Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры с функциональными концевыми группами

    Присоединением друг к другу макромолекул двух различных линейных полимеров, на концах цепей которых находятся функциональные группы. [c.181]

    Реакции концевых групп макромолекул. Кроме функциональных групп, входящих в состав элементарных звеньев полимера, на концах макромолекул некоторых полимеров, главным образом гетероцепных, имеются функциональные группы, также способные вступать в различные реакции. Так, на концах макромолекул полиамидов находятся аминные и карбоксильные группы, на концах макромолекул полиэфиров— гидроксильные и карбоксильные группы, на концах макромолекул полисахаридов — гидроксильные и альдегидные группы. [c.223]


    По второму способу привитые сополимеры получают за счет взаимодействия функциональных групп (—КН2, —С , "СООН, —ОН и др.) по методу поликонденсации. В полимере, к которому производится прививка, функциональные группы должны располагаться вдоль цепи, а в прививаемо.м полимере— На концах молекулы В качестве иримера можно привести реакцию модификации полиакриламида  [c.191]

    Как было показано в главах 2—4, посвященных рассмотрению кинетических закономерностей процессов синтеза сетчатых полимеров, на глубоких стадиях реакция резко замедляется вследствие топологических и диффузионных ограничений. Поэтому в сформированном полимере остается довольно большое количество исходных непрореагировавших функциональных групп. Эти функциональные группы могут входить как в состав сетчатого полимера (свободные концы), так и находиться в виде исходного мономера (олигомера). Присутствие этих групп может проявляться не только в виде дополнительных мелкомасштабных локальных переходов, связанных с движением свободных концов или молекул олигомера, но эти движения могут накладываться на локальные или сегментальные переходы собственно сетки. При этом вся картина молекулярной подвижности элементов сетки в стеклообразном состоянии сильно усложняется и затрудняется ее расшифровка. [c.199]

    Полимеры с функциональными концевыми группами получаются методами поликонденсации или ступенчатой сополимеризации при избытке одного из компонентов, например проводят синтез полиэфиров при избытке кислоты или спирта или же синтезируют полиамиды при избытке амина или кислоты. В первом случае получают полимеры, содержащие на концах только карбоксильные или гидроксильные группы, а во втором — только амино- или карбоксильные группы. Для получения полимеров с функциональными концевыми группами применяют также метод цепной полимеризации (отдельно для каждого мономера), причем характер концевых групп определяется инициатором. Применяя для инициирования смесь перекиси водорода и соли двухвалентного железа, получают полимеры с концевыми гидроксильными группами. Эти полимеры можно сшить диизоцианатом с получением блоксополимера по схеме  [c.46]

    Блоксополимеры получают несколькими способами. Все они предусматривают использование функциональных концевых групп отдельных звеньев полимера. Если функциональные группы образуются не на концах отдельных звеньев, а в их середине, то взаимодействие между такими звеньями разных мономеров приводит к образованию привитых сополимеров. [c.29]


    В настоящее время непосредственный синтез полимерных молекул с одной или двумя активными функциональными концевыми группами на кажд ю макромолекулу практически затруднен. Для синтеза таких молекул существенно, чтобы живущие полимеры не обрывались ни изомеризацией, ни реакцией с растворителем или реакцией с примесями. Кроме того, реакция между карбанионами и другими реагентами не должна сопровождаться побочными реакциями и должна проходить полностью. Это последнее условие иногда трудно осуществить, особенно если реагируют окись этилена или двуокись углерода [174]. В результате реакций между карбанионами и этими реагентами образуются алкоголятные и карбоксильные анионы соответственно. Карбоксильные анионы в гораздо большей степени склонны к ассоциации, чем карбанионы, что приводит к значительному увеличению вязкости полимерных растворов в процессе реакции. Если применять живущие полимеры с активными группами на двух концах цепи, образуется гель. Поэтому необходимо тщательное смешивание окиси этилена или двуокиси углерода с живущими полимерами, прежде чем реакция пройдет слишком глубоко. В противном случае содержание гидроксильных или карбоксильных групп будет меньше теоретического, если не проводить реакции длительное время. Шорт [175] описал один из способов мгновенного смешивания исходных продуктов. Раствор живущего полимера и реагентов пропускается через Т-образную реакционную трубку при условиях, при которых в точке смешения обеспечивается турбулентное перемешивание. Степень карбоксилирования при такой методике выше, чем в том случае, когда живущий полимер выливали на сухой лед или в раствор живущего полимера вводили газообразную двуокись углерода. Если реакция медленная, продукт может взаимодействовать с непрореагировавшим живущим полимером. Так, при кар- [c.101]

    Такие циклические олигомеры могут образовываться по любой из трех типовых реакций обмена, но поскольку они находятся в равновесии с молекулами других размеров в высокомолекулярных полиэфирах, причем даже было обнаружено, что они вновь образуются в полиэфирах, из которых их предварительно удалили [19], эти олигомеры, вероятно, не получаются в результате циклизации при взаимодействии концевых функциональных групп коротких цепей. Хотя концентрации концевых групп незначительны, константы скорости реакций типа I и II могут превышать константу скорости реакции типа III, поэтому возможно образование циклических олигомеров в результате внутримолекулярного обмена концевых групп полимера с другими группами, находящимися вблизи конца молекулы, или в результате такого процесса, при котором небольшой сегмент из середины цепи полиэфира отщепляется в результате реакции обмена (VI1-3). [c.464]

    Анализ концевых групп является химическим методом, применяемым для расчета среднечисловой молекулярной массы образцов полимеров, молекулы которых содержат реакционноспособные функциональные группы на одном или обоих концах. Например, известна структура полибутадиена с карбоксильными (КПБ) и гидроксильными (ГПБ) концевыми группами. Теоретически каждая молекула имеет две функциональные группы. Другими словами, на каждые две определенные функциональные группы в образце полимера приходится одна молекула. Нам известно понятие функциональность , используемое в химии полимеров. Функциональность определяется как число реакционноспособных групп, имеющихся в каждой молекуле. Поэтому функциональность КПБ и ГПБ равна двум. [c.313]

    Наиболее распространенный способ регулирования молекулярной массы — использование одного из мономеров с некоторым избытком при этом на концах цепи образуются функциональные группы одной природы — мономера, взятого в избытке, — и такой полимер в процессе хранения будет стабильным. [c.163]

    Молекулярную массу полимера можно также изменять добавлением монофункционального мономера в процессе синтеза. При взаимодействии его с растущей полимерной цепью на концах макромолекул не будет функциональных групп [3, с. 72]. [c.163]

    При отсутствии побочных реакций поликонденсация дикарбоновых кислот и двухатомных спиртов или диэфиров и двухатомных спиртов может привести к образованию линейного полимера, способного к кристаллизации. Для получения таких полимеров необходимо отсутствие в молекулах исходных компонентов боковых замещающих групп и симметричное расположение функциональных групп на концах макромолекул, так как боковые ответвления в макромолекулах полиэфиров препятствуют образованию кристаллитов. [c.420]

    Карбоновые кислоты могут образовывать сложные эфиры, вступая в реакцию конденсации со спиртами, или амиды, вступая в реакции конденсации с аминами. Конденсационные полимеры образуются в реакциях поликонденсации из молекул с функциональными группами на обоих концах. [c.435]


    Как следует из уравнений (1.13), (I. 14) и из рис. 1.5, для получения полимера С большой молекулярной массой при обратимой ноликонденсации необходимо тщательно удалять из системы образовавщийся низкомолекулярный продукт реакции. Так, для получения сложных полиэфиров с Р > 100 (/С = 4,9 при 280 °С) содержание воды в реакционной системе в конце реакции не должно превышать тысячных долей процента. Однако на практике при проведении равновесной поликонденсации степень полимеризации обычно не достигает предельных значений, определяемых константами поликонденсационного равновесия, из-за протекания побочных процессов, приводящих к дезактивации функциональных групп. В большинстве случаев молекулярная масса поликонденсационных полимеров определяется не термодинамическими, а кинетическими факторами. Как равновесная, так и неравновесная поликонденсация приводят к получению полимерных продуктов, неоднородных по молекулярным массам. [c.36]

    Их влияние на молекулярную массу продуктов поликонденсации аналогично влиянию избытка одного из компонентов в исходной смеси. Монофункциональные соединения могут образовываться в реакционной системе в результате побочных реакций. Часто небольшие количества монофункциональных соединений специально вводятся в реакционную смесь для регулирования молекулярной массы полимеров и придания стабильности продукту (на концах цепи будут функциональные группы одного типа). В таком случае их называют стабилизаторами молекулярной массы. [c.58]

    Из приведенных выше примеров ступенчатых линейных реакций видно, что формирование макромолекулы происходит в результате последовательных стадий взаимодействия функциональных групп друг с другом. Поэтому если такие группы содержатся в исходной композиции в эквимолярных соотношениях, то реакции их друг с другом будут продолжаться до их полного исчерпания. При этом на концах образующихся макромолекул всегда присутствуют свободные функциональные группы. Если в системе имеется избыток функциональных групп одной природы, то функциональные группы противоположной природы быстро израсходуются в реакциях. Избыточные концевые функциональные группы одной природы не могут реагировать друг с другом, и рост макромолекул прекратится. Это произойдет тем раньше и при тем меньшем значении средней молекулярной массы конечного продукта, чем больше избыток одних функциональных групп по сравнению с другими. Таким образом, избыток функциональных групп одного из мономеров играет роль стопора реакции образования полимера и прерывает эту реакцию на стадии низкомолекулярных продуктов или олигомеров. [c.72]

    Лактам —общее название циклических амидов ш обозначает, что соответствующая функциональная группа находится на конце цепи (м-капролак-там означает, что в аминокислоте, из которой построен этот полимер, аминогруппа расположена ча конце цепи). [c.270]

    Реакции концевых групп полимера являются макромолекулярными реакциями. В них участвует вся макромолекула, выступая как монофункциональное соединение с большим и сложным радикалом, причем реакционная способность функциональной группы не зависит от размера радикала. Если на концах каждой макромолекулы полимера содержится только по одной функциональной группе, то число функциональных групп обратно пропорционально значению молекулярной массы полимера. На этом основаны химические методы определения среднечисловой молекулярной массы полимеров. [c.223]

    Карбоваксы (полимеры с различными молекулярными массами) получают реакцией этиленоксида с виг -диолами (например, этиленгликолем). Поскольку этиленгликоль содержит две функциональные группы, полимер растет с обоих концов. Карбоваксы находят применение в качестве смазочных масел, компонентов мазей и жидкой фазы в газожидкостной хроматографии (ГЖХ). [c.455]

    Образование сеток за счет реакции двух (или более) разнородных полимеров по функциональным группам, расположенным вдоль цепи каждого из полимеров (т.е. в повторяющихся звеньях, а не по концам). [c.27]

    В случае реакции 1 энзим или катализатор ковалентно связан с полимером. Хорошо известно, что ионообменные полимеры с кислотными группами широко используют в качестве гетерогенных катализаторов. В качестве примеров можно привести кислотно-каталитические реакции фенола с ацетоном с образованием 4,4 -ди-гидроксидифенил-2,2 -пропана (бисфенола А) или алкилирование фенола олефинами. В реакциях типа 2 происходит взаимодействие низкомолекулярного соединения с полимером, содержащим функциональные группы, с переходом функциональной группы или электронов (редокс-полимеры). В случае твердофазного синтеза по Мерифилду [5, 6] имеет место ступенчатое образование поли-пептидных последовательностей с помощью реакционноспособных полимерных носителей. В конце реакции основная полимерная цепь разрывается. В случае длинных полипептидных цепей вследствие неколичественного взаимодействия/ возникает разнозвенность, которая приводит к необходимости искать другие пути синтеза с применением защитных групп. Развивается направление, связанное с использованием растворимых носителей [7]. Метод Мерифилда применяют ограниченно. В последние годы, правда, твердофазный синтез снова приобрел значение для получения олигонуклеотидов, так как он включает небольшое число стадий [8]. В качестве полимерных носителей используют наряду с кремниевым гелем полистирол [9—11] и гидрофильные набухающие полимеры [12, 13]. [c.79]

    Нахождение молекулярного веса по определению концевых фупп полимера. Этот метод применим в основном для линейных полимеров. Чаще всего этим методом определяют молекулярные веса полимеров, полученных путем поликонденсации (за исключением реакции дегидроконденсации углеводородов). Макромолекулы таких полимеров на концах цепи могут содержать карбоксильные, гидроксильные, амин-ные, сульфгидрильные и другие грулпы или атомы хлора, фтора, брома и т. п. Полимеры, получаемые реакцией поликонденсации из мономеров, имеющих три и более функциональных групп, имеют разветвленную структуру, и функциональные группы могут находиться не только на концах цепи, но и в ответвлениях макромолекул. Для таких полимеров определение молекулярного веса методом концевых групп проводить нельзя. Полимеры, получаемые по реакциям полимеризации, на концах макромолекул могут также содержать атомные группировки, являющиеся остатками инициаторов или регуляторов полимеризации, олефиновую связь, атомы металлов и других элементов, что позволяет определить их молекулярный вес методом концевых групп. [c.170]

    Живущие полимеры имеют активные группы на одном или обоих концах. В анионной полимеризации виниловых мономеров это карбанионы, которые, как хорошо известно, легко превращаются в другие функциональные группы. Например, при взаимодействии с двуокисью углерода образуются карбоксильные, а с окисью этилена — гидроксильные концевые группы. Ремп и Лушо [132] показали, как можно ввести концевые аминогруппы и т. д. Еще больше примеров таких реакций, которые позволяют включить другие концевые группы, например галогенные, нитрильные, альдегидные, меркаптогруппы и др., имеются в работе Уранека и др. [112], Применение 4-диметиламино-бензальдегпда позволяет получить полимеры с концевыми группами, содержащи, п1 и гидроксил и четвертичный амин [176]. Эти методы особенно ценны для получения а,сй-бифункциональных полимеров, потому что такие полимеры могут подвергаться дальнейшей обратимой и необратимой полимеризации, в результате которой образуются большие структуры. [c.101]

    Увеличение длины цепей или сшивание полимеров, содержавших реакционноспособные группы, может быть осуществлено независимо от того, где расположены реакционноспособные группы на концах цепи или нерегулярно в макромолекуле. Однако свойства образующихся при этом полимеров будут совершенно различны, так как из полимеров, у которых реакционноспособные группы расположены нерегулярно в цепи, получаются разветвленные структуры, в то время как из полимеров, содержащих реакционноспособные группы на конце цепи, образуются линейные макромолекулы. Флори [3] на примере вулканизата каучука показал, что только основные цепи обусловливают эластические свойства материала, в то время как нереакциопноспособные боковые цепи отрицательно влияют на прочность. Следовательно, для получения материала с оптимальными свойствами при проведении реакций функциональных групп, содержащихся в цепях полимера, необходимо, чтобы реакциопноснособные группы были расположены на концах цепи, а не распределялись произвольно вдоль цепи. [c.264]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Аналогичные закономерности наблюдаются прн катализированном ферментами синтезе (биосинтезе) полимеров. Мономеры в этом случае являются бифункциональными соединениями, но вследствие высокой специфичности катализатора оказывается возможным взаимодействие лишь одной из функциональных групп мономера с определенным концом растущей полимерной цепи. Например, фермент полинуклеотидфосфорилаза, с помощью которого происходит биосинтез полирибонуклеотидов из нуклеозиддифосфа-тов, катализирует взаимодействие концевой 3 —ОН группы растущей полинуклеотидной цепи с пирофосфатной связью в мономере  [c.368]

    Под флокуляцпей подразумевают такой процесс агрегирования частиц дисперсной фазы, когда присоединение их друг к другу осуществляется полимерными молекулами, называемыми флокулян-тами. Флокуляция особенио характерна для линейных полимеров с активными функциональными группами, взаимодействующими с поверхностью дисперсных частиц (полиакриламидов, поливиниловых спиртов и т. д.). Присоединяясь двумя концами к двум разным частицам дисперсной фазы, длинная молекула образует между ними полимерный (углеводородный) мостик. Связанные поли-74 [c.74]

    Для. получения полимеров наибольшего молекулярного веса необходимо строгое соблюдение эквимолекулярного соотношения исходных веществ. При этом условии на каждой промежуточной стадии процесса образуются макромолекулы с различными функциональными группами иа обоих концах цепи, благодаря чему они могут продолжать взаимодействовать между собой. При избытке любого исходного компонента возможно прекращение поликонденсации (вследствие образования только карбоксильных групп или только аминогрупп на концах макромолекул). [c.439]

    Гидроксильные и алкоксигруппы на концах макромолекул полисилоксанов обладают высокой реакционной способностью, намного превосходящей активность спиртовой гидроксильной и эфирной группы. Это свойство полисилоксанов открывает широкие возможности для синтеза разнообразных полимерных кремнийорганических соединений. Свойства полисилоксанов можно модифицировать путем химического взаимодействия низкомолекулярных фракций полисилоксана с различными органическими соединениями, в том числе и с органическими полимерами. Так, полиорганосилоксаны, содержащие на концах макромолекул алкоксигруппы, вступают в реакцию переэтерификации с алкидными смолами, имеющими гидроксильные концевые группы, а также с эпоксидными полимерами. При взаимодействии алкилацетоксисиланов со спиртами в молекулы мономера можно вводить различные радикалы, содержащие функциональные группы. Пользуясь этой реакцией, можно ввести в состав полисилоксана эпоксигруппы  [c.496]

    Средняя степень поликонденсации = СоС = - -k oi линейно растет во времени. Предельное значение степени поликонденсации зависит от соотношения концентраций функциональных групп Г = A, i. = (1 -ь г) (1 г)-1 и, например, для г = 0,99 = 100. Низкая степень поликонденсации получается в присутствии монофункциональных соединений, присоединение которых к концу растущей цепи прекращает рост, о используют для регулирования молекулярной массы полимеров. Другой фактор, ограничивающий рост цепи, — равновесный характер конденсации и деструкции под действием выделяющегося низкомолекулярного продукта А (например, воды). В результате этого Р зависит от константы поликонденсационного равновесия К и молярной доли вещества А — /пд  [c.283]

    Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез живых полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроапион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС стирол — бутадиен — стирол) обладают ценными свойствами они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, подошвы для обуви и [c.64]

    Большое значенне имеет Ф. в химии высокомол. соед., поскольку оиа определяет способность хим. соед. к образованию полимеров, возможность образования линейных, разветвленных, циклич. или сшитых структур. См. также Распределение по типам функциональности. ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ, качественное обнаружение и количеств, определение функц. групп в молекулах орг. в-в. Хим. методы основаны на характерных для данной группы р-циях. Для установления конц. определяемого в-ва измеряют кол-во продукта р-ции или израсходованного реагента (см., напр., Ван Слайка метод, Церевитинова метод). [c.640]


Смотреть страницы где упоминается термин Полимеры с функциональными концевыми группами: [c.55]    [c.37]    [c.643]    [c.64]    [c.27]    [c.357]    [c.536]    [c.52]    [c.76]    [c.308]    [c.432]    [c.132]    [c.932]   
Смотреть главы в:

Анионная полимеризация -> Полимеры с функциональными концевыми группами


Анионная полимеризация (1971) -- [ c.101 , c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Функциональные группы



© 2025 chem21.info Реклама на сайте