Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость зависимость от строения

    Свойствами псевдопластичных жидкостей обладают также растворы и расплавы большинства полимеров. Однако для них аномалия вязкости обусловлена строением макромолекул и характером надмолекулярных образований, возникающих в расплаве. Для расплавов полимеров характерно также изменение степени аномалии вязкости в зависимости от скорости сдвига, т. е. изменение вязкости при различных скоростях сдвига неодинаково. Заметить это в обычных координатах т ф (у) очень сложно, поэтому для анализа кривых течения применяют графическую зависимость в двойных логарифмических координатах. Как видно из рис. 2.2, для ньютоновской жидкости характерна линейная зависимость lg т от lg у с постоянным наклоном, которая при уменьшении вязкости сдвигается вправо. [c.31]


    ЗАВИСИМОСТЬ ВЯЗКОСТИ от СТРОЕНИЯ [c.62]

    Влияние длины цепи на вязкость алифатических диэпоксидных смол линейного строения в известных пределах незначительно однако в случае алифатических полиэпоксидов линейного строения увеличение длины цепи приводит к соответствующему увеличению вязкости. Зависимость вязкости различных алифатических силоксановых смол от длины полимерной цепи показана на рис. 2-6. [c.14]

    Большой интерес представляет исследование температурной зависимости вязкости соединений гомологических рядов. Этим путем легче всего выявить общие закономерности, связывающие вязкость со строением молекул, и тем самым получить необходимые данные для предсказания свойств новых типов соединений. [c.479]

    Увеличение концентрации загрязнений и вязкости масла уменьшает продолжительность отдельных стадий и всего процесса фильтрования, не изменяя, однако, рассмотренной последовательности этапов, каждый из которых соответствует определенной схеме оседания загрязнений на фильтрующем материале. В зависимости от свойств фильтрующего материала отдельные этапы могут иметь очень малую продолжительность, а некоторые вообще не протекают. Так, при фильтровании масел через металлическую сетку последовательно наблюдаются полное и частичное закупоривание пор, образование сводиков продолжается. весьма короткий период, а осадок отлагается только при значительных концентрациях загрязнений (свыше 0,1%) и высокой вязкости масла (более 400 мм с). Это можно объяснить особенностями строения фильтрующей сетки. [c.193]

Рис. 29. Зависимость вязкости (lg т]) от температуры (1 / Т) для углеводородов состава С24 различного строения. Рис. 29. <a href="/info/33730">Зависимость вязкости</a> (lg т]) от температуры (1 / Т) для углеводородов состава С24 различного строения.
Рис. 31. Зависимость вязкости (12 т)) от температуры (1 / Т) для трициклических углеводородов С24 различного строения. Рис. 31. <a href="/info/33730">Зависимость вязкости</a> (12 т)) от температуры (1 / Т) для <a href="/info/447120">трициклических углеводородов</a> С24 различного строения.

    Вязкость является важнейшим свойством масел. Она непосредственно связана с пределами кипения фракции, ее групповым составом и строением углеводородов. Вязкость масел определяется при нескольких значениях температур. Если определено значение при одной температуре, то необходимо знать отношение вязкости при 50° С к вязкости при 100° С, чтобы проследить за изменением вязкости в зависимости от температуры. Наилучшим маслом будет то, вязкость которого при повышении температуры изменяется незначительно. Из всех углеводородов парафиновые характеризуются наименьшей вязкостью. [c.265]

    Вязкость нафтеновых и соответственно ароматических углеводородов одного молекулярного веса различна в зависимости от особенностей строения углеводорода. Особенно большое различие в вязкости между системами, не имеющими конденсированных [c.113]

    Моторные масла должны обладать максимально возможной пологой кривой зависимости вязкости от температуры. При высоких температурах эти масла не должны сильно разжижаться, а при низких, наоборот, — не терять текучести. Поскольку моторные масла в процессе очистки подвергаются деасфальтизации и депарафинизации, то их вязкостные свойства целиком зависят от строения и молекулярной массы полициклических нафтеновых, ароматических и гибридных парафино-нафтено-ароматических углеводородов. Наиболее крутой вязкостно-температурной кривой обладают полициклические углеводороды с короткими боковыми цепями, особенно если число колец в молекуле более трех, а сами кольца неконденсированные. Наличие длинных боковых насыщенных цепей в молекулах циклических углеводородов улучшает этот важный показатель. Разветвление цепей уменьшает положительный эффект. Вообще следует признать, что вязкостно-температурные свойства высокомолекулярных углеводородов нефти не соответствуют высоким требованиям, предъявляемым к современным моторным маслам. Особенно это относится к вязкостным свойствам при температурах ниже нуля. Поэтому начали получать распространение синтетические смазочные масла. Значительное улучшение вязкостных свойств смазочных масел достигается также путем применения присадок, повышающих вязкость дистиллятных масел. [c.95]

    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]

    Теоретический расчет, выполненный Дебаем и Хюккелем на основании электростатической модели строения раствора электролитов, показывает, что в разбавленных растворах (с С 1 10- г-экв/л) уменьшение электрической проводимости, вызываемое взаимным торможением ионов, пропорционально корню квадратному из концентрации. Зависимость X (и ц) от - /с для таких растворов выражается прямой линией. Уравнение, описывающее эт/ зависимость, имеет вид к = Х — а ]Т, где а — постоянная, зависящая от природы растворителя, его диэлектрической проницаемости, вязкости, природы электролита и температуры. [c.186]

    Уравнение Эйнштейна не распространяется на растворы полимеров с линейным и пространственным строением молекул. Вязкость таких растворов зависит не только от их концентрации, но и от скорости взаимного перемещения их слоев. Это явление получило название аномальной вязкости и представляет собой еще одну особенность растворов полимеров. Для пояснения аномальной вязкости обратимся к реологическим кривым, изображающим зависимость вязкости жидкостей от скорости взаимного перемещения их слоев (рис. VI. 16). [c.300]

    Ввиду того, что низко- и высокомолекулярные соединения в жидком состоянии резко отличаются по своему строению, различаются и механизмы их вязкого течения. Это легко видеть из наблюдений за зависимостью энергии активации П вязкого течения полимерных растворов или расплавов от молекулярной массы и возрастает с молекулярной массой и достигает некоторой предельной величины. В случае парафиновой цепочки этот предел составляет 25—29 кДж/моль, для каучуков 14 кДж/моль и расплавов твердых карбоцепных полимеров 84—125 кДж/моль. Относительно низкие значения энергий активации у полимеров свидетельствуют о том, что статистически независимая кинетическая единица течения — тот же сегмент цепи, включающий в себя несколько десятков углеродных атомов хребта цепи, который является основным релаксатором и в высокоэластическом состоянии. Вязкость системы прямым образом зависит от числа сегментов, входящих в цепь. Соответственно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перехода отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения справедлив для умеренно концентрированных растворов, а для полимеров, находящихся в более конденсированном состоянии, механизм течения более сложен. [c.168]


    Длина полимерной цепи в момент времени t реакции Nt = = No/ P-j-l). Если степень деструкции невелика, т. е. значение Nt достаточно велико по сравнению с No, то можно получить довольно простую зависимость для скорости процесса гидролитической деструкции (1/Л () —(1/Л о) Величины 1/Л о и l/Nt пропорциональны соответственно начальной концентрации концевых групп (По) и мгновенной их концентрации ко времени t (п/). Тогда П(—По=к (, т. е. скорость деструкции представляет собой разницу между мгновенной и начальной концентрацией концевых групп в полимере. Концентрация концевых групп в процессе гидролитической деструкции линейно нарастает во времени в соответствии со статистическим характером протекания реакции. Если полимеры имеют линейное строение цепей, то длина цепи (или молекулярная масса) и концентрация концевых групп однозначно связаны с вязкостью растворов полимеров и, таким образом, степень деструкции может быть легко оценена по изменению характеристической вязкости растворов. [c.255]

    Изменение вязкости, индекса вязкости и температуры застывания полимеров в зависимости от длины и строения исходного олефинового углеводорода [1] [c.480]

    Первые результаты систематических исследований применения водорастворимых полимеров для повышения нефтеотдачи были опубликованы в зарубежной печати в 1964 г. С тех пор в литературе появилось значительное число работ, подтверждающих и развивающих эту идею. Особенно интенсивно теоретические, экспериментальные и промысловые исследования проводились до начала 70-х гг. К этому времени было реализовано более семидесяти проектов заводнения с применением водорастворимых полимеров. В первых теоретических и экспериментальных работах на метод полимерного заводнения возлагали большие надежды и его возможности оценивали весьма оптимистично. Под полимерным заводнением в данном случае понимается закачка в пласт оторочки раствора полимера. Объем оторочки менялся от 5% до 30% в зависимости от геологического строения пласта и вязкости нефти. Концентрация полимера в растворе варьировалась от 0,03% до 0,15%. [c.71]

    Особенно важное значение в эксклюзионной хроматографии имеет универсальная калибровочная зависимость, предложенная Бенуа и сотр. [44]. Авторы показали, что разделение гибкоцепных полимеров совершенно различного состава и строения на стирогеле в тетрагидрофуране описывается единой калибровочной кривой в координатах /р-1д([г )]М), где произведение характеристической вязкости на молекулярную массу характеризует гидродинамический объем макромолекул. Было установлено, что эта зависимость справедлива также для глобулярных и жесткоцепных макромолекул. Необходимым условием применимости универсальной калибровки является полное исключение сорбционных взаимодействий полимера с матрицей сорбента. В монографии [3] сформулированы следующие ограничения применения универсальной калибровки. [c.54]

    Вязкость органических жидкостей в зависимости от их строения и молекулярного веса можно вычислить по уравнению [c.32]

    Одним из требований к нефтяным маслам является их способность иметь определенный минимум вязкости при высоких температурах и достаточную подвижность при температурах запуска двигателя. Это свойство масла определяется его вязкостными характеристиками. Полнее всего вязкостные свойства масла характеризуются кривой зависимости вязкости от температуры. Для масел наиболее желательны нафтеновые и ароматические структуры с наименьшим количеством колец и длинными боковыми цепями. Такие структуры улучшают вязкостно-температурные характеристики масел и повышают их стабильность к окислению. Полициклические ароматические углеводороды и углеводороды смешанного строения с короткими боковыми цепями ухудшают вязкостные свойства масел и понижают стабильность их к окислению. Твердые алканы также нежелательны в маслах, т.к. они кристаллизуются из масла, снижая его подвижность при низких температурах. [c.22]

    Стерн и др. 22 обсудили механизм стереоспецифической полимеризации изопрена на Li и LiR в углеводородной среде. Предполагается, что полимеризация протекает путем последовательного присоединения к LiR г с-формы мономера с образованием шестичленного циклически активного комплекса. Относительная стабильность этого комплекса обусловлена способностью атома Li к 5р-гибридизации с повышением его валентности. Показано, что отношение содержания структур цис-1,4/3,4 в полимерах, полученных на смешанном катализаторе Li — Na, линейно зависит от его состава. Из зависимости строения полимера, полученного на Li, от температуры полимеризации найдено АНцис — АЯз 4 = —2010 кал/моль-, А8цис — А5з,4 = —1,4 энтр. ед. Полимеры имеют узкое распределение молекулярных весов характеристическая вязкость ["п] линейно падает с увеличением концентрации катализатора и следует зависимости [c.136]

    Имеются еще данные Ниссана, Кларка и Нэша о том, что вязкость веществ с шаровидными молекулами больше вязкости веществ с продолговатыми молекулами. Все эго создает впечатление, что связь между вязкостью и строением жидкости еще не совсем ясна. Ниссан и Дунстан приводят следующую зависимость вязкости от молекулярного веса при одной и той же температуре для соединений одного и того же гомологического ряда  [c.293]

    Радикал R в этом соединении может быть остатком низших алифатических спиртов и циклических, или простых гликолевых эфиров. Несмотря на наличие большого числа атомов кислорода в структуре этих карбонатов, они очень слабо растворяются в воде. Ацилирование лактатов хлорформиатом проводят в присутствии пиридина и серного эфира при температуре около — 18° С. Эти сложные эфиры представляют собой большей частью бесцветные вязкие жидкости. Зависимость вязкости от строения спиртового остатка (радикал R) приведена в табл. 235. В ряду спиртов жирного ряда нормального строения или простых к-алкилгли-колевых эфиров вязкость уменьшается с увеличением длины цени. С разветвлением спиртового остатка, с введением радикала циклической структуры или гетероатома вязкость всегда возрастает. Отношение вязкостей при 40 и 20° С возрастает для гомологического ряда с увеличением числа атомов углерода в спиртовых остатках. Вязкость изомеров всегда выше вязкости соответствующих соединений нормального строения. Сложные метиловые, метоксиэтиловые и тетрагидрофурфуриловые эфиры малоустойчивы к кипящей воде. [c.679]

    В зависимости от количества молекул окиси олефина и характера исходного спирта или фенола можно получить соединения разнооЗразного строения, представляющие собой эфиры поли-гликолей с цепями различной длины, что сказывается на несхожести их свойств, в частности, вязкости. [c.406]

    В табл. 24 приведены данные о смешанных углеводородных структурах, синтезированных с целью моделировать типы углеводородов, составляюш,их основную часть смазочных масел. Понятно что при этом было отдано предпочтение таким структурам, у которых преобладают алифатические атомы углерода, но мало обращали внимания на остальные атомы молекулы, относящиеся к циклической структуре (ароматические или циклопарафиновые). В табл. 25 включены данные о синтезированных нами углеводородах, в молекуле которых соотношение атомов углерода разного типа (алифатические, циклопарафиновые, бензольные, нафталиновые и др.) колебалось в широких пределах. Синтез высокомолекулярных углеводородов гибридного строения таких разнообразных форм вполне оправдан, так как многочисленные данные но исследованию высокомолекулярной части нефтей, начиная с масляных фракций, подтвердили, что углеводородные структуры этой части нефти состоят преимущественно из молекул, содержащих одновременно атомы углерода парафиновой, циклопарафиповой и ароматической природы. Учитывая влияние углеводородов такого типа (в зависимости от их концентрации в масляных фракциях нефтей) на эксплуатационные свойства смазочных масел, мы изучили зависимость вязкостных свойств гибридных структур синтетических углеводородов С24, содержащих в молекуле 1, 2 или 3 кольца (циклопептановое, циклогексановое, бензольное), от их строения [37 ]. Было показано, что в ряду углеводородов j повышается вязкость и ухудшается температурная зависимость вязкости при переходе от чисто алифатических структур к структурам гибридным, в молекуле которых 1, 2 или 3 атома водорода в парафиновой цепи заменены циклогексановым или бензольным кольцом. Гибридные структуры углеводородов, в парафиновой цепи которых два атома водорода замещены бензольными кольцами, заметно различаются по вязкости в зависимости от наличия в бензольном кольце заместителей углеводороды с метилированными бензольными кольцами характеризуются более высокой вязкостью, чем углеводороды аналогичной структуры, но с неметилированными бензольными кольцами. При гидрировании бензольных колец в этих углеводородах картина резко меняется. При переходе от фенилзамещенпых [c.119]

    Как отмечает Петров [62], исследовавший зависимость температур плавления и вязкости разветвленных парафиновых углеводородов от строения их углеродного скелета, несимметричные структуры типа триалкилзамещенных метана характеризуются не только низкими температурами застывания, но и склонностью к стеклованию, тогда как углеводороды симметричных структур кристаллизуются. [c.200]

    Экспериментальные методы изучения вязкостных свойств систем весьма разнообразны [24, 36]. Как отмечалось выше, межмолекулярные взаимодействия в сложных углеводородных системах, к которым относятся нефтяные, представляют собой слабые ван-дер-ваальсовы взаимодействия. Нередко это приводит к развитию молекулярной ассоциации. Наиболее характерны в этом отношении нефтяные масла и индивидуальные масляные углеводороды. Они обладают аномально высокой зависимостью вязкости от температуры. Оказывается, что экспериментальные значения вязкости выше расчетных примерно на порядок [24]. Это означает, что углеводородные жидкости сильно ассоциированы. Вязкость их определяется двумя составляющими молекулярной и ассоциативной. И тот, и другой компонент зависят от химического строения молекул жидкости и энергий их межмолекулярного взаимодействия. Сопоставление молекулярной и ассоциативной динамической вязкости для некоторых углеводородов показано в табл. 11 [24, 94]. [c.52]

    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]

    При низких температурах смазочные масла зачастую приобретают вязкость, в несколько раз превышающую значение вязкости, вычисленное на основе кривых температурной зависимости, и изменяют значения вязкости от внешних условий. Это отклоцение объясняется появлением в исследуемой системе ясно выраженной структуры, в соответствии с чем определяемая в этих условиях вязкость носит название структурной вязкости. Структуру следует понимать как образование нитей, сеток, ячеек и т. д. из веществ кристаллического, коллоидного строения, пронизывающих частично или полностью весь объем жидкости и сохраняющих более или менее равномерное состояние распределения в жидкости. Образование таких структур в нефти-и ее фракциях возможно при выделении кристаллов парафина, наличии большого количества нерастворенных асфальтенов, карбенов, при эмульгировании нефти с водой и т. д. [c.44]

    Вязкость (Масел зависит главным образом от состава и строения углеводородных ко1Мпонбнтов, возрастая с увеличением их молекулярной массы, цикличности и степени разветвленности, а также с увеличением содержания смолисто-асфальтеновых веществ. В зависимости от условий работы машин н механизмав (температуры, нагрузок, скоростей) применяют товарные масла вязкостью от 4—6 мм /с лри 50 °С до 60—70 мм /с при 100 °С. В автомобильных карбюраторных двигателях используют масла вязкостью 6—10 мм /с при 100 °С, в дизельных двигателях — 8—16 мм /с. В условиях эксплуатации в зависимости от режима трения происходит своеобразное саморегулирование вязкости лри охлаждении вязкость масла увеличивается, одновременно возрастает сила трения, приводящая к нагреванию масла и снижению его вязкости. Аналогично влияет и частота вращения. Значимость показателя вязкости при подборе масел настолько велика, что ее абсолютное значение положено в основу классификации и маркировки многих смазочных масел. Так, в классификации моторных масел цифры, входящие в их маркировку (М-6Б, М-16В, М-10Г и т. п.), означают вязкость при 100°С. [c.27]

    Обрыв цепи. Процесс, приводящий к насыщению валентности конечного шена макрорадикала, не сопровождаю-пщйся образованием новых радикалов, называется обрывом цепи. Обрыв цепи может происходить различными путями, и зависимости от активности макрорадикала, его размера и строения, вязкости среды, температуры, состава реакционной .меси и т. д. [c.123]

    В результате проведенных исследований были построены кривые зависимостей статического напряжения сдвига мазута марки 100 от температуры и содержания присадки, а также кривые измене-нЕ[я вязкости мазута при различных добавках присадок и разных температурах (рис. 4.1). Наличие максимумов при низких температурах имело следующее объяснение. Химическое строение некоторых понизителей вязкости и их физико-химические свойства дают основание рассматривать их как структурообразующие вещества, т. е. вещества, которые сами могут в определенных условиях образовывать структуру в углеводородных растворах. Поэтому с ростом содержания присадки в мазуте в условиях низких темпе-р 1тур возрастает статическое напряжение сдвига. Практически наблюдаемое отсутствие депрессии может быть обусловлено не только сггецифическими свойствами присадки, но также и слабой ее растворимостью в углеводородной среде при низкой температуре. В случае дальнейшего увеличения содержания присадки в мазуте в условиях низких те1Ушератур статическое напряжение сдвига снижается за счет возрастания количества присадки в растворенном состоянии. [c.91]

    Рассмотрение нефтяных систем как молекулярных растворов господствовало достаточно долго. При этом в связи с трудностями аналитического выделения отдельных компонентов из средних и высших фракций нефти (масляных и газойлевых фракций) их характеризовали с помощью гипотетической средней молекулы. Модельные представления о строении молекулы смолисто-асфальтеновых веществ (САВ) получили широкое распространение. Характеристика таких гипотетических молекул — средняя молекулярная масса — входит во многие расчетные формулы зависимости свойств нефтяной фракции от Р, V, Т-условий и используется в технологических расчетах. Хотя сегодня достоверно показано, что это не всегда верно, поскольку молекулярная масса нефтяных фракций сильно зависит от условий ее определения (растворителя, температуры) [1]. До сих пор многие явления в нефтяных системах и технологические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т. д.). В результате теоретически рассчитанные доли отгона при выделении легкокипя-щих компонентов из нефти не совпадают с экспериментальными данными. Часто обнаруживающаяся в нефтяных системах (особенно с высоким содержанием парафинов и САВ) зависимость эффективной вязкости от скорости деформации свидетельствует о ее надмолекулярной организации. Отклонения от закона Дарси при течении таких систем впервые были подмечены в 1941 г. профессором В. П. Треби-ным. Однако эффекты нелинейного отклика, обусловленные особен- [c.172]

    Плоское треугольное строение иона МОз" оказывает сильное разрушающее действие на собственную структуру воды. Этим, в частности, можно объяснить концентрационную зависимость сдвиговой вязкости водных растворов, содержащих ионы ЫОз . В работах А. 3. Голика было показано, что растворение KNOз и СзЫОз в воде приводит к понижению вязкости. Этот эффект исчезает при большой концентрации И при повышении температуры. [c.289]

    Исходя из современных представлений о строении жидкости и особого механизма передачи количества движения между движущимися слоями жидкости за счет прилипания частиц, находящихся в разных слоях, Г. М. Пан-ченков получил уравнение, выражающее зависимость вязкости от температуры  [c.41]

    С увеличением температуры вязкость жидкостей уменьшается а газов увеличивается, что объясняется различным молекулярным строением этих двух сред. Вязкость жидкостей и газов изменяется твкже с изменением давления. Для жидкостей зависимость динамической вязкости от давления имеет вид [c.241]

    Зависимость между географическим местонахождением и составом нефти проявляется настолько сильно, что во многих случаях для сравнительно полной характеристики нефти достаточно знать ее происхождение. Пенсильванские нефти являются типичными парафипистыми нефтями, дающими низкооктановый бензин и высококачественные смазочные масла, отличающиеся чрезвычайно пологой вязкостно-температурной характеристикой (высокий индекс вязкости) оба эти показателя свидетельствуют о высоком содержании парафиновых углеводородов нормального строения. Нефти бассейна Лос-Анжелоса являются полной противоположностью пенсильванским нефтям они отличаются весьма низким содержанием парафиновых, но высоким содержанием нафтеновых и ароматических углеводородов,, и дают высокооктановый бензин и смазочные масла с низким индексом вязкости. [c.33]

    Строение сиойства. Среднемассовая мол. масса пром. каучуков (4-8) 10 . Зависимость характеристич. вязкости (в дл/г) при 25 °С от мол. массы (М) выражается ур-ниями [tl] = 2,15-(для СКТ толуол) [п] = 2,25 х X 10 (для СКТФТ этилацетат). Плотность СКТ [c.510]


Смотреть страницы где упоминается термин Вязкость зависимость от строения: [c.399]    [c.483]    [c.286]    [c.21]    [c.174]    [c.49]    [c.46]    [c.127]    [c.254]    [c.255]   
Пластификаторы (1964) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость зависимость



© 2024 chem21.info Реклама на сайте