Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дейтерий, определение масс-спектрометром

    Описанные выше способы химической "фиксации" двойной связи для определения ее положения с помощью масс-спектрометрии трудоемки, требуют значительных количеств образца и малопригодны при исследовании смесей олефинов. Более удобно для этой цели использовать метод реакционной хромато-масс-спектрометрии. В этом случае алкены подают в масс-спектрометр в токе дейтерия через реакционную колонку, содержащую катализатор дейтерирования. Регистрируемые масс-спектры об- [c.188]


    Дейтерий, и часто обнаруживают теперь с помощью масс-спектрометра, а дейтерий — еще иногда и по измерениям плотности. При использовании материала с большой концентрацией изотопа весьма удобна и пригодна абсорбционная спектроскопия. Подробные методики, возникающие трудности и относительные достоинства различных методов регистрации изотопной воды обсуждались в ряде статей [74, 153]. Масс-спектрометр является наиболее гибким прибором в том отношении, что он позволяет анализировать любые химические образцы, если только они могут быть превращены в соответствующие газы. Так, например, наиболее точное определение Н О основано [57] на анализе образующейся при равновесии [c.90]

    Пользуясь рассмотренным методом, хромато-масс-спектрометрический анализ смесей алкенов можно осуществлять в три стадии 1) компоненты смеси после хроматографического разделения вводятся в масс-спектрометр через байпасную систему (установление молекулярной массы, водородной ненасыщенности, некоторых элементов структуры) 2) компоненты вводятся в масс-спектрометр после прохождения через микрореактор гидрирования нри хроматографировании в токе газа-носителя — водорода (определение углеродного скелета) 3) аналогичный анализ с хроматографированием в токе газа-носителя дейтерия (определение углеродного скелета и положения двойной связи). [c.49]

    Другие ошибки в определениях относительной распространенности могут возникать при повышенных давлениях в области источника. Например, для водорода, свободного от дейтерия, при высоких давлениях наблюдается пик, соответствующий Н3. Подобные ионы могут быть легко распознаны, так как они образуются в процессе столкновения с нейтральными молекулами газа, и поэтому интенсивность их пиков изменяется с изменением давления более быстро, чем интенсивность Н [223]. При очень низких давлениях интенсивность пика иона Щ пропорциональна квадрату величины давления. ТаКим. образом, при измерении относительного содержания НО /Н в масс-спектрометре с разрешающей способностью, недостаточной для разделения Нз и НО, необходимо измерить отношение масс 3 и 2 в широком диапазоне давлений и экстраполировать величину отношения к нулевому давлению. Сходные взаимодействия между протонами и нейтральными молекулами наблюдаются для многих органических молекул, особенно сложных эфиров и нитрилов, что может привести к ошибкам измерения относительной распространенности изотопов-по пикам молекулярных ионов. Эти и другие ионы, образованные в процессе столкновений, будут рассмотрены ниже. [c.79]


    Первая стадия в определении содержания дейтерия в образце состоит в превращении материала в форму, удобную для введения его в масс-спектрометр. Водород в органических соединениях может быть превращен в воду сжиганием вещества в сухом кислороде. Многие исследователи считают воду неудобным материалом для анализа на масс-спектрометре из-за адсорбции и обменных эффектов на стенках вакуумной камеры, что приводит к разбавлению исходного дейтерированного образца и явлению памяти при изучении последующих образцов. Поэтому обычно перед исследованием превращают воду в водород [c.83]

    Используя нагреваемую вакуумную систему, Томас [2012] осуществил прямое масс-спектрометрическое определение содержания дейтерия в образцах тяжелой воды. Ошибки, связанные с адсорбцией, не были исключены полностью, но их значительное снижение позволило получить точность анализа 0,3 ат.% дейтерия для концентраций дейтерия до 10 ат.%. Уошберну, Берри и Холлу [2132] первым удалось осуществить анализ изотопов водорода в образцах воды с точностью, сравнимой с анализом газообразного водорода. Они использовали прибор, сконструированный специально для анализа водно-спиртовых смесей. Благодаря тщательной юстировке масс-спектрометра и методике споласкивания масс-спектрометра двумя образцами авторам удалось определить разницу в содержании дейтерия до 0,0006 ат.% в пределах концентраций, соответствующих естественной распространенности. Масс-спектрометр был модифицирован введением дифференциальной откачки (так что адсорбционные эффекты [c.86]

    Большинство химических элементов в природе состоит из смеси изотопов, причем изотопный состав у элементов различного происхождения почти всегда одинаков или отличается незначительно. Обогащая химическое соединение или смесь одним из стабильных изотопов исследуемого элемента, получают систему, где роль метки выполняет измененный изотопный состав вещества. В качестве стабильных изотопов часто используются изотопы легких элементов, таких как дейтерий, углерод-13, азот-15, кислород-18 и др. Количественное определение изотопного состава производится главным образом при помощи масс-спектрометров. Кроме того, известны методы определения изотопного состава по плотности, теплопроводности, показателям преломления последнее время находят применение измерения инфракрасных и высокочастотных спектров, а также ядерного магнитного резонанса. [c.8]

    В связи с широким применением в последние годы в органической химии изотопов и, в частности, радиоактивных изотопов разработаны были методы количественного анализа и для них (начало 50-х годов). В частности, соединения, содержащие дейтерий, сжигались (ПО Преглю до превращения всего водорода в смесь Н2О с ВдО, л количество дейтерия определялось либо в самой воде различными методами, например с помощью ИК-спектроскопии, либо она (смесь) восстанавливалась до водорода с последующим определением дейтерия масс-спектрометрически. В те же годы было предложено определение дейтерия еще переводом исходного соединения в какой-либо из низших алканов и определение дейтерия масс-спектрометрическим методом. Аналогично определяют и содержание трития. Масс-спектрометрия оказалась ценным инструментом для определе- [c.310]

    Приборы ГХ — МС удобно применять и для определения содержания меченных (например, дейтерием) соединений в смеси. При этом сами соединения обычно известны, и часто необходимо исследовать только молекулярные ионы. Однако меченый и немеченый компоненты, как правило, после выхода из хроматографической колонки бывают слабо разделены и однократная регистрация соответствующих наложенных друг на друга спектров оказывается недостаточной, так как во время регистрации изменяется состав смеси, поступающей в масс-спектрометр. Можно переделать устой-ство регистрации масс-спектрометра, так чтобы регистрировать ионные интенсивности, изменяющиеся во время выхода из колонки разделенных соединений, сразу для двух значений отношения т/е. Для этого магнитное поле в спектрометре поддерживают постоянным, а ускоряющее напряжение быстро переключают с помощью реле времени и делителя напряжения [119]. Графики интенсивностей для обоих ионов получают с помощью одного коллектора и одного осциллографа. Эти графики оказываются несколько смещенными друг относительно друга, но вполне различимы, хотя и наложены друг на друга площади под ними показывают относительное содержание каждого соединения в смеси. Необходимо также знать (или определить) ионизационную способность каждого соединения. Этот метод, в особенности на приборе с повышенной точностью, может быть очень полезен в количественных определениях содержания радиоактивных изотопов в соединении или в определениях составов неоднородных газохроматографических фракций. [c.243]


    Метод уравновешивания был разработан Фаркасом [ ] применительно к определению содержания дейтерия в тяжелой воде и позднее был с успехом применен к этой задаче рядом авторов, например, [" ]. Вода уравновешивалась с водородом или дейтерием в присутствии платинового катализатора. Уравновешенные по изотопному составу образцы газа затем анализировались прн помощи масс-спектрометра. По данным этого анализа, зная константу равновесия обменной реакции, с помощью градуировочных графиков определяли начальное содержание дейтерия в воде. [c.605]

    Каплунов Л. Д., Непосредственное определение валового содержания дейтерия в жидкофазных дейтерированных соединениях на масс-спектрометре, Отч. № 101-65, с. 140—143. [c.357]

    Количественное сопоставление величин межмолекулярной миграции алкильных групп и дейтерообмена между алкильными группами и ароматическими ядрами дает дополнительную информацию о механизме реакции диспропорционирования. С этой целью были проведены опыты по диспропорционированию ароматических углеводородов, содержащих дейтерий в фиксированном положении алкильной группы [160, с. 93 211 ]. Содержание дейтерия в алкилбензолах как исходных, так и выделенных из реакционной смеси, определяли методами капельного анализа, масс-спектрометрии и спектроскопии ЯМР на ядрах Н и Н. Последний метод был использован и для определения количества атомов дейтерия в отдельных фрагментах изучаемых соединений. [c.195]

    Масса А. определяется массой его ядра масса электрона ( X 9,109 10 г) примерно в 1840 раз меньше массы протона или нейтрона ( 1,67-10 гХ поэтому вклад электронов в массу А. незначителен. Общее число протонов и нейтронов-4 = Z + Л нах массовым числом. Массовое число и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. liNa. Вид атомов одного элемента с определенным значением N наз. нуклидом. А. одного и того же элемента с одинаковыми Z и разными N наз. изотопами этого элемента. Различие масс изотопов мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия (изотопные эффекты) наблюдаются у изотопов водорода вследствие большой относит. разницы в массах обычного атома Н (протия), дейтерия D ( Н) и трития Т (fH). Точные значения масс А. определяют методами масс-спектрометрии. [c.214]

    Стабильные изотопы. Дейтерий. Соединения, содержащие дейтерий, обычно сжигают до смеси ВаО — НаО, применяя либо метод Прегля для определения водорода [84], либо метод с использованием запаянных трубок для микроонределений [87]. Содержание дейтерия в образовавшейся воде определяют либо с помощью ИК-спектроснопии [87, 88], либо измерением плотности методом падающей капли [84, 89] или в градиентной трубке [90]. Другой путь состоит в восстановлении воды до водорода [91, 92] или в превращении соединения в один из низших алка-нов [93] с последующим определением содержания дейтерия при помощи масс-спектрометра. [c.36]

    Получающиеся в результате этих реакций полиамины имели при разделении в газовом хроматографе заметно меньшие удерживаемые объемы и давали более острые пики. С помощью масс-спектрометрии все изучаемые пептиды можно было идентифицировать в виде как полиаминоспиртов, так и полиаминов. Определенные аминокислоты в ходе двукратного восстановления теряют некоторые структурные особенности, а образующиеся из них продукты дают при масс-спектрометрии пики с одинаковым числом единиц массы и, следовательно, становятся неразличимыми. К ним относятся Ала и Сер, Вал и Глу, Про и Опр, а также а-аминомасляная кислота, Тре и Асп. В таких случаях их можно различить на масс-спектре, если восстановление вести в присутствии LiAlDi, когда восстанавливаемые группы метятся одним или несколькими атомами дейтерия [7]. Проиллюстрируем это на примере трех последних аминокислот при двукратном восстановлении боковая цепь а -аминомасляной кислоты (/) остается неизменной, в Тре (//) включается один атом дейтерия и в Асп IIГ)—три  [c.340]

    Изучение масс-спектров сложных эфиров ненасыщенных жирных кислот показало [8, 403 ] отсутствие достаточных для анализа различий в рядах позиционных и геометрических изомеров по двойным связям. Однако картина резко изменяется, если положение двойной связи пометить дейтерием (гидрирование водородом, содержащим дейтерий) [8 ] или превратить эфиры непредельных жирных кислот в эфиры эпокси-, диоксикислот и другие производные [404, 4051. В этих случаях масс-спектры содержат характеристические пики, по которым можно судить о положении двойной связи в исходной жирной кислоте. Производные метиловых эфиров полиненасыщенных кислот дают сложные масс-спектры с наложением пиков, что затрудняет определение положений двойных связей. Для анализа таких кислот целесообразно использование методики, объединяющей пиролиз, газо-жидкостную хроматографию и масс-спектрометрию [404 ] метиловый эфир полиненасыщенной кислоты восстанавливают дей-терированным гидразином и подвергают пиролизу при 600 С, про- [c.176]

    В основу метода положен тот факт, что в противоположность алкепам алканы содержат в масс-спектрах достаточно много признаков, Ро которым можно судить об их углеродном скелете. Гидрирование алкенов может с успехом проводиться в газофазном микрореакторе, который установлен в системе напуска хромато-масс-спектрометра, если в качестве газа-носителя при хроматографировании используется водород. Весьма заманчивым представляется дейтери-рование алкенов в том же микрореакторе газообразным дейтерием и последующий масс-спектральный анализ продуктов с целью определения положения двойной связи. [c.43]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Сходный метод превращения воды в водород был использован Алфин-Слейтером, Рокком и Суислокки [29], которые подтвердили необходимость собирания водорода, полученного при полном разложении образца воды, и установили, что отношения, полученные в начале и в конце процесса восстановления, отличаются одно от другого. Авторы исследовали дейтерированные образцы воды с известным содержанием дейтерия измерялось отношение пиков, соответствующих массам 3 и 2. Это отношение увеличивалось с повышением давления образца благодаря увеличению вероятности образования иона Н3 при больших давлениях. Исходя из этого, все полученные значения отношений экстраполировали к нулевому давлению. В работе использовали секторный масс-спектрометр, снабженный магнитом источника. Было найдено, что величина отношения интенсивностей пиков с массой 3 и 2 в большой степени зависела от положения этого магнита и в меньшей степени от других приборных факторов. Прибор был отъюстирован таким образом, чтобы получить максимальную воспроизводимость, а не максимальную абсолютную точность. Для определения обогащения дейтерием образца неизвестного состава использовали калибровочную кривую, построенную на основании заданных и полученных значений обогащения образца. Авторы испытывали затруднения при исключении памяти , связанной с анализом предыдущих образцов водорода они применили методику споласкивания системы обычным водородом и откачивания для удаления всех следов изучаемого образца. Требовалось несколько часов, чтобы такой обработкой удалить образцы, обогащенные дейтерием. Все спектры, показывающие наличие воздуха или воды, исключались из рассмотрения, так как присутствие этих компонентов влияет на отношение пиков масс 3 и 2. [c.85]

    Ошибки определения распространенности изотопов могут возникать при использовании многоатомных молекул вследствие различной вероятности разрьша связей между атомами изотопов. Предположение о полной идентичности изотопов данного элемента (за исключением их массы) часто оказывается недостаточно точным. Разница в энергии связи наиболее резко заметна в случае водорода и дейтерия. Поэтому в настоящий раздел включено рассмотрение общего случая и конкретных примеров анализа изотопов водорода. Ошибки, вызываемые этим фактором, оказываются наибольшими, если относительное содержание осколочных ионов в масс-спектре велико. Однако иногда точные, результаты могут быть получены и при наличии больших осколочных ионов. Рассмотрим молекулы с изотопами АВ и А В, где В представляет собой один атом или группу атомов. Пусть вероятности ионизации для всех типов ионов этих двух молекул относятся, как р р. Пусть вероятность образования молекулярного иона в спектре АВ равна х, а вероятность образования осколочного и многозарядного ионов равна (1—х). Для молекулы А В соответствующие значения выразим какх и (1—х ). Предположим, что в масс-спектрометр вво- [c.87]

    Превращение органических соединений в летучую форму, удобную для анализа на масс-спектрометре, может быть осуществлено одним из лшогих методов, предложенных для прямого определения кислорода [42, 579]. Одним из наиболее важных является метод Тер-Мейлена [1390], по которому кислород, содержащийся в органических соединениях, количественно превращается в воду при испарении в токе чистого водорода, крекинге или пиролизе соединения при высокой температуре и пропускании продуктов реакции над никелевым катализатором при 350°. Другой метод был предложен Шютце-[1806] и модифицирован Унтерцаухером [669, 2066]. В методе Шютце — Унтерцаухе-ра образец термически разлагается в токе чистого азота, и полученные продукты пропускаются над углеродом при температуре около 1000°, причем они превращаются в окись углерода и далее в двуокись углерода под действием пятиокиси иода. Дёринг и Дорфман [501], используя этот метод, получили хорошие результаты. В случае работы на масс-спектрометре с высокой разрешающей силой превращение окиси углерода в двуокись необязательно. Для исследования смеси СО и N2 необходимо, чтобы отношение М/АМ было равно 2300. Если применяется метод анализа Тер-Мейлена, то вода может быть исследована непосредственно, как и при определении дейтерия, либо по двуокиси углерода. Для этого перемешиванием воды и двуокиси углерода в запаянных стеклянных трубках в течение нескольких часов при комнатной температуре, как это описано Коуном и Юри [368], достигают состояния равновесия [1403]. Содержание 0 в воде может быть вычислено из состава равновесной смеси двуокиси углерода и воды по константе равновесия обменной реакции, равной 2,094 при 0° 2141]. [c.89]

    Кроме эксперид ентов с тритием, было проведено два опыта с нафталином и дейтерием при разряде в течение 5 лшн для определения количества Н , образованного из органического вещества, и обеднения Ва в газовой фазе. Методика проведения разряда была аналогичной. Газ анализировали нри помощи масс-спектрометрии до и после разряда. [c.93]

    Часто требуется определение содержания дейтерия в воде. В смесях HgO и D O, находящихся в равновесии, можно ожидать образования HDO, поскольку все указанные соединения подвергаются в некоторой степени ионизации. Ввиду того что тяжелый изотоп присутствует лишь в незначительной концентрации, равновесие Н О 4-ОзО 2 2НОО смещено вправо. Поэтому D O существует как таковая в ничтожно малых количествах. В такой смеси масс-спектрометр указывает на наличие ионов с массами [c.352]

    При диазотировании в апротонном растворителе [75] наблюдается значительный обмен водорода на дейтерий поэтому абсолютное определение дейтерия в метилциклопропане не позволяет различить катионный и карбеновый механизмы. Однако бутен-1 может образоваться только по катионному механизму, поэтому разность в абсолютном содержании дейтерия в бутене-1 и метилциклопропане, полученных из амина 72-1-Е>2, может служить мерой вклада карбенового механизма. Низковольтные масс-спектрометри-ческие измерения показали, что при диазотировании соединения [c.401]

    Определение общего содержания дейтерия в углеводородах и выяснение его распределения по различным положениям молекулы в настоящее время чаще всего производится с помощью масс-спектрометра или оптических инфракрасных спектров. Общий метод анализа дейте-ропарафинов СпНгп+iD разработан Стевенсоном и Вагнером [765]. [c.16]


Смотреть страницы где упоминается термин Дейтерий, определение масс-спектрометром: [c.436]    [c.436]    [c.190]    [c.414]    [c.88]    [c.288]    [c.483]    [c.22]    [c.619]    [c.622]    [c.642]    [c.642]    [c.259]    [c.269]   
Физические методы органической химии Том 3 (1954) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масса определение



© 2025 chem21.info Реклама на сайте