Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина на носителях получение

    В работах [4.15] и [4.41] была измерена скорость спекания в модельных системах, включающих как пористый, так и непористый (пленка) носители. Полученные в них данные по скорости спекания платины на пленке оксида алюминия привели к значению п, равному 12. Было также показано [4.15], что когда спекание ведется в газовой смеси, содержащей 2% (масс.) кислорода в азоте, то зависимость 1дг от 1д линейна. При спекании на воздухе скорость процесса увеличивается, а [c.82]


    Для нанесения платины обычно употребляют белый длинноволокнистый асбест — минералы амфибол или хризотил. Эти минералы, особенно первый, наиболее устойчивы к действию кислот и высоких температур. Асбест последовательно обрабатывают растворами платинохлористоводородной кислоты и какого-либо восстановителя (например, муравьинокислого натрия). Содержание платины в полученной контактной массе колеблется от 4 до 10%. Препятствием к снижению содержания платины. является высокое гидравлическое сопротивление носителя. [c.401]

    Выхлопные газы, содержащие 2—4% (об.) Ог и остатки N0+ +N02, предварительно подогревают теплом горячих нитрозных газов до 400 °С и затем смешивают с природным газом с тем, чтобы обеспечить в результате реакции температуру 750—870 °С. В качестве катализатора применяют платину, нанесенную на носители. Этим путем содержание N0+N02 в выхлопных газах удается довести до 0,005—0,0005% (об.). При получении азотной кислоты на многотоннажных агрегатах для восстановления окислов на катализаторе применяют природный газ давлением 1,5—1,6 МПа. Восстановление осуществляют в контактных аппаратах при 750 °С. Чтобы предотвратить образование взрывоопасной метановоздушной смеси и ее взрыв в аппаратуре, предусматривают автоматическое регулирование подачи природного газа. Кроме того, агрегат каталитической очистки оснащают системой защитных блокировок, обеспечивающих отключение подачи природного газа к горелкам подогревателя при аварийной остановке компрессорных агрегатов и отклонении температуры газов после топки от нормальной. Предусматривают также запрет подачи природного газа к горелкам прп отключенной воздуходувке. На линии природного газа, ведущей к смесителю реактора каталитической очистки, устанавливают отсекатель, который закрывается при отклонении от нормальной температуры газа после реактора, остановке компрессорного агрегата и закрытии отсекателя на линии природного газа перед топкой. [c.45]

    В работе [61] показано, что в процессе регенерации закоксованных алюмоплатиновых катализаторов на дериватограмме можно выделить два максимума, связанных с горением кокса соответственно на платине и оксиде алюминия по размерам полученных пиков оценивалось распределение кокса в системе металл - носитель. [c.39]


    ЩИХСЯ между силикатными слоями. По этой причине глинистые почвы очень удобны для выращивания растений. Это же свойство позволяет использовать их в качестве носителей для металлических катализаторов. Один из распространенных катализаторов-платиновая чернь - представляет собой тонкоизмельченную металлическую платину, полученную осаждением из раствора. Каталитическая активность платиновой черни усиливается высокоразвитой поверхностью металла. Аналогичный эффект достигается путем осаждения металла-катализатора (N1 или Со) на поверхность глины. Атомы металла покрывают внутренние поверхности силикатных листов, а кристаллическая структура глины предотвращает слипание металла в бесполезную массу. Согласно предположению Дж. Бернала, первые каталитические реакции на ранних стадиях эволюции жизни, еще до появления биологических катализаторов (ферментов), могли протекать на поверхности глинистых минералов. [c.637]

    При сравнении таких катализаторов гидрокрекинга, как иридий, осмий, платина, рутений и родий на кислотных носителях было показано, что при содержании металлов в катализаторе в количестве 0,5% высшей активностью обладал родиевый катализатор, однако наибольший выход углеводородов С5 получен на платиновом катализаторе. [c.320]

    Поскольку промышленные катализаторы риформинга обычно содержат от 0,3 до 0,6% платины, следует прежде всего отметить, что изменение ее содержания в этих пределах практически не оказывает влияния на скорость дегидроизомеризации метилциклопентана [41 ]. Данные, полученные при использовании в качестве носителя фторированного оксида алюминия (0,77% Р), показали, что степень пре-, вращения метилциклопентана в бензол увеличивается только при повышении содержания платины в катализаторе от 0,012 до 0,075% [25]. По-видимому, при большем содержании платины устанавливается равновесная концентрация метилциклопентена и стадия дегидрирования метилциклопентана не влияет на скорость образования бензола.  [c.22]

    Парафины подвергаются также дегидроциклизации на катализа торах риформинга по бифункциональному механизму дегидрирование на платине, циклизация образовавшихся непредельных углеводородов на кислотных участках носителя. Наглядное подтверждение реальности такого механизма можно найти в работе [681. Из табл, 1,5 видно, что платинированный уголь не катализирует реакцию дегидроциклизации я-гептана, если к последнему добавить 0,01 % тио-фена (по массе, в пересчете на серу), но сохраняет высокую дегидрирующую способность. Концентрация гептенов не меняется при добавлении тиофена к гептану и близка к равновесной в примененных условиях. Не подвергается дегидроциклизации н-гептан при пропускании над оксидов алюминия. Однако реакция дегидроциклизации протекает, если н-гептан с указанной выше примесью тиофена пропускают над смесью платинированного угля и оксида алюминия. Суммарный выход толуола и алкилциклопентанов составил 70% от выхода, полученного при дегидроциклизации чистого н-гептана (без примеси тиофена) над платинированным углем. [c.35]

    Оксид алюминия часто применяется в качестве носителя для катализаторов прямого окисления сероводорода. Для получения активного катализатора на оксид алюминия наносят соединения железа, меди, цинка, серебра, кадмия, хрома, молибдена, вольфрама, кобальта, платины или палладия, а также стабилизирующие добавки, содержащие La, Nd, Pr [18]. В качестве активной фазы на оксиде алюминия могут быть также использованы оксиды ванадия и висмута в количествах 7-15 и 8-20%, соответственно [19,20]. [c.65]

    Указанный равновесный состав изомерных цикланов частично объясняет преобладание циклопентановых производных и повышенное по сравнению с равновесным содержанием алканов изостроения в продуктах, полученных гидрокрекингом в присутствии кислотных катализаторов. Предполагаемые реакции нафталина, рассмотренные выше, также согласуются с этими реакциями изомеризации, протекающими под давлением водорода в присутствии активных катализаторов. Из наиболее распространенных катализаторов, обладающих такой активностью, следует указать окислы и сульфиды молибдена и вольфрама на алюмосиликатном носителе, молибден на окиси алюминия, никель, кобальт или платину на алюмосиликатах. [c.135]

    Риформинг — разновидность каталитического крекинга, — который проводят для получения высокооктанового бензина или индивидуальных ароматических углеводородов из низкооктановых бензиновых фракций (пределы выкипания при температуре 303— 353 К). В качестве бифункциональных катализаторов, способствующих протеканию как реакций гидрирования-дегидрирования, так и изомеризации, применяют металлы и их оксиды (молибден, платину, хром, никель) на носителе — фторированном оксиде алюминия. Реакции углеводородов (деструкции, дегидрирования, изомеризации и др. ) в присутствии ионных катализаторов протекают с очень большими скоростями. Риформинг проводят при температурах 773—973 К. [c.102]


    Алкены устойчивы к действию водорода в момент выделения. Их гидрирование осуществляют в присутствии катализаторов, в качестве которых чаще всего используют никель, платину и палладий в мелкодисперсной форме (например, только что полученные восстановлением оксидов), когда их поверхность наиболее развита и активна. Подобные катализаторы для придания им структурной устойчивости обычно наносят на так называемую подложку (носитель) - активированный уголь, оксид алюминия, силикагель, пемзу и т.д. Реакцию проводят при повышенной температуре. Механизм такого катализа, называемого гетерогенным, заключается в том, что на поверхности катализатора адсорбируются молекулы водорода и алкена, которые при этом не только пространственно сближаются, но и активируются. [c.63]

    Получение анилина, толуидинов, а-нафтиламина и некоторых других аминов в настоящее время в промышленности осуществляется каталитическим гидрированием соответствующих нитро-и нитрозосоединений. В качестве катализаторов гидрирования предложены никель, медь, платина, палладий и др. в виде порошков или металла на носителе (асбест, пемза, уголь), а также некоторые из них в виде скелетных катализаторов (никель). [c.45]

    Радиоактивные изотопы золота, свободные от носителя, можно получить посредством различных ядерных реакций с заряженными частицами из изотопов иридия, платины, ртути и таллия. Однако радиоизотопы, полученные на ускорителях, трудно доступны и дороги. Из числа радиоактивных изотопов золота, которые получают нейтронным облучением в реакторе, изотоп Au можно выделить свободным от носителя из облученной нейтронами пла-тины. Этот изотоп образуется по цепочке реакций [c.53]

    Поверхность платины в катализаторах (м /г), полученных пропиткой носителя различными комплексными соединениями платины [c.129]

    На основе представленной нами связи между химическим взаимодействием и пористой структурой, с одной стороны, и полученной дисперсностью металла, с другой стороны, можно повлиять на дисперсность металла в катализаторе на носителе путем соответствующего выбора соединения платины и носителя. [c.130]

    Кросфилд [106] пропитывал кизельгур сульфатом никеля и обрабатывал щелочью для образования гидроокиси никеля, которая осаждается по всему пористому носителю. Полученную тссу хорошо промывают, высушивают и восстанавливают такой кизельгур содержит около 30% металлического никеля. Кейзер [256] получал катализаторы в виде мелких порошков, хсрошо смешивая кизельгур или инфузорную землю с нитратом никеля, окисью никеля, гидроокисью никеля или карбонатом никеля, высушивая, измельчая и восстанавливая полученные порошки. В промышленности [231] готовили осажденные на кизельгуре никель и кобальт. Указывается [311], что кизельгур можно смешивать с жидким стеклом, полученную пастообразнз о массу формовать в шарики и высушивать. Такие катализаторы, как ванадий или платина или их соединения, осаждались на пористом носителе, полученном аналогичным образом. [c.492]

    Показано [69], что удельная поверхность платины в Pt/ существенно зависит от температуры предварительной термической обработки угля, использованного в качестве носителя. При этом меняется и активность катализатора в реакции Св-дегидроциклизации изооктана, причем по-разному в зависимости от способа нанесения платины. Так, при приготовлении Pt/ по способу, описанному в работе [66], оптимальной температурой предварительной обработки угля являегся 300°С. Однако для Pt/ , полученных пропиткой угля раствором Н2Р1С1е с дальнейшим восстановлением водородом, наиболее благоприятным оказалось предварительное прокаливание угля при 1400°С. [c.200]

    В соответствии с суждаемой ассоциативной схемой, процесс Сб-дегидровдклизации алканов не зависит от концентрации активного металла в металлическом катализаторе на носителе. Поэтому эта схема может служить основой для истолкования с единой точки зрения экспериментальных результатов, полученных как при высоком, так и при низком содержании металла в катализаторе, хотя каждый из этих случаев имеет свои особенности. Так, в присутствии (20% Pt)/ молекула углеводорода плоско адсорбирована пятью углеродными атомами в междоузлиях решетки платины [63, 64], в случае же (0,6% Р1)/А120з адсорбция алкана может проходить другим способом, в частности по дублетной схеме. Предлагаемый механизм с участием адсорбированного на катализаторе водорода в непосредственном акте Сб-дегидроциклизации хорошо согласуется с данными, приведенными в работах [84, 108]. [c.231]

    Дальнейшее развитие эти исследования получили в работе [62]. При выжигании кокса с поверхности алюмоплатинового катализатора на дериватограмме наблюдалось три экзоэффекта, в области температур 170-230, 350-400 и 420-450 °С. Их положение мало зависит от содержания платины в катализаторе, углеводородного состава сырья и продолжительности закоксовьшания (рис. 1.23). С целью идентификации полученных пиков было изучено горение кокса на различных образцах катализаторов и носителей. Оказалось, что максимум на дериватограмме при 170-230 °С соответствует горению адсорбированных углеводородов положение его смещается от 170 до 230 °С при переходе от н-парафиновых углеводородов к ароматическим. Тщательная сушка закоксованных катализаторов в водороде приводила к исчезновению этого пика. [c.39]

    Результаты исследования состояния платины в катализаторах, промотированных фтором, методом ИК-спектроскопии адсорбированного оксида углерода приведены на рис.. 2.4, Степень заполнения платины оксидом углерода изменяли путем термодесорбции при различных температурах, Зависимость частоты колебания хемосорбированиого оксида углерода от степени заполнения может быть вызвана двумя причинами взаимным влиянием хемосорбированных частиц оксида углерода и неоднородностью поверхности платины. В области малых заполнений взаимным влиянием хемосорбированных частиц можно пренебречь, и частота колебаний оксида углерода характеризует состояние платины. Полученные данные (рис. 2.4) указывают, что фторирование алюмоплатинового катализатора приводит к существенному сдвигу частоты колебания оксида углерода в высокочастотную область, т. е., что в промотированных фтором образцах платина является более злектрондефицитной, чем в нефторированных. Возможно, фторирование усиливает акцепторные центры носителя, с которыми взаимодействует платина. Повышение частоты колебаний оксида углерода сопровождается явлениями ослабления прочности связи платина - углерод, что выражается в уменьшении температуры десорбции на 100 °С. [c.49]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают газ-восстановитель при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и па силикагеле. Для восстановления соединений платины используют аммиачный раствор формальдегида [19 ]. При приготовлении платино-силикагелевого и аналогичных катализаторов надо иметь в виду, что неносредственная пропитка геля раствором часто приводит к растрескиванию геля. Причина этого, вероятно, кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникаюнщм во время ускоренной дегидратации, или в более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой, пропуская через него сильно увлажненный воздух [16]. [c.184]

    На рис. 6.5 показаны кривые дифференциального термического анализа (ДТА), полученные Маслянским Г.Н. при выжиге кокса с алюмоплатинового катализатора. На термограмме обнаруживаются два пика в интервале температур 200-370 С и 370-550 °С. С повышением давления водорода при риформинге выход кокса и высота обоих пиков уменьшаются. Считается, что первый пик на термограмме связан с горением непредельных углеводородов на платине, а второй пик характерен для горения кокса, карбоидизированного на кислотных центрах и инертных участках оксида алюминия. Определенную роль может играть также спилловер кислорода, заключающийся в активации молекулярного кислорода на платине, его натекании на поверхность носителя и особенно его кислртные центры и тем самым участие в реакциях окисления. Следствием является то, что при низкотемпературном окислении (до 370 С) выгорают соединения не [c.144]

    Каталитический риформинг применяют для повышения октанового числа бензиновых фракций и получения ароматических углеводородов — бензола, толуола и ксилолов. Наиболее распространен процесс риформинга на платиновом катализаторе (платина на кислотном носителе) — платформин . Использовавшийся ранее процесс риформинга на алюмомолибденовом катализаторе — гидро форминг — потерял значение вследствие значительно меньшей активности этого катализатора. [c.242]

    Таким образом, независимо от того, каким способом снижают активность металлического компонента алюмоплатинового катализатора в реакции гидрогенолиза, состав продуктов раскрытия кольца метилциклопентана во всех случаях меняется в сторону значительного преобладания н-гексана. Подобное явление можно объяснить тем, что реакция раскрытия пятичленного кольца протекает не только на платине, но и на кислотном носителе — хлорированном оксиде алюминия, [46 ]. Дислотно.-катализируемая реак1 ия приводит главным образом к получению -гексана из метилциклопентана, но" скорость ее значительно меньше скорости гидрогенолиза этого углеводорода на. платине. [c.26]

    Повышение стабильности катализатора риформинга требует подавления коксоотложения не только на платине, но и на носителе, который играет важную роль в каталитических превращениях углеводородов. В этой связи следует, ближе рассмотреть данные ДТА, полученные при сжигании кокса на алюмоплатиновом катализаторе как до, так и после добавления германия и олова (с.м. табл. 2.14). огласно [97] в процессе выжига кокса на непромотированном алюмоплатиновом катализаторе, при 380 °С на один освобождающийся атом поверхностной платины удаляется около 60 атомов углерода. С другой стороны, при исследовании превращении углеводородов на монокристаллах платины установлено, что общее покрытие поверхности углеродом составляет 2—5 атомов С на один поверхностный атом платины [106]. Близкие результаты получены в работе [95]. Следовательно, при 380°С на примыкающих к платине участках носителя сгорает но крайней мере в 10 раз больше кокса, чем собственно на платине. Поэтому отсутствие пика при 380 °С на кривой ДТА при добавлении к алюмоплатиновому катализатору германия или олова служит указанием на то, что не только платина, но и ближайшие к ней участки носителя не блокированы коксом. [c.100]

    Можно получать как одноступенчатые, так и двухступенчатые реплики. В первом случае реплику получают путем отложения материала непосредственно на образец, во втором — на, поверхность образца наносят пластический материал для предварительного отпечатка, воспроизводящего рельеф затем реплику сниыаюг с поверхности этого отпечатка и исследуют в микроскопе. Повышения контрастности реплики добиваются оттенением (отложение на объективе слоя материала с высокой рассеивающей способностью для электронов). Оттеняющий слой наносят под небольшим углом испарением материала в вакууме. Высокой контрастности достигаюг при использовании урана, вольфра(11а, золота, платины и других веществ. Иногда для оттенения применяют углерод. На рис. 136 дана схема двух основных способов получения углеродных реплик. На рис., 137 показана последовательность операций и возникновение изображения на экране при получении реплик с объектов, образованных контактирующими сферическими частицами. Это часто имеет место при исследовании кага лизаторов и носителей глобулярного строения [78]. [c.309]

    На рис. 3 изображена схема, использованная в лаборатории автора. Применение байпасной линии позволяет широко варьировать время пребывания углеводородов на поверхности катализатора. Описанный метод с успехом был применен для получения равновесных смесей стереоизомеров в углеводородах различного строения с т. кип. до 250° С. Для более высококинящих углеводородов лучше использовать жидкофазную изомеризацию в стальных капсулах, позволяющих выдерживать давление водорода 5—Юати. Наиболее эффективным катализатором являются платина и палладий, нанесенные в количестве 2—3% на диатомито-вый кирпич. Использование этого катализатора в интервале 500—600° К (227—327° С) позволило осуществить равновесную конфигурационную изомеризацию весьма селективно, без значительного протекания побочных реакций. При работе с микрореактором необходимым условием является использование в качестве газа-носителя водорода, так как присутствие инертных газов тормозит конфигурационную изомеризацию [20]. [c.11]

    Кроме названных технологий, нашедших промышленное применение, запатентован целый ряд близких процессов. Процесс гидрокрекинга [303] проводят при 232—454°С, 5,1—23,8 МПа, объемной скорости подачи сырья 0,3—5,0 ч , соотношении водород сырье = 1 10, в присутствии катализатора (платина или палладий, цеолит, алюмосиликатный носитель). На основе тяжелых фракций нефти (> 380°С) возможно получение масел с индексом вязкости 95—150 путем сочетания гидрокрекинга и гидроизомеризации (1РР [305, 306]) последнюю осушествляют при 200— 450°С, 0,7- 0,25 МПа, объемной скорости подачи сырья 0,1 — 10 ч , соотношении водород. сырье = 100+2000 в присутствии катализатора (металл 8-й группы на алюмосиликатном носителе). [c.172]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    Как видно из приводимой ниже методики получения гидроокиси платины па окиси магния, катализатор может образоваться также в результате гидролиза дихло-рида плагины под влиянием носителя — окиси мапгая [112]. [c.34]

    Как и дчя элементов группы платины, очень часто применяется осаждение никеля на носителях Активность таких катализаторов зависит от природы и количества носителя [ЮТ] В качестве иоситечей применяются диа TovHTOBtJH земля, исм а, активированный уголь, окисты металлов ле поддающиеся действию водорода в условиях восстановления окислов никеля, и окислы некоторых других металлов, таких, как железо, хром. Основные пра вила получения катализаторов на носителях такне же, как при получении катализаторов без носителей, однако способы соединения каталитического вещества с носнге лем могут быть различные Наиболее простои способ заключается в осаждении гидрата окисн или карбоната никеля в присутствии суспензии носителя [108] Даль нейшая обработка та же, что н для металлического ка тализатора, с той лишь разницеи, что восстановление можно осуществлять при более высоких температурах [c.311]

    Таким образом, оптимизация способа получения алю. ю0ксид1юг0 носителя обеспечивает высокую дисперность платины на его поверхности и степень удерживаемости хлора, что в конечном счете благоприятно сказывается на качестве катализатора. [c.34]

    Процесс изомеризации хайзомер компании Шелл [125]. Процесс хайзомер-это процесс изомеризации прямогонных бензиновых фракций С -Се с целью получения продукта с высоким октановым числом. При переработке сырья с октановым числом 73,2 получают продукт с октановым числом 82,1 по исследовательскому методу. Катализатор состоит из цеолитсодержащего носителя и платины. Процесс проводится при температуре 230-290°С, давлении 1,4-3,5 МПа, объемной скорости подачи сырья 1—Зч . Выход С5+ составляет 97,5%. Сырье подвергается гидроочистке до содержания серы 0,001%. Схема процесса при- [c.206]

    Материал чувствительного элемента определяется не только необходимостью получения высокого сопротивления, но и свойствами анализируемых веществ. Фирма Оои -Мас (США) для анализа агрессивных веществ предлагает, например, проволочные чувствительные элементы из никеля (12,5 и 25 Ом), золоченого вольфрама (24 и 48 Ом), платино-ирридиевые (12 Ом) и тефлонированные вольфрамовые (18 Ом) элементы. Термисторные щарики для защиты от разрушающего действия газа-носителя (Нг) и анализируемых веществ обычно покрыты тонкой стеклянной оболочкой. Чем выше сопротивление чувствительного элемента, тем выше и его чувствительность. Обычно для чув- [c.152]

    Тетрагидро-7--пироны. Восстановление цикла 7-пирона химическими средствами не пригодно для получения тетрагидропирона. Большая часть, восстановителей или не действует на пироновый цикл, или приводит к раскрытию цикла [118]. Однако можно восстановить пироновый цикл каталитически. Борш [162] провел селективное гидрирование двух углерод-угле-родных двойных связей с помощью коллоидальной платины. Аналогичные результаты позднее были получены при применении палладия на карбонате стронция [163]. Изучение реакции гидрирования многих производных у-пирона с применением палладия на различных носителях показало, что-исчерпывающее гидрирование приводит к тетрагидро-т--пиранолам [164]. Если остановить гидрирование после присоединения 1 и 2 молей водорода, то удается получить с малыми выходами дигидро- и тетрагидропироны. Гидрирование --пирона под высоким давлением в присутствии хромита меди [165] приводит к получению 50% 4-окситетрагидропирана и 23% тетрагидро- у-пирана, в то время как гидрирование в присутствии скелетного никелевого катализатора при умеренных давлениях [166] дает только первое из названных веществ. Гидрирование в присутствии скелетного никелевого катализатора, активированного платинохлористоводородной кислотой и следами щелочи, приводит к частичному раскрытию цикла, главными же продуктами гидрирования в случае диметилпирона являются два изомерных 2,6-дк- [c.302]

    Нитрозосоединения и оксимы являются интермедиатами при гидрировании нитросоединений аналогично, в результате частичного гидрирования нитрилов образуются амины. Эти промежуточные соединения редко выделяют в чистом виде, поскольку они легко гидрируются в соответствующие амины. По этой причине катализаторы восстановления нитро- и цианогрупп могут одновременно служить катализаторами восстановления оксимов, иминов и нитрозосоединений. Обычно используют никель Ренея, палладий или платину на носителе. При восстановлении нитро- и цианогрупп трудности возникают в тех случаях, когда частично восстановленные аналоги подвергаются дальнейшему гидрированию. Так, восстановление иминов и оксимов часто приводит к образованию вторичных аминов, и для получения первичных аминов с высокими выходами необходимо применять специальные меры. Как и в ранее описанных случаях, хорошими каталитическими системами являются никель Ренея — аммиак или уксусный ангидрид, а также родий на угле — аммиак. Как отмечалось выше, гидрирование нитросоединений часто протекает экзотермично то же относится и к гидрированию оксимов и нитрозосоединений. При применении никеля Ренея при повышенных температурах и давлениях. (70—100°С 70—100 атм), обеспечивающих высокие [c.307]


Смотреть страницы где упоминается термин Платина на носителях получение: [c.361]    [c.77]    [c.91]    [c.321]    [c.315]    [c.185]    [c.86]    [c.406]    [c.398]    [c.108]    [c.323]    [c.662]    [c.302]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Платина на носителях



© 2025 chem21.info Реклама на сайте