Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геометрическая ЯМР спектры

    Гибридные состояния углерода и 5р. Строение и особенности двойной и тройной связи. Изомерия и номенклатура этиленовых и аце тиленовых у1 леводородов. Геометрическая цис-, транс-) изомерия Способы получения. Физические и химические свойства алкенов и ал кинов. Реакции присоединения. Правило В. В. Марковникова. Исклю чение из этого правила (Хараш). Реакции окисления. Полимеризация Свойства ацетиленового водорода. Классификация и получение диено вых углеводородов. Физические и химические свойства. Эффект сопря жения. 1,4-Присоединение, Диеновые синтезы. Полимеризация диено вых углеводородов. Каучуки синтетические и натуральные. УФ и ИК спектры этиленовых и ацетиленовых углеводородов. [c.169]


    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]

    В современных спектральных приборах для выделения соответствующих полос возбуждающего света и света флуоресценции используются монохроматоры. В этих спектральных приборах требуемый спектральный интервал выделяется при помощи щелей, линз и зеркал, а диспергирующими элементами служат призмы или дифракционные решетки. Больщую роль при измерении спектра люминесценции играют размеры входной и выходной щелей. Входная щель — щель для возбуждающего света — подбирается достаточно большой (1—2 мм) для получения существенной интенсивности люминесценции. При подборе размера выходной щели — щели для света люминесценции — используют соотношение между геометрической шириной щели (з, мм) и спектральной шириной щели (Ла, нм)  [c.65]

    Таким образом, молекулярные спектры позволяют определить геометрические, динамические и энергетические характеристики молекул. При этом для дипольных молекул первые две группы могут быть определены из находящихся в инфракрасной части спектра вращательно-колебательных спектров. [c.528]

    Недостатком электронографического метода является несколько меньшая точность определения геометрических параметров многоатомных молекул по сравнению с микроволновой спектроскопией. Это обусловлено в основном тем, что уравнения, используемые в электронографическом методе, требуют независимого нахождения углов и интенсивностей рассеяния, в то время как в микроволновой спектроскопии необходимо измерение лишь положений линий спектра. Однако для простых молекул в рамках обоих методов точность определения структурных параметров сопоставима. [c.128]


    На рис. 43 показаны спектры распыливания воды и изобутилового спирта, производимые форсункой РД-20 при переменном перепаде давления. Как видно, максимальный диаметр капель в спектре, подсчитанный по формуле (1У.26), в значительной мере зависит от перепада давления на форсунке и физических свойств распыливаемой жидкости. Например, при перепаде давления Арф=4 кгс/см2 при распыливании изобутилового спирта и воды форсункой одинаковых геометрических размеров максимальный диаметр капель в спектре при л =0,95 составляет воды тах=450 мкм, изобутилового спирта С(тах=250 мкм. [c.93]

    Комплексы [356] меди(П) характеризуются большим разнообразием геометрических структур, часто низкосимметричных. В спектрах их обычно наблюдается широкая полоса с максимумом поглощения при 15 ООО 5000 см которая, как полагают, включает все ожидаемые [c.106]

    Если электропроводность объясняется перезарядкой ионов, зонная теория полупроводников, по-видимому, в простейшем виде неприменима не происходит полного вырождения уровней валентных электронов в отдельных ионах, а сохраняется периодичность в энергетическом спектре валентных электронов кристалла. Катионы решетки находятся в потенциальной яме, так что переход электрона от катиона к катиону требует энергии активации, а длина свободного пробега электрона соответствует междуатомным расстояниям в кристаллической решетке. В таком случае энергия активации определяется не только параметрами атома, образующего катион (т. е. в конечном счете его положением в таблице Менделеева), но и межатомными расстояниями в кристалле, что указывает на значение геометрических параметров кристалла в отношении его каталитической активности. [c.29]

    Качестве массового множителя принимается излучательная способность газа. Очевидно, уравнение (5) требует последующего интегрирования по спектру, Здесь, однако, мы обратимся к геометрическим аспектам процесса переноса. [c.495]

    Никель(П) образует большое число пятикоординационных комплексов [33]. Известны геометрические структуры, в основе которых лежат тригональная бипирамида и тетрагональная пирамида. Для многих комплексов характерно отклонение от указанной геометрии [34]. Циам-полини [35] подробно проанализировал электронные спектры этих комплексов, и читатель может обратиться к оригиналу. Часто, располагая лишь электронным спектром, трудно различить тетраэдрическую и некоторые пятикоординационные конфигурации. [c.106]

    Если в магнитное поле внесены маленькие магнитные частицы, произойдет другое явление. Поскольку частицы могут свободно поворачиваться в потоке, можно предположить, что они будут сориентированы в магнитном поле так, что их концы повернутся к противоположным полюсам магнита. Результирующая сила, действующая на частицу, в любом ее положении может быть вычислена путем алгебраического сложения притягивающей и отталкивающей сил. Если частица находится строго на центральной оси, действующие силы уравновешены, и она будет двигаться прямолинейно. Подробные расчеты траектории частицы и вероятности ее улавливания требуют знания распределения магнитного поля, геометрической конфигурации магнита и спектра газового потока. [c.545]

    Измеряют спектр флуоресценции раствора стандартного вещества при таком же геометрическом расположении (как и для исследуемого вещества) и одинаковых интенсивности и длине волны возбуждающего света. Исправляют полученный спектр на чувствительность фотоумножителя по частотам или волновым числам. [c.69]

    Таким образом, если сложить геометрически векторы скорости обоих простейших спектров — реального и фиктивного — на всем протяжении исследуемого поля, то может быть получен новый результирующий спектр, половина которого будет искомым спектром деформированного потока (на рис. 22 правая половина от экрана). Если отодвинуть экран от реального насадка на большее расстояние, то отодвинется и зеркальное отражение фиктивного насадка результирующий спектр получит другую, менее выгодную форму. При неограниченно большом отодвигании экрана практически возвратится случай свободно установленного насадка с симметричным спектром. [c.63]

    Пользуясь найденными выше приближенными спектрами обычных и опрокинутых боковых отсосов, можно исследовать роль всех решающих факторов, влияющих на их работу геометрических размеров отсосов, температуры жидкости в ванне и других. [c.70]

    В отличие от геометрических изомеров энантиомеры эквивалентны по своим физическим и химическим свойствам. У них одинаковые температуры плавления и кипения, давление пара, плотность, показатель преломления, для неполяризованного света — колебательный и электронный спектры, одинаковая реакционная способность к ахиральным реагентам. [c.168]

    Как следует из предыдущего, возникновение инфракрасных спектров и спектров комбинационного рассеяния связано с электрическими свойствами молекулы — электрическим дипольным моментом и поляризуемостью. Поэтому уместно здесь же более подробно остановиться на этих свойствах, тем более, что определение постоянного дипольного момента может способствовать установлению геометрической конфигурации молекулы. [c.257]


    Изомерия комплексных соединений. Различные по своему строению геометрические изомеры цис- Со(ЫНз)4(Ы02)2]С1 и транс-[Со(ННз)4(Ы02)2]С1 характеризуются различными спектрами поглощения в инфракрасной области. [c.336]

    Спектры электронного парамагнитного, ядерного магнитного, квадрупольного и гамма-резонанса позволяют определить лишь часть геометрических характеристик молекул, например симметрию молекул, последовательность соединения групп атомов в молекуле. [c.127]

    Рассматривая вопрос о связи колебаний молекулы с электронными спектрами, следует отметить, что электронные переходы осуществляются в течение чрезвычайно коротких промежутков времени порядка 10 —10 5 с. За это время атомы в молекуле не успевают заметно изменить свои положения, и потому геометрическая конфигурация возбужденной молекулы, а следовательно, и кинетическая энергия колебательного движения остаются теми же, что и в основном состоянии в момент взаимодействия с фотоном. Это положение получило название принципа Франка—Кондона. [c.161]

    Спектры поглощения геометрических изомеров отличаются положением полос поглощения. [c.50]

    На рис. 2.1 в качестве примера показаны интегральная /(г) и дифференциальная fv(f) кривые распределения пор по эффективным радиусам г для тела с непрерывным спектром пор от Гт1п до Гтах И резко выраженным максимумом при г = 25 А. Такова модельная структура, характерная для пористых стекол. Рис. 2.2 дает представление о функции [(г) в трековых мембранах [8]. Интегральная кривая позволяет судить об изменении относительного объема пор (на единицу объема или массы пористой матрицы) дифференциальная кривая дает представление о количественном распределении пор определенного размера. Следует отметить, что структурные и дифференциальные кривые характеризуют не реальные полости матрицы мембраны, а их модельное представление в виде сфер, цилиндров и других геометрических форм. Методы получения функций распределения пор основаны на обработке изотерм сорбции в области капиллярной конденсации газа или на данных ртутной порометрни [1, 2]. [c.40]

    У линейных молекул (СО2, Sa) дипольные моменты связей компенсируются и общий дипольный момент равен нулю. Отличие от нуля дипольного момента HjS (0,93D), SOj (1,6Ш), NH3 (1,46D), РНз (0,55D) находится в соответствии с представлением о геометрической форме этих молекул, возникшим из молекулярных спектров и рентгеновского и электронного анализов. Первые две молекулы имеют треугольную форму, а NH3, РНд, АзНз — форму треугольной пирамиды. [c.536]

    Как отмечено в предыдущем разделе, спектр ПМР имеет второй порядок в том случае, если не выполняется соотношение (4.3) или химически эквивалентные ядра системы магнитно неэквивалентны. При работе со спектрами второго порядка предъявляются повышенные требования к качеству спектра. Все мультиплетные сигналы. следует записывать при сканировании с малой скоростью 0,3—1 Гд/с и с большой разверткой 0,3 -—1 Гц/мм. Особое внимание уделяется определению интенсивностей линий в мульти-плетах, потому что интенсивности наряду со значениями частот учитываются при анализе спектра. Спектры ПМР второго порядка наблюдаются обычно в том случае, если протоны имеют одинаковое ближнее, но различное дальнее окружение (например, для различных конформеров или геометрических изомеров). Нередко для подтверждения правильности расшифровки спектра второго порядка сравнивают экспериментальный и ожидаемый спектры путем сопоставления частот и интенсивностей линий. В рассматриваемых ниже примерах приводятся лишь упрощенные способы анализа спектров двух- и трехспиновых систем типа АВ, АВг и АВХ. Подробное изложение этих вопросов см. в монографиях, указанных в списке литературы. [c.10]

    Используя геометрические размеры активных органов ГА-техники, авторы [195] нашли, что частота колебания зуба, рассчитанная в соответствии с теорией Виллемса, на порядок превышает экспериментально наблюдаемые значения. Такой же вывод получили С. И. Болчинский и Е. Е. Савицкий [232]. В своих экспериментах они не обнаружили в спектре колебаний давления частот, предсказанных П. Виллемсом. [c.31]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Приведенная выше интерпретация спектров ЯМР аддуктов (С4071Ч11)2 с изопреном основана на том, что сын-протоны метиленовой группы двух геометрических изомеров IV и V имеют небольшое различие в химических сдвигах. Однако наиболее существенная разница между этими двумя комплексами состоит в положении метиновых протонов (Не в комплексе IV и Н в комплексе V). Изучение взаимодействия (С407Ы11)2 с 1,1,4,4-тетрадейтеро изопреном (СВ2=С—СН=С02) позволило более четко и наглядно [c.119]

    Медь(11) образует комплексы различных геометрических структур, электронные спектры которых похожи и магнитная восприимчивость примерно одинакова. Поэтому прийти к каким-то определенным выводам относительно структуры этих соединений можно, только если изучаются твердые соединения, а не их растворы и если можно воспользоваться результатами кристаллографических исследований. Недавние исследования пятикоординационных аддуктов, образуемых различными льюисовыми основаниями и гексафторацетилацетонатом меди (II), привели к созданию метола, позволяющего различить [35] апикальные и жваторпальные изомеры тетрагона.тьной пирамиды. [c.52]

    Авторы [32—34] использовали вклад в сдвиг протонов алкиламмо-ниевой группы ионной пары R4N MXзL для оценки расстояния между анионом и катионом (г) в ионной паре и для изучения эффектов сольватации. В первом случае задавались геометрией ионной пары. В спектре ионной пары с Я — н-бутил наблюдаются четыре протонных сигнала. Этот спектр можно попытаться согласовать с уравнением (12.23) (или другой, более удобной формулой) путем варьирования расстояния в так называемом геометрическом факторе [(1 - 3соз 0,)/г, ]. Для удобства мы запишем уравнение для псевдоконтактного сдвига как [c.188]

    Электронные переходы в молекуле определяются ее внутренними движениями, как и в случае атома. При поглощении и излучении молекулами световой энергии, кроме изменения электронного состояния молекулы, происходят изменения колебательного двн>кенця различных частей мо.яекулы и ее вращательного движении в целом. Изменения энергии при электронных переходах имею ] величины, примерно в десять раз превышающие изменения энергии колебательных движений и в тысячу раз превышающие изменения энергии вращательного движения. В соответствии с этш[ электронные переходы чаще всего дают спектры излучения или поглощения в видимой или ультрафиолетовой части спектра. Колебательные и вращательные спектры в соответствии с меньшей величаной изменения энергии проявляются в инфракрасной области На электронные спектры всегда накладывается влияние одновременно происходящих изменений энергии колебательного и вращательного движений, а на колебательные спектры — влияние изменений энергий вращательного движения. В чистом виде проявляются только вращательные спектры (в далекой инфракрасной области). По ним можно вычислить главные моменты инерции молекул и определить их геометрические размеры и конфигурации. [c.91]

    Расчет вращательных сумм состояний для молекул, радикалов и активированных комплексов производился по формуле (123), требующей, знания произведений главных моментов инерции [1а 1в1с), числа симметрии частиц, равного числу неразличимых конфигураций, получаемых при вращении, квантовых весов или степени вырождения электронного и ядерного спинов gg и gn) Экспериментальных данных по инфракрасным спектрам в принципе достаточно для оценки моментов инерции молекул, но они отсутствуют для радикалов и не всегда известны для молекул. Поэтому главные моменты инерции и их произведение находились расчетным путем, на основе определенных геометрических моделей молекул, радикалов и предположительных геометрических конфигураций активированного комплекса. Необходимые для подобных расчетов геометрические параметры молекул (длины связей, валентные углы) изгаестны на основании результатов электронографических измерений, либо определяются путем расчета расстояний и энергий связей в радикалах [251]. Геометрическое строение образующихся активированных комплексов в реакциях между радикалами и молекулами в случае Н-атомов и СНз-радикалов выбирается близким к геометрическому строению исходных молекул. При этом предполагается, что изменения в активированном состоянии носят локализованный характер, в соответствии с пунктом г . [c.191]

    Вследствие ишрокого спектра действующих факторов, изменения условий обработки, не представляется возможным в паспорт станка вводить ее точностные характеристики. В паспорт станка необходимо вводить качественные характеристики технологической системы, такие, как ее геометрические точности, жесткость, износостойкость, теплостойкость, виброустойчивость, и через определенные промежутки времени проводить их аттестацию. Зная эти характеристики и условия обработки, можно с помощью математической модели процесса обработки рассчитьшать ожидаемую точность и таким образом определять допуски на межпереходные размеры. [c.182]

    Долгое время считали, что геометрическая изомерия этиленовых углеводородов не влияет па характер масс-спектра [116, 117]. Более поздние работы показали возможность иден-ти( )икации цис- и транс-бутиленоп [118]. Прн исследовании гео.мегрических изомеров было установлено, что по мере уменьшения энергии ионизирующих электронов различия в масс-спектрах изомеров становятся более заметными [119], так как вблизи порога ионизации избыточная внутренняя энергия которой обладают цнс-изомеры по сравнению с транс-форма ми, начинает влиять на процессы диссоциации. Это обстоя тел ьство подтверждается значениями потенциалов ионизации которые для гранс-изомеров ниже, чем для с-изомеров[120] [c.60]

    Иногда спектры ЯКР используют и для получения данных о таких геометрических параметрах частиц, как валентные углы и межъядерные расстояния. Конечно, эти данные не обладают высокой точностью, но могут служить прикидочными при изучении сложных структур кристаллов. Например, при изучении РВгзО в виде монокристалла были измерены зеемановские расщепления каждой линии ЯКР Вг в зависимости от ориентации кристалла, удалось определить его пространственную группу (Рпта)- [c.102]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Геометрическая изомерия также влияет на положение абсорбционной полосы второго типа. Так, в соединениях, содержащих гранс-диацидокоординату, эта полоса смещена в сторону более высоких длин волн по сравнению с ис-диацидосоединениями (см. табл, 83). Сравнивая спектры поглощения двух изомеров комплексных соединений, можно по положению максимума третьей полосы поглощения судить о строении соединения. Однако [c.317]

    При реакции метилового эфира диазо-уксусной кислоты с нафталином получен эфир состава С13Н12О2, из которого затем получена кислота. Установите строение и геометрическую конфигурацию кислоты по спектру ПМР (рис. 4.68). [c.115]

    Расшифруйте спектр ПМР эфира 2,3-дифенилциклопропанкарбоновой кислоты (рис. 4.69) и определите его геометрическую конфигурацию на основании химических сдвигов и констант спин-спинового взаимодействия протонов цикла. [c.134]

    Этим спектральным данным отвечает, следовательно, структура диме-тилового эфира 7-метоксинорпинан-6-карбоновой кислоты. Остается выяснить его конфигурацию. Сделаем это на основе спектра ПМР, а именно данных о величинах вицинальных констант спин-спинового взаимодействия инссн), получаемых из обсчета триплетов, отвечающих протонам при С и С . Обе эти константы, характеризующие взаимодействие указанных протонов с парой эквивалентных метиновых протонов при С и С , для обсуждаемого соединения оказались одинаковыми и равными 6 Гц (0,06 м. д. х X 100 МГц = 6 Гц). С другой стороны, учитывая известную зависимость вицинальной константы спин-спинового взаимодействия протонов от величины двугранного угла НССИ (см. ПУШ), следовало ожидать, что в ряду геометрических изомеров соединения (VI) каждый изомер будет характеризоваться специфичными для него величинами констант. Действительно, обратившись к геометрической модели норпи-нана, можно заметить, что двугранный угол Н ССН -экзо составляет 25° ему соответствует константа 6—7 Гц, а угол [c.236]


Смотреть страницы где упоминается термин Геометрическая ЯМР спектры: [c.243]    [c.69]    [c.49]    [c.57]    [c.361]    [c.175]    [c.318]    [c.318]   
Стереохимия соединений углерода (1965) -- [ c.325 ]




ПОИСК







© 2025 chem21.info Реклама на сайте