению, где можно пренебречь взаимодействием между полярными макромолекулами. [c.183]

    Это явление называется в г/трен ил( вращением. В газообразном состоянии вещество может быть более или менее свободным, но в общем случае часто испытывает стеснения энергетического или пространственного характера, обусловленные взаимодействием полярных групп, содержащихся в молекуле, или другими причинами. Именно внутреннее вращение придает молекулам гибкость и лежит в основе эластичности полимеров. [c.201]

    Метод газовой электронографии может применяться для изучения молекул при сверхзвуковом истечении струи пара исследуемого вещества, что открывает возможности исследования процессов кристаллизации соединений из газовой фазы и потенциалов межмолекулярного взаимодействия. Данный метод можно использовать для изучения химических равновесий в газовой фазе, а также структур свободных радикалов и ионов, если их получить в рассеивающем объеме в достаточном количестве. Имеется также возможность применить метод газовой электронографии для определения потенциалов и барьеров внутреннего вращения молекул. Важным, но в то же время ограниченным является использование данного метода в определении энергии химических связей, так как вклад в рассеяние потенциала валентных электронов очень мал. [c.156]

    Длина полимерной цепи превосходит ее поперечные размеры в тысячи раз. Однако рентгенографические и другие методы показывают, что отношение максимального размера макромолекул к минимальному (степень асимметрии) часто близко к десяти. Исходя из этого, был сделан вывод, что линейные макромолекулы не растянуты, а их цепи свернуты в клубки. Первоначально для объяснения этого явления предполагалось в соответствии с гипотезой Вант-Гоффа свободное вращение атомов углерода вокруг связи С—С. Однако оказалось, что внутреннее вращение атомов сопряжено с преодолением энергетических барьеров и, кроме того, тормозится в результате взаимодействия с фрагментами соседних молекул или частей одной и той же макромолекулы. [c.206]

    Будем рассматривать движения, связанные с поворотом групп (волчков) относительно остальной части молекулы (остова) и имеющие характер вращения или ангармонического колебания с большой амплитудой. Характер движения в большой степени определяется зависимостью потенциальной энергии молекулы от угла поворота волчка. Возможен случай, когда при повороте группы относительно остова потенциальная энергия молекулы практически не изменяется, и тогда вращение группы является свободным. Наличие внутреннего вращения сказывается лишь на кинетической энергии молекулы. Практически свободным является вращение группы —СНд относительно остова СН ,—С С— в молекуле диметилацетилена. Изменение потенциальной энергии молекулы при внутреннем вращении определяется в данном случае лишь взаимодействием двух групп — H (волчка и группы, входящей в остов). Так как эти группы далеко отстоят друг от друга, взаимодействие между ними слабое и зависимости потенциальной энергии молекулы от относительного положения групп (угла поворота волчка) не наблюдается. [c.243]


    Связь константы Генри с потенциальной функцией внутреннего вращения. При внутреннем вращении молекулы, в зависимости от угла поворота а ее фрагментов относительно друг друга, расстояния силовых центров молекулы от плоской поверхности адсорбента изменяются, что вызывает изменение потенциальной энергии межмолекулярного взаимодействия Ф молекулы с адсорбентом, а следовательно и константы Генри. Если внутреннее вращение фрагментов молекулы является свободным, т. е. оно не связано с преодолением потенциальных барьеров, то молекула стремится расположиться на поверхности неспецифического адсорбента по возможности (в зависимости от температуры) так, чтобы ее силовые центры находились на наименьших расстояниях от поверхности. Если же внутреннее вращение в молекуле не свободно, но заторможено внутримолекулярными потенциальными барьерами, то расположение на поверхности адсорбента соответствующих фрагментов молекулы связано не только с потенциальной функцией межмолекуляр- [c.189]

    По изменению и усреднению констант спин-спинового взаимодействия, которые определяются временем жизни различных конформаций, можно определять скорость конформационных переходов, скорость внутреннего вращения. [c.321]

    Если потенциальная энергия взаимодействия волчка с остовом зависит от угла поворота волчка, вращение является заторможенным. Рассмотрим как пример внутреннее вращение в молекуле этана, две группы —СНз которой расположены весьма близко и интенсивно взаимодействуют друг с другом. Минимуму потенциальной энергии. молекулы отвечает траяс-конфигурация, максимуму — г ис-конфигу-рация (рис. 35), так что транс-конфигурация оказывается более устойчивой. Изменение потенциальной энергии молекулы этана в зависимости от угла поворота а одной группы —СНд (волчок) относительно другой (остов) показано кривой на рис. 35. Отсчет угла ведется от транс-положения. Внутреннее вращение группы —СНз в молекуле этана, таким образом, тормозится потенциалом, который достигает максимального значения Uo при углах поворота 60, 180 и 300° (цис-положение). В молекулах, для которых потенциальный барьер о высок, будут наблюдаться вращательные качания волчков около поло- [c.243]

    Взаимодействие внутреннего вращения с колебаниями в случае (TlgOn рассмотрено Хехтом и Де1гмисоном [ ]. Эти же авторы исследовали внутреннее вращение в молеку-Н н н U лах с высокими потенциальными барье- [c.60]

    В настоящей главе исследуются модели 1, 2 и модель 3 с симметричным потенциалом внутреннего вращения. Методы учета взаимодействия внутренних вращений и расчеты для цепей с симметричным и асимметричным потенциалом при наличии этих взаимодействий, а также для разиетвленных цепей и объемные эффекты описаны в главе VI. [c.134]

    Молекула может переходить из одной конформации в другую путем внутреннего вращения (по причинам, которые станут ясными далее, это вращение нельзя больше называть свободным). Некоторые конформации обладают минимумами энергии в том смысле, что в какую бы сторону не происходило внутреннее вращение, сумма энергий несвязанных взаимодействий растет, т. е. увеличивается потенциальная энергия молекулы в целом. Все конформации этого типа обладают известной устойчивостью однако минимумы энергии у разных конформаций одной молекулы могут быть неодинаковой глубины, поэтому различаются и их устойчивости. Самую выгодную из таких конформаций какой-либо молекулы часто называют обычной конформацией, или просто конформацией, данной молекулы. Конформации, обладающие максимумами энергии (внутреннее вращение в любую сторону только уменьшает их энергию), неустойчивы. Переходы из одной относительно выгодной конформации в другую путем внутреннего вращения обязательно проходят через конформации с максимумами энергии эти невыгодные конформации часто называют барьерами вращения. Следовательно, можно сказать, что легкость перехода из одной относительно выгодной конформации в другую определяется высотой разделяющих ее барьеров. При вращении одной части молекулы относительно другой ее части вокруг соединяющей их связи происходит поочередное преодоление ряда барье- [c.16]

    В заключение следует предупредить читателя, что при всех достоинствах конформационной теории ее не следует считать венцом развития стереохимии. В частности, барьер внутреннего вращения этана, рассчитанный с использованием значений энергии классических ван-дер-ваальсовых сил, составил всего 3—4 кДж/моль, тогда как по термодинамическим данным 13 кДж/моль. Следовательно, существуют какие-то неизвестные взаимодействия, которые пока нельзя учесть и даже назвать. Правда, выдвинут ряд идей и расчетов на их основе [23, с. 14—16], но вопрос все же нельзя считать решенным. Однако и сегодня конформационная теория уже может много дать теории катализа, надо только почаще обращаться к такой возможности. [c.18]

    Одновременный выход в 1965 г. монографий Конформационный анализ , о которой мы уже упоминали, и Конформационная теория М. Ханака ознаменовал окончательное становление конформационного анали за. Традиции, зачастую не воспринимаемые сознательно, нередко определяют использование теоретических концепций и терминологии. Термин конформация появился в органической химии, и поэтому конформационный анализфассматривался главным образом как раздел последней. Однако после развития их органиками конформационные представления перехми и в другие разделы ХИМИИ. Термин конформация стал широко использоваться и в химической физике. Подобное проникновение очень характерно для науки второй половины XX в., отличительной чертой которой стала взаимосвязь и пересечение различных областей знания. Однако следуёт отметить, что собственно конформационному анализу взаимодействие с химической физикой сослужило в одном отношении дурную службу. Как известно, химики нередко склонны к излишнему пиетету по отношению к работе физиков. Многочисленные публикации по внутреннему вращению, появившиеся во время становления конформационного анализа, повлияли на восприятие конфор ма-циоинои изомерии, причём установилась обусловленная психологическими причинами традиция связывать [c.129]

    Рассмотрим реакцию распада молекулы М на радикалы М-> Я + Н. При переходе из начального состояния в конечное возрастает число поступательных и вращательных степеней свободы и уменьшается число внутренних движений (колебаний и внутренних вращений). В результате увеличения неупор доченных видов движения возрастает энтропия реакции. Можно представить предельный случай, когда происходит максимальное увеличение энтропии в процессе перехода из исходного состояния в активированное. Для этого предположим, что в активированном комплексе фрагменты К и Н, на которые распадается исходная частица М, значительно удалены друг от друга. Последнее соответствует сильному разрыхлению (ослаблению) связи между фрагментами и, следовательно, уменьшению силовых постоянных. В пределе силовые постоянные могут обратиться в нуль. Тогда фрагменты К и К в активированном комплексе можно считать не взаимодействующими и вoбJДHo вращающимися вокруг трех собственных осей, а колебательный спектр активированного комплекса — состоящим из ЗЛ/ — 7—6 частот нормальных колебаний радикалов К и Н.  [c.28]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    С — СНз показывает исчезновение обменных взаимодействий между противоположными метильными группами. В такой молекуле все взаимные положения СНз-групп равновероятны, или внутреннее вращение практически незаторможено. [c.31]

    В процессе теплового движения макромолекулы могут находиться в различных конформациях. Переход одних конформаций к другим происходит путем внутреннего вращения звеньев вокруг единичных связей. В реальной молекуле вполне свободного вращения нет, так как в самих цепях имеются боковые привески, при сближении которых силы притял<ения переходят в силы отталкивания. Кроме того, торможение свободного вращения происходит и при взаимодействии звена цепи с окружающими его звеньями других цепей полимеров. Следовательно, при вутреннем вращении происходит торможение из-за наличия потенциальных барьеров, что приводит к увеличению ж есткости цепи по сравнению с цепью, у которой имелось бы свободнее вращение (высокие температуры). [c.84]

    РР2 два атома фтора неэквивалентны, чего и не требует симметрия. Это проявляется в константе спин-спинового взаимодействия Урр. Вообще, в оптически активных молекулах неэквивалентность ядер X в пирамидальных группах —MXj (—РРг, —NHj) или тетраэдрических группах —МХгУ (например, —СНгК, SIH2R и др.) не зависит от высоты барьера внутреннего вращения этих групп, в то же время при внутреннем вращении плоских групп —МХз и тетраэдрических групп —МХз потенциальный барьер обычно настолько низок, что ядра X становятся эквивалентными. [c.36]

    Второй тип конформационных эффектов связан с изменением конформации макромолекулы в процессе химического превращения, поскольку при этом изменяются химический состав, энергия внутри- и межмолекулярного взаимодействия, потенциальные барьеры внутреннего вращения звеньев в полимерной цепи и т. д. Конформация макромолекулы, обеспечивающая доступность реагента ко всем звеньям в начале процесса, например, может не реализоваться на более поздних стадиях, что приведет к замедлению реакции. Возможны и обратные случаи, когда реакция ускоряется за счет разворачивания цепи в данной среде по ходу превращения. Так, гидролиз поливинилацетата протекает с ускорением в отличие от его низкомолекулярных аналогов — этилацетата и 1,3-диацетооксибутана  [c.56]

    При адсорбции на обработанной водородом при 1000—1400 С ГТС (см. лекцию 1) замещенных н-алканов, содержащих полярные группы — эфирную, карбонильную, гидроксильную, амннную, нит-рильную или нитрогруппу, из хроматографических измерений получаются линейные зависимости п К и дх от числа атомов углерода в молекуле. Эти зависимости указывают на аддитивность энергии межмолекулярного взаимодействия с ГТС и на возможность определения вкладов, вносимых в эту энергию соответствующими полярными группами. Однако для нахождения соответствующих атом-атомных потенциалов удобнее воспользоваться адсорбцией квазижестких молекул, не способных к внутреннему вращению. [c.181]

    Функция распределения вероятности угла а для адсорбированной молекулы Раде (а) отличается от Ргаз(а) для свободной молекулы тем, что эта функция отражает не только потенциальнук> функцию внутреннего вращения молекулы, но и ее взаимодействие с адсорбентом для каждого значения а  [c.191]

    Говоря о строении какой-то системы, обычно имеют в виду некоторую относительно устойчивую пространственную ее конфигура-цию, т. е. взаимное расположение образующих ее частиц, обусловленное существующими между ними связями вследствие присущих этим частицам сил взаимодействия . Однако даже в химических микросистемах говорить о жесткой пространственной структуре не приходится. Уже в атомах мы сталкиваемся с делокализацией электронов, В простых молекулах наряду с делокализацией электронов, приводящей к образованию химических связей, имеет место и делокализация атомных ядер в результате колебаний, в сложных молекулах к этому добавляется взаимное вращение одних частей молекулы относительно других, приводящее к образованию множества конформаций. Последнее особенно явно представлено в молекулах полимеров, с чем связаны многие их фундаментальные свойства. Чем сложнее система (чем больше число образующих ее частиц), тем больше многообразие возможных состояний, в которых она может находиться при нозбужденин, т. е. при получении энергии. Наиболее упорядоченную структуру система имеет в основном состоянии, т. е. в состоянии с минимально возможной энергией. Чем выше энергия возбуждения, представляющая собой энергию относительного движения составляющих систему частиц, тем больше относительные перемещения этих частиц (если движение можно рассматривать классически) или их делокализация (если. движение имеет квантовый характер). Возбужденные молекулы подвержены разного рода колебаниям и внутренним вращениям одних фрагментов относительно других, а при достаточно высоких энергиях химические связи разрываются, и система приобретает качественно иной структурный облик. Роль вышеуказанных структуроопределяющих факторов неизмеримо возрастает для макроскопических систем. [c.122]

    Электронное облако ст-связ,и С—С имеет осевую симметрию, поэтому внутреннее вращение одгсой группы СНз в молекуле относительно другой не должно вы швать де([)ормации связи и может быть свободным. Опыт показывает, что при комнатной температуре это движение тормозится. Причина торможения — взаимодействие несвязанных между собой атомов Н в двух СНз-группах, выраженное в отталкивании электрон ной плотности связей. Если СБ 3-группы расположены так, как показано на рис. 85, а (шахматная форма), атомы Н максимально удалены друг от друга, их отталкивание минимально. Такое расположение ядер отвечает устойчивой равновесной конфигурации с минимумом пдтенциаль-ной энергии. При расположении затененной формы (см. рис. 85, б) атомы Н сближены до предела, отталкивание между двумя фрагментами СН3 максимально и потенциальная энерг 1я достигает наивысшего значения ( тах)- При других положениях величина потенциальной энергии молекулы оказывается промежуточной между двумя экстремальными значениями. Величина называется тормозящим потенциалом внутрен- [c.205]

    Причины структурной нежесткости и формы ее проявления в молекулярных системах весьма разнообразны. Наиболее общий механизм связан с внутренним вращением вокруг простых ст-связей. Поскольку электронная плотность еквязи имеет цилиндрическую симметрию, барьеры вращения относительно этой связи возникают в результате взаимодействий между несвязанными атомами или группами, например между атомами водородов при различных углеродных атомах молекулы этана  [c.456]

    В молекуле дисилана с((51Н) = 1,49, (8151) = 2,33А, а потенциальный барьер внутреннего вращения (по связи 81—81) равен 1,2 ккал/моль, т. е. он гораздо меньше, чем у этана ( 2 доп. 22). Термический распад 812Не начинается уже выше 300 С. Интересно, что дисилан реагирует с СС14, тогда как силан с ним не взаимодействует. Это указывает, по-видимому, на неполную экранированность кремния в дисилане. [c.604]

    Причины того, что заслоненная конформация молекулы этана обладает большей энергией, чем заторможенная, не совсем ясны, так как расположенные друг против друга атомы водорода не должны были бы мешать внутреннему вращению. Однако в случае больших атомов или групп такая ориентация приводит к значительному повышению энергии. Взаимное пространственное влияние атомов и групп, не связанных непосредственно друг с другом, называют несвязевым взаимодействием. [c.76]

    Классифицируя растворы неэлектролитов, принимают во внимание характер межмолекулярных взаимодействий в системе, а именно природу и интенсивность сил притяжения, а также размеры и форму молекул, передаваемых потенциалом отталкивания. Учет размеров молекул оказывается чрезвычайно существенным для объяснения свойств растворов высокомолекулярных веществ. Большое различие в размерах молекул растворителя и растворенного вещества заметно влияет на энтропийные характеристики раствора. Играют роль специфические черты длинных молекул, связанные с внутренними вращениями и выражающиеся в гибкости цепи, в наличии множества возможных конфигураций цепи. Теория растворов высокомолекулярных веществ предствляет собой относительно самостоятельную область теории растворов. [c.396]


Смотреть страницы где упоминается термин Взаимодействие внутренних вращений: [c.91]    [c.93]    [c.60]    [c.60]    [c.251]    [c.255]    [c.92]    [c.20]    [c.190]    [c.197]    [c.199]    [c.291]    [c.4]   
Конфигурационная статистика полимерных цепей 1959 (1959) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте