Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки амфотерные определение

    Белки — амфотерные электролиты. При определенном pH среды (изоэлектрическая точка) число положительных и отрицательных зарядов в молекуле белка одинаково. Это одна из основных констант белка. Белки в этой точке электронейтральны, а их вязкость и растворимость наименьшая. Способность белков снижать растворимость при достижении электронейтральности Их молекул широко используется для выделения их из растворов, например в технологии получения белковых продуктов. [c.15]


    Важнейшей областью применения электрофореза является анализ биоколлоидов, например анализ смесей белков в клиническом анализе. Белки, как амфотерные полиэлектролиты, обладают собственными зарядами, зависящим от pH среды. Регулируя значение pH, можно в широких пределах менять их подвижность и даже изменить направление движения в процессе электрофореза. Для каждого белка при определенном значении pH общее число положительных зарядов равно общему числу отрицательных зарядов. Эта изоэлектрическая точка, при которой отсутствует движение частиц, является характерной величиной для определенного белка. Растворимость белка в этой точке минимальна. Подбирая соответствующие буферные растворы для установления определенной скорости движения и растворимости веществ, можно приспособить процессы электрофореза для решения разных проблем разделения веществ. Таким образом, электрофорез превосходит метод бумажной хроматографии. Кроме того, при помощи электрофореза, особенно при высоком напряжении, можно проводить разделение неионогенных веществ (например, сахар в виде боратного комплекса) [79]. Методом электрофореза можно также определять изоэлектрические точки амфотерных веществ или заряды коллоидных частиц (по направлению движения). [c.387]

    Характерным для амфотерных полиэлектролитов является определенное значение рЯ-раствора, при котором электролит отщепляет равные (очень малые) количества н и ОН ионов. При этом молекула белка становится условно электронейтральной. Такое состояние молекулы, свернутой в клубок, с минимальным гидродинамическим сопротивлением называется изоэлектрическим, а соответствующая величина pH - изоэлектрической точкой (точка А на рис. 5,2), [c.83]

    В водном растворе при определенной концентрации водородных ионов, отвечающей изоэлектрической точке, у всякого амфо-лита (амфотерного электролита) число ионизированных основных групп равно числу ионизированных кислотных групп. При этом число как тех, так и других групп минимально.. Молекулу белка в изоэлектрическом состоянии следует считать в целом нейтральной. хотя она и имеет еще ионизированные группы. Условно ее можно изобразить в этом состоянии следующим образом  [c.469]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    Для амфотерных твердых тел и макромолекул, содержащих различные ионогенные группы (белки, нуклеиновые кислоты и др.), величина и знак термодинамического потенциала поверхности зависят от pH раствора при этом изоэлектрической точке (изоточке) отвечает определенное значение pH. [c.210]

    Белковые (коллоидные) ошибки. Специфические химические реакции между растворенным веществом (как, например, ионами тяжелых металлов) и индикатором могут привести к заметным ошибкам при определении pH. Влияние, оказываемое белками и коллоидами на результаты измерений pH с помощью индикаторов, обусловлено амфотерностью белковых молекул или зарядом коллоидных частиц. Вероятно, связывание индикаторных красителей сильно зависит от заряда белка оно является наименьшим вблизи изоэлектрической точки. Кларк [9, стр. 185, 186] приводит для некоторых индикаторов значения белковой ошибки, выраженной в единицах pH. [c.152]

    Обладая одновременно кислыми к а р б о к с и л ь н ы м и и основными а м и и н ы м и группами, белки являются амфотерными веществами и могут вести себя и как кислоты, и как основания. При определенном pH, характерном для каждого белка, диссоциация кислых и щелочных групп белковой частицы уравнивается, и заряд амфотерного иона белка становится минимальным. Такой pH раствора носит название изоэлектрической точки белка. В изоэлектрической точке белок наименее устойчив в растворе. [c.7]

    Так как белки содержат аминные и карбоксильные группы, то они являются амфотерными электролитами в щелочном растворе проявляют кислотные свойства, в кислом — основные. Поэтому при пропускании электрического тока через щелочной раствор белка его молекулы будут двигаться к аноду, а при пропускании через кислый раствор к катоду. Однако при определенной реакции среды (так называемая изоэлектрическая точка), количество положительных и отрицательных зарядов в молекуле белка будет одинаковым. Это одна нз основных констант белка. [c.265]

    В последнее время для разделения смесей аминокислот широко используют метод электрофореза на бумаге, при котором на полосы фильтровальной бумаги наносят смесь аминокислот, бумагу смачивают буферным раствором с определенным значением pH и пропускают через нее электрический ток. Через несколько часов вследствие различия ИЭТ аминокислот и, следовательно, разных скоростей и направлений их движения в электрическом поле смесь аминокислот разделяется на бумаге на индивидуальные аминокислоты, количество которых может быть определено тем или иным методом. В настоящее время электрофорез используется для разделения не только аминокислот, но и белков, нуклеиновых кислот, органических кислот и ряда других соединений. Благодаря тому что аминокислоты являются амфотерными электролитами, они могут давать соли одновременно как с кислотами, так и с основаниями  [c.188]

    Белок, находящийся в растворе, способен при определенных условиях выпадать в осадок. Это явление используется для обнаружения белков в исследуемом материале и для выделения белков в чистом виде. Выше уже было отмечено, что возможность пребывания белка в растворенном состоянии связана с определенным состоянием его вторичной и третичной структуры. Важно также, что молекулы белков в растворе несут электрический заряд и окружены водными оболочками. Как присутствие водной оболочки, так и наличие электрического заряда препятствуют выпадению белка в осадок. Белки, как и аминокислоты, являются амфотерными электролитами и представлены в растворах в виде амфионов, которые схематически можно изобразить так  [c.60]

    Ионообменная хроматография амфотерных белков принципиально отличается от хроматографии аминокислот и низкомолекулярных пептидов. Как показал Тизелиус [211], она основана на селективной десорбции из ионитов при определенных [c.244]

    Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.). Белки, обладающие амфотерными свойствами, могут взаимодействовать как с кислотными, так и с основными индикаторами, а также адсорбировать индикатор, в результате чего произойдет изменение общей концентрации его в испытуемом растворе индикаторной ошибки, обусловленной добавлением значительных количеств индикаторов, которые, являясь хотя и [c.93]

    Аналитик, желающий найти метод определения содержания белков в растительных или животных веществах, сталкивается с обширной и противоречивой литературой, что само по себе является показателе] неудовлетворительного состояния этой области аналитической химии. Причины такого положения очевидны. Белки образуют весьма разнообразную группу сходных между собой соединений необычайной сложности с весьма различным составом и свойствами. Их трудно полностью разделить, очистить и высушить. Амфотерная природа, большая адсорбционная емкость, способность к гидратации и чувствительность к электролитам обуславливают значительную изменчивость поведения белков в зависимости от состава, pH и температуры среды [1]. Помимо того, они обычно встречаются в смеси друг с другом в различных количественных соотношениях п в различных состояниях в твердом виде и в растворах. Аналитик обычно интересуется содержанием отдельных белков в такой смеси или же общим содержанием белка, если смесь состоит из соединений, имеющих переменный и неопределенный состав. [c.13]


    ИЗОЭЛЕКТРИЧЕСКАЯ ТОЧКА — концентрация водородных ионов в р-ре белка, амфотерного полиэлектролита или в нок-рых дисперсных системах (коллоидных растворах), нри к-рой общее число положительных зарядов у макромолекул или у частиц дисперсной фазы равно общему числу их отрицательных зарядов, вследствие чего при этом pH отсутствует передвижение частиц в электрич. поле. Для определения И. т. измеряют pH, при к-ром электрофоретич. подвижность растворенных макромолекул или дисперсных частиц равна нулю. Если заряд коллоидных частиц определяется не Н+ и ОН -иопами, а другими, папр. ионами Ag+" и в золях AgJ, то соответственно измеряют не pH, а pAg (или pJ) для характеристики точки нулевой электрофоретич. подвижности в этом случав И. т. называют точкой нулевого заряда. Отсутствие электрофоретич. подвижности может также наблюдаться во многих высокоочищенных коллоидных системах, частицы к-рых практически не имеют двойного электрич. слоя на своей поверхности, или при таких концентрациях электродатов, при к-рых отсутствует диффузная часть двойного слоя, однако в таких системах отсутствует перезарядка частиц, и они не имеют И. т. или точки нулевого заряда. Положение И. т. белков и точки нулевого заряда нек-рых коллоидных р-ров указано в табл. 1 и табл. 2. [c.106]

    ВМС, являющиеся полиэлектролитами, при определенном рИ-раствора сворачиваются в клубки и оказывают минимальное гидродинамическое сопротивление. К таким соединениям относятся белки, построенные из аминокислот, образующих корбоксильные группы и аминогруппы. Они являются амфотерными полиэлектролитами, способными диссоциировать как основание, так и кислота  [c.83]

    В растворах потенциалопределяющих ионов наблюдается сложная зависимость дзета-потенциала от концентрации. Избыток ионов в среде может привести к перемене зарядов и потенциалов двойного электрического слоя (ДЭС). Изменение потенциалов может произойти за счет специфической адсорбции. согласно правилу Фаянса. По этой причине с увеличением концентрации ионов значение С ПО-тенциала уменьшается, переходит изо- 3, распределение ио-электрическую точку, затем изменяет ццд падение потенциала знак заряда и снова увеличивается до в двойном электрпческом определенного предела. Для амфотерных при сверхэквивалент-веществ (А Оз, белки и др.) получены адсорбции [c.81]

    Возможные ошибки при определении pH колориметрическим методом. Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора от белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.) от индикаторной ошибки, так как белки, обладающие амфотерными свойствами, взаимодействуют с кислотными и основными индикаторами, а также адсорбируют индикатор при этом происходит изменение общей концентрации его в испытуемом растворе таким образо.м, добавление значительных количеств индикаторов, которые, являясь слабыми кислотами и основаниями, могут, особенно в незабуференных растворах, изменять значение pH от температурной ошибки, зависящей от изменения константы диссоциации индикатора при колебаниях температуры так, -нитрофенол имеет при 0 С р/С = 7,30, а при 50° С рК = 6,81 с изменением температуры изменяется и pH стандартных растворов. [c.67]

    Далее следует сделать выбор между аниона- и катионообменни-ком. При фракционировании определенным образом заряженных молекул такой выбор не представляет труда. Например, очевидно, что олигонуклеотиды следует делить на анионообменнике, а заведомо щелочные белки, например гистоны,— на катпонообменнике. Для амфотерных молекул посредством выбора pH буфера можно задавать знак суммарного заряда и таким образом определять нужный тип ионообменника. Здесь решающим соображением может оказаться учет диапазона pH, в котором препарат (например, белок) сохраняет свою нативность, не склонен к агрегации или неспецифической сорбции. Если такой диапазон pH располагается по обе стороны от изоэлектрической точки очищаемого компонента исходной смеси, то выбор типа обменника может диктоваться оптимизацией условий разделения, как было пояснено выше, в разделе Хроматографический процесс . [c.287]

    В частицах лиофобных золей всегда содержится компактное ядро, лишенное электрических зарядов. Напротив, в частицах белков и полиэлектролитов подобное ядро отсутствует, и они по всей своей массе несут способные к диссоциации ионогенные группы. В белках ионогенные группы имеют различную химическую природу — кислые карбоксильные, основные амино-группы и др., вследствие чего белки относятся к классу амфотерных электролитов. При крайних рн резко преобладает диссоциация групп одного знака и, например, при рН-2 белковая молекула несет лишь положительные заряды. Однако тот же заряд при кислых рн можно представить, по Бьерруму и Линдер-штрем-Лангу, обусловленным не диссоциацией солеобразных аминогрупп, а адсорбцией Н+-ионов из раствора и подавлением диссоциации СОО -групп на белковой молекуле. При любом предположении белковая молекула при данном pH несет точно определенное число зарядов, а компенсирующие ионы располагаются в растворе с определенной плотностью распределения, что, соответственно, измеряется при помощи кривых титрования и электрофоретической подвижности (см. ниже). [c.105]

    Электроосмос. Покрытия на основе белков показывают интересную зависимость ЭОП от pH. Вследствие того, что белки имеют амфотерные свойства, выше своих значений р1 они существут в анионной, а ниже - в катионной формах. Если значения pH буфера соответствуют значениям р, то белки незаряжены. Следовательно, в этой точке электроосмос должен падать до нуля, или, соответственно, менять направление на противоположное при переходе через эту точку. Таким образом, в принципе существует возможность подбором определенного белка или амфотерных молекул регулировать силу и направление ЭОП. [c.75]

    По методу Бредига, пользовавшегося разбавлениоп соляной кислотой, заряжаются отрицательно за счет ионов хлора, адсорбированных из раствора. С другой стороны, кислые, основные или амфотерные вещества, будучи в коллоидном растворе, приобретают заряд обычно за счет собственной ионизации. Так, амфотерные белки (стр. 170) в кислой среде образуют положительно заряженные частицы, в то время как в щелочной частицы несут отрицательный заряд. Подобные вещества являются коллоидными электролитами, один из иоиов которых имеет размеры коллоидной частицы. Каков бы ни был источник зарядов, коллоидная частичка окружается в растворе слоем ионов противоположного знака, образуя таким образом вместе с собственными ионами так называемый двойной слой. Гельмгольц представлял себе двойной слой состояпщм из противоположно заряженных слоев, находящихся друг от друга на определенном расстоянии порядка размеров молекулы. Таким образом, в двойном слое должно иметь место очень резкое падение потенциала. Эта разность потенциалов называется -потенциал. Тепловое движение делает наличие такого местного двойного слоя мало вероятным. Внешние ионы образуют диффузный слой, концентрация которого постепенно уменьшается, доходя до среднего значения в основной массе раствора. Размещение ионов подчиняется закону распределения, подобно изображенному на рис. 1 (стр. 12), так что двойной слой не обладает определенностью гельмгольцевского, напоминая скорое рис. 5 (стр. 130), нежели рис. 2, а этой главы. [c.212]

    Белки являются наиболее важным комйонентом живой материи. В отличие от других высокомолекулярных соединений, входящих в состав живых организмов, белки широко различаются по размерам молекул, заряду, растворимости в воде и других полярных растворителях и даже по содержанию в тканях. Сочетание свойств, характеризующих отдельный белок, в конечном счете определяется специфической аминокислотной последовательностью полипептидной цепи (или нескольких цепей, если речь идет о многоцепочечном или субъединичном белке). Огромное разнообразие белков служит причиной образования сложных смесей, различных по составу, но близких по физико-химическим свойствам. Основными факторами позволяющими фракционировать белки на колонках с различными материалами, является их амфотерный характер и большие вариации в размерах молекул. На способности белков связывать специфические лиганды основан эффективный метод избирательного выделения — аффинная хроматография. С другой стороны, в исходном материале всегда присутствуют протеазы и пептидазы, что накладывает на условия выделения определенные ограничения, например в отношении температуры, диапазона pH и т. д. [c.421]

    На самых перйых этапах исследования ферментов было замечено, что активность ферментов зависит от концентрации водородных ионов в среде, причем обычно такая зависимость выражается колоколообразной кривой с максимумом при определенных значениях pH. Еще в 19И г. Михаэлис и Дэвидсон [9] высказали мысль, что причиной этого является амфотерная природа ферментов — белков. Дальнейшие исследования влияния pH на скорость ферментативных реакций позволили конкретизировать эту точку зрения применительно к отдельным ферментам и открыли широкие возможности для изучения механизма реакций. [c.103]

    Установив значение заряда как мощного фактора стабилизации коллоидных систем, можно легко объяснить механизм коагуляции (свертывания) денатурированных белков. Предварительно, однако, нужно отметить, что белки являются не только коллоидами, но и а м ф о т е р и ы м и электролитами. Как известно, к группе амфотерных электролитов относятся такие электролиты, которые обладают в одно и то же время свойствами как кислот, так и оснований. Амфотерные электролиты могут одновременно отщеплять как Н+-, так и ОН - ионы и образовывать солеобразные соединения как со щелочами, так и с кислотами. В присутствии избытка кислоты они ведут себя как основания, в присутствии щелочей — как кислоты. Мы увидим далее, что белки содержат в своем составе определенным образом связанные между собой остатки аминокислот. Аминокислотами, как известно, называются органические кислоты, в радикале которых один или несколько водородных атомов заменены аминогруппами (МНа). Простейшей аминокислотой является аминоуксусная кислота, или гликокол (СНгЫНгСООН). В самом общем виде формулу аминокислоты можно изобразить следующим образом H2N R 00H. В состав молекулы белка входят разнообразные аминокислоты, соединенные между собой таким образом, что в молекуле белка всегда остается свободным некоторое количество карбоксильных групп и аминогрупп. Строение белковой молекулы можно, следовательно, схематично изобразить так (НаЫ) .К-(СООН) . [c.20]

    Белки представляют собой амфотерные соединения, моделируемые аминокислотами в электрохимическом отношении. Однако положение изоэлектрической точки для них может варьироваться в широких масштабах. Известны белки с р/ 1 и с р/ — 11 большая часть глобулярных гидрофильных белков характеризуется р7, лежащими в интервале 1—11. Возвращаясь к описанному выше механизму сорбции диполярных нонов и существованию резинатов моноаминомонокарбоновых кислот в состоянии, включающем катионы аминокислот, естественно выдвинуть предположение о том, что подобный эффект зависит от расстояния между аминными и карбоксильными группами и что для белков он не должен всегда выполняться. Действительно, экспериментальные данные показывают, что взаимодействие белков с водородными и натриевыми формами катионитов можно интерпретировать на основе представлений о меньших и больших расстояниях между положительно и отрицательно заряженными группами в макромолекуле белков [9]. Следует отметить, что состояние резинатов белков до настоящего времени детально не обследовалось, в связп с чем предлагаемые модели для сорбции белков ионитами следует рассматривать с определенной долей осторожности. [c.142]

    ИЗОИОИНАЯ ТОЧКА (изопротонная точка) — концентрация водородных ионов в растворе белка, при к-рой белок поглощает из раствора одинаковое количество ионов Н+ и ОН. Это определение приложимо не только к белкам, но и к другим амфотерным полиэлектролитам, напр, к полилизин-полиглутаминовой к-те, к сополимерам акриловой к-ты и 2-винилпиридина и др. Вследствие равного поглощения обоих видов ионов белок или другой амфотерный полиэлектролит при внесении в такой раствор не изменяет его pH, что является одним из методов экспериментального определения И. т. Дру-гой метод онределения И. т. заключается в том, что к белковому р-ру добавляют различные количества кислоты или щелочи и измеряют равновесное pH водородным или стеклянным электродом. По кривым титрования белков измеряют ход поглощения ионов Н и ОН" в зависимости от pH и определяют значение pH, при к-ром поглощение обоих ионов равно нулю (кривая поглощения пересекает ось pH). [c.74]

    Особенно ясно проявляется зависимость знака дзэта-потенциала твердой фазы от ее химического характера при рассмотрении группы амфотерных высокомолекулярных соединений, которые в зависнмости от условий опыта переносятся то к аноду, то к катоду. Сюда относятся белки, в состав которых входят группы и кислотного характера (карбоксильные), и основного (амины). Сюда же надо отнести почвенные коллоиды состава т (Ре, А12О3) п 510з, которые при определенных условиях могут иметь тот или иной заряд. [c.335]

    Дипольный момент амфотерных ионов. Аминокис-логгы, белки и фосфолипиды интересны как класс полярных молекул при определенной кислотности раствора такие молекулы существуют как амфотерные (диполяр-ные) ионы. Общую форму таких амфотерных ионов можно проиллюстрировать на примере аминокислоты глицина (гликокола), показанной на рис. 8. [c.87]

    Аналогичным образом ведут себя белки —типичные амфотерные соединения. Молекула белка — очень сложный органический комплекс (условно обозначенный ниже через R), в состав которого входят ионогенные группы — NH3OH, — СООН, являющиеся носителями основных и кислотных свойств. В зависимости от pH среды преобладает кислотная или основная диссоциация с образованием в первом случае ионов NH зОН — R — СОО" и NH 3 — R — СООН во втором. Эти ионы, оставаясь на поверхности белковых молекул, образуют внутреннюю обкладку двойного слоя ионов, сообщают им в кислой среде положительный заряд и в щелочной — отрицательный. При некоторой определенной кислотности раствора число ионизированных кислотных и основных групп одинаково это соответствует изоэлектрической точке ( 78). Молекулу белка в таком состоянии можно условно изобразить NH 3 — R — СОО. В целом она не несет заряда. Кислотная и основная константы диссоциации белков не равны, поэтому изоэлектрическая точка не соответствует нейтральному раствору. Так как обычно кислотная константа диссоциации выше, чем основная, то для уравнения диссоциации требуется некоторое количество кислоты, подавляющее избыточную ионизацию кислотных групп. Например, для желатины изоэлектрическая точка соответствует pH 4,7. [c.196]

    В качестве реагентов для этерификации карбоксильных групп белка в водном растворе при комнатной температуре были исследованы также окиси. Френкель-Конрат [42] нашел, что при контакте в течение нескольких дней окиси этилена, окиси пропилена и эпихлоргидрина с рядом белков получаются менее растворимые белковые производные с изоэлектрической точкой, смещенной в щелочную сторону на 3 единицы рН. Эти факты наряду с результатами электрофоретических измерений и данными, полученными при определении количества амфотерных групп методом связывания красителей, свидетельствуют о том, что большая часть карбоксильных групп подвергается этерификации, но что основность аминогрупп при этом не изменяется. Однако эта реакция оказалась неспецифичной. Фенольные и сульфгидрильные группы также взаимодействуют с окисями с образованием соответственно простых эфиров и тиоэфиров. Аминогруппы лучше всего алкилируются при рН 8, образуя вторичные амины с неизмененной основностью, которая таким образом характеризует физические свойства избирательно этерифици-рованных белков. Реакция проводилась в нейтральных, кислых и щелочных растворах и в растворах мочевины, причем доля различных вступающих в реакцию функциональных групп до некоторой степени зависела от условий проведения реакции. Можно предположить, что протекают следующие четыре реакции  [c.299]

    Устойчивость частиц во многом зависит от их электрического заряда, который обусловливает целый ряд свойств микроорганизмов, например, их электрофоретическую подвижность, устойчивость биосуспензии, склонность к спонтанной агглютинации и некоторые другие особенности, вплоть до различий в вирулентности. Существует аналогия между электрическим зарядом белковых молекул п бактериальных клеток. Белки, входящие в состав бактериальной клетки, обусловливает ряд ее особенностей, свойственных белковым частицам. Бактериальная клетка ведет себя, как амфотерный электролит благодаря большому количеству аминокислот, входящих в состав ее бактериального белка. Поэтому диссоциация определенных групп в белковой структуре позволяет каждой белковой частице проявить себя в качестве кислоты и в качестве основания. [c.53]

    Белки благодаря своему большому молекулярному весу находятся в коллоидальном состоянии. Белковые молекулы содержат некоторое количество свободных карбоксильных и аминных групп, и поэтому белки относятся к амфотерным электролитам. В щелочной среде белок диссоциирует, как кислота, в кислом растворе — как щелочь. Отсюда следует, что в щелочном растворе молекулы белка заряжены отрицательно, а в кислом — положительно. При прохождении постоянного электрического тока через щелочной раствор белка молекулы его движутся к аноду, а через кислый раствор белка — к катоду. При определенной для каждого белка концентрации водородных ионов количество положительных и отрицательных зарядов в молекуле белка становится одинаковым, и белки перестают передвигаться в электрическом поле. Концентрация водородных ионов реакция среды), при которой в молекуле белка устанавливается равенство положительных и отрицательных ионов, носит название изоэлектрической точки данного белка. Изоэлектрическая точка для различных белков оказывается неодинаковой. Так, например, для казеина изоэлектрическая точка находится при pH 4,7, для яичного альбумина — при pH 4,8, сывороточного глобулина — при pH 5,4, для эдестина из семян конопли — при pH 5,5, для зеина кукурузного зерна — при pH 6,2 и т. д. [c.36]

    Определение изоэлектрических точек веществ с помощью ИЭФ. Помимо разделения белков и других амфотерных соединений ИЭФ служ ит удобным и надежным методом, позволяющим установить ИЭТ каждого выделенного вещества при практически нулевой ионной силе. В соответствии с основ ньгм принципом ИЭФ белок движется в колонке с градиентом pH до тех пор, пока е достигнет слоя, pH которого равен ИЭТ данного белка. Следовательно, ее можно определить простым измерением pH фракции, содержащей этот белок. [c.143]


Смотреть страницы где упоминается термин Белки амфотерные определение: [c.106]    [c.106]    [c.76]    [c.93]    [c.276]   
Физическая и коллоидная химия (1960) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Амфотерность



© 2025 chem21.info Реклама на сайте