Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

окислительно-восстановительной реакции скорости реакции

    Зная можно лишь предвидеть возможность или невозможность прохождения окислительно-восстановительной реакции данная система может быть окислена лишь такой системой, окисли-тельно-восстановительный потенциал которой выше. Следует учитывать также и скорость протекания реакции система может иметь очень высокий потенциал, но действовать как окислитель с очень малой скоростью, например для персульфата г-/ 2- = [c.370]


    С другой стороны, можно показать, что в каталитических окислительно-восстановительных реакциях скорость процесса самым непосредственным образом связана с величиной окислительного потенциала среды. Это определяет решающую роль окислительных потенциалов в изучении кинетики каталитических окислительных процессов, в особенности фермента- [c.167]

    Помимо редокс- процесса для переработки облученного горючего был разработан пурекс-процесс. В этом процессе для отделения урана и плутония друг от друга и от продуктов деления также применяется экстракция. В качестве экстрагента используется раствор ТБФ в инертном углеводородном разбавителе, а вместо А1(МОз)з высаливающим агентом является НМО.з, создающая высокую концентрацию нитрат-ионов. Окислительно-восстановительные реакции плутония, описываемые уравнениями (4) — (9), характерные для редо кс-процесса, находят применение и в пурекс-процессе. Но в пурекс-процессе лучше экстрагируется плутоний (IV), а не плутоний (VI). В условиях пурекс-процесса ТБФ также почти не экстрагирует плутоний (III). Это явление положено в основу разделения урана и плутония после первого экстракционного цикла. Проведением экстракции при 40—50° С достигаются повышенные скорости окислительно-восстановительных реакций, а следовательно, и лучшее разделение при экстракции. [c.240]

    Изучению кинетики окислительно-восстановительных реакций и реакций, скорость которых лимитируется перескоком электрона, во многом способствовало применение изотопов и появившихся в последнее время разнообразных методов исследования быстрых реакций. Мы рассмотрим далее кинетику некоторых типичных реакций такого типа [128, 154—157]. [c.196]

    Зачастую химические реакции не идут до конца, т. е. экви-молярная смесь исходных веществ не полностью превращается в конечные продукты реакции. В таких случаях реакция приближается к некоторому равновесному состоянию, которое может быть заранее рассчитано на основе термодинамических данных (разд. 4.2). Примерами таких реакций являются образование аммиака, иодоводорода, многие окислительно-восстановительные реакции и т. д. Обратимость реакции особенно заметна в тех случаях, когда константа равновесия близка к 1. Если необходимо довести реакцию до конца, то следует удалять продукты реакции из равновесной смеси. На скорость таких реакций оказывает большое влияние обратная реакция, как только в достаточной степени повысится концентрация продуктов реакции. Скорость обратной реакции становится тем больше, чем ближе находится система к равновесному состоянию. При учете обратной реакции скорость образования, например, Н1 для реакции (2) вблизи состояния равновесия равна [c.175]


    Природа растворителя может заметно влиять на скорость окислительно-восстановительной реакции многие реакции, для которых в промежуточных стадиях участниками были ионы и радикалы, генерируемые из молекул воды (ОН , -ОН, -ОаН и др.), замедляются в среде неводных растворителей. Этому же способствует уменьшение диэлектрической проницаемости растворителя. [c.280]

    Известно много окислительно-восстановительных реакций, скорость которых можно увеличить при помощи катализатора. Однако многие аналитические методы, основанные на использовании каталитических реакций, недостаточно специфичны. Например, реакция между церием (IV) и мышьяком(III) катализируется тремя веществами. Если все эти три вещества присутствуют в анализируемом растворе, необходимо проводить предварительное разделение и выделение микрограммовых количеств каждого катализатора. [c.392]

    Промежуточное взаимодействие при окислительно-восстановительных реакциях связано с электронными переходами. На протяжении цикла каталитического превращения совершаются как процессы, связанные с переходом электронов от катализатора к реагирующим веществам, так и процессы, сопровождающиеся обратными переходами электронов. Вероятность протекания этих процессов зависит от природы реагирующих молекул и электронной структуры катализатора. Если наиболее трудная, лимитирующая стадия каталитического цикла связана с переходом электронов от катализатора к реагирующим веществам, то реакция будет протекать с тем большей скоростью, чем выше расположен уровень химического потенциала электронов в твердом катализаторе. Наоборот, если лимитирующий этап связан с переходом электронов к катализатору, то скорость реакции должна возрастать с понижением уровня химического потенциала электронов. [c.71]

    От каких факторов зависит скорость окислительно-восстановительных реакций Зависит ли она от разности окислительно-восстановительных потенциалов пар, участвующих в реакции  [c.378]

    Имеющиеся исследования окислительно-восстановительных реакций простых систем на углеродных материалах дают возможность обсудить наблюдаемые различия по сравнению с металлическими электродами. В работе [75] подробно рассмотрен механизм окислительно-восстановительных реакций в системе Ре Ре " на платине. По мнению авторов, учет строения двойного электрического слоя и состава комплексных ионов в растворе позволяет количественно объяснить экспериментальные данные, не прибегая к дополнительным предположениям. Эта простота механизма, казалось бы, облегчает понимание причин снижения константы скорости при переходе от платины к углеродным материалам однако до настоящего времени этот вопрос не выяснен и имеется несколько точек зрения. [c.120]

    Таким образом, теорию Маркуса можно с успехом применять для поисков активаторов каталитических окислительно-восстановительных реакций, скорость которых лимитирует стадия типа (V.33). [c.215]

    Исключительно интересны представления М. С. Цвета о физическом характере адсорбции нри хроматографическом разделении, об условиях, обеспечивающих высокую скорость установления адсорбционного равновесия, о расположении веществ в адсорбционные ряды и соответственно о закономерном порядке расположения их по длине колонны или выхода из колонны. Вместе с тем он высказал мысль о необходимости использования в ряде случаев окислительно-восстановительных реакций и реакций гидролиза на поверхности адсорбентов, модифицировал адсорбенты нагреванием, а также впервые предложил и осуществил реакционную хроматографию. Цвету принадлежит честь не только разработки основ метода и его широкого использования для решения сложных проблем, но и разработки основных понятий и терминов метода, включая само название метода хроматография , введения таких терминов, как проявление , вытеснение , хроматограмма и др. [c.23]

    Mg , Мо (точное валентное состояние последнего неизвестно). Комплексы этих ионов с органич. молекулами катализируют многие окислительно-восстановительные реакции и реакции гидролиза. Напр., Mg2+ входит в состав хлорофилла, 1 6 + — в состав гемоглобина, Ге + — в состав каталазы и т. д. Каталитич. активность таких комплексных соединений часто во много раз превышает каталитич. активность изолированных ионов. В ряде случаев была обнаружена зависимость каталитич. активности этих ионов от природы лигандов (М. Кэлвин, В. Лангенбек, Л. А. Николаев). Особенно сильно активируют азотсодержащие лиганды. Несмотря па большое различие констант скорости при катализе комплексами одного и того же иона с различными лигандами, в реакциях этого Типа часто наблюдается постоянство энергии активации. Увеличение же к происходит за счет множителя ко в уравнении Аррениуса. [c.238]

    Влияние температуры на протекание окислительно-восстановительных реакций частично уже рассматривалось при обсуждении скорости этих реакций. Температура существенно влияет и на состояние равновесия в окислительно-восстановительных системах. В общем виде эта зависимость выражается уравнением (2.12). Тепловые эффекты АЯ реакций окисления — восстановления довольно велики и температурный коэффициент констант равновесия значителен. Так, например, тепловой эффект реакции (6.6) составляет АЯ= —630 кДж/моль. При подстановке этого значения в уравнение (2.12) получаем, что производная [c.117]


    Кинетика реакций обусловливается их механизмом, который для окислительно-восстановительных реакций обычно до(вольно сложен, и может существенно зависеть от природы и кислотности электролита, наличия в растворе посторонних ионов и от других факторов [35—38]. Варьируя условия протекания реакции, можно добиться увеличения ее скорости настолько, что она не будет лимитировать практическое применение дайной реакции. Варьированием условий можно достигнуть также и того, что скорость реакции одного из компонентов раствора станет доста- [c.94]

    С помощью уравнений Маркуса удается в ряде случаев получить хорошие корреляции между константами скорости изотопного обмена, т. е. константами скорости окислительно-восстановительной реакции для двух пар одинаковых по составу ионов [например, Fe( N)J /Fe( N)в и Мо(СК)8"/Мо(СК)з ] и константой скорости реакции между разными ионами [Fe( N)J" -Ь Мо(СК) "], так называемые перекрестные соотношения (см., например, [203, 219, 220]). Другое интересное следствие — простое соотношение между константой скорости гомогенной окислительно-восстановительной реакции (изотопный обмен кех) и константой скорости той же реакции на электроде (Аге]) [c.98]

    Образование мостика увеличивает скорость окислительно-восстановительной реакции. Если реакция переноса электронов в системе Сг(Н,0)е —Сг(НоО)б протекает очень медленно, то аналогичная [c.12]

    Во многих окисЛитеЛьно-восстановительных реакциях катализатор способствует появлению радикалов — высокоактивных частиц, образующихся в результате разрыва химических связей в молекулах реагирующих соединений. Катализатор, обладая окислительными или восстановительными свойствами, может принимать или отдавать электроны, в результате чего и образуются радикалы. Реакции с участием радикалов протекают с огромной скоростью, поэтому минимальное количество катализатора может составлять 10" г мк и меньше. Примером подобной реакции может служить окисление тиосульфат-иона трехвалентным ионом железа [c.45]

    Скорость окислительно-восстановительных реакций в жидкой фазе, а часто и механизм их в значительной степени определяются свойствами лигандов [20—23], входящих в первую координационную сферу ионов, и природой растворителя [24—26]. В этом аспекте в основном изучались реакции между одноименно заряженными ионами. Влияние ближайшего окружения реагирующих частиц в таких системах может быть обусловлено по крайней мере тремя факторами  [c.379]

    Исследование механизмов преобразования энергии при дыхании и фотосинтезе в значительной степени основано на анализе кинетики окислительно-восстановительных реакций переносчиков электронов в окислительной (дыхательной) и фотосинтетической электронтранспортных цепях. Эти переносчики расположены в энергопреобразующих мембранах и, как правило, объединены в мультиферментные комплексы строго определенного состава и структуры, в которых задана последовательность переноса электронов от одной молекулы к другой. Для анализа транспорта электронов в таких комплексах неприменимы как обычный кинетический анализ, основанный на предположении о столкновительном характере взаимодействия молекул, так и обычный термодинамический анализ, поскольку скорость переноса электронов в комплексах не зависит от объемной концентрации индивидуальных переносчиков, а определяется концентрацией комплексов в соответствующих состояниях. [c.3]

    Способность фермента катализировать одну и только одну специфическую реакцию является, пожалуй, наиболее важным его свойством. Благодаря этому скорости специфических метаболических процессов могут регулироваться путем изменения каталитической активности специфических ферментов. Правда, многие ферменты катализируют реакции одного типа (перенос фосфата, окислительно-восстановительные реакции и т.д.), субстратами при этом является небольщое число структурно сходных соединений. Реакции с альтернативными субстратами происходят в тех случаях, когда эти субстраты присутствуют в высоких концентрациях. Протекают ли в живых организмах все реакции, возможные при участии данного фермента, зависит от относительной концентрации альтернативных субстратов в клетке и относительного сродства фермента к этим субстратам. Ниже мы рассмотрим некоторые общие аспекты специфичности ферментов. [c.67]

    Очевидно, скорость подобной сложной реакции определяется скоростью наиболее медленно протекающей промежуточной стадии ее. Наиболее медленной стадией рассматриваемого окислительно-восстановительного процесса является реакция (2), а так как она бимолекулярная, скорость всего процесса должна быть пропорциональна квадрату концентрации, что и наблюдается на опыте. [c.373]

    Следовательно, отклонения от закона действия масс, наблюдаемые в отношении скоростей окислительно-восстановительных реакций, являются лишь кажущимися и объясняются существовав нием обычно точно неизвестных промежуточных стадий окислительно-восстановительных процессов. [c.373]

    Явление химической индукции известно более ста лет. Его изучали и изучают многие исследователи, так как возникновение индуцированных реакций слул<ит источником многих ошибок в анализе. Сущность явления состоит в том, что некоторые окислительно-восстановительные реакции не протекают или протекают медленно. Предположим, что в растворе имеются вещества А и С, скорость реакции между которыми равна нулю. [c.374]

    Окислительно-восстановительная реакция этой системы протекает с высокой скоростью в эмульсии при pH 10. [c.139]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Катализаторы для таких окислительно-восстановительных реакций, как реакция (1), кроме высокой активности должны обладать селективными свойствами, характеризующимися умеренной гидрирующей функцией. Это необходимо, чтобы достичь соответствующих скоростей реакции без заметного образования метана. Следовательно, соответствующие катализаторы можно искать среди металлов группы 1Б, окислов 8 группы и сульфидов 8 группы (см. табл. 2). Следующее требование, заключающееся в том, что катализатор должен быть стабильным в среде реакционного газа, ограничивает выбор металлической медью, РбзО и РеЗ. Кроме того, подходящими свойствами, но в ограниченной степени, обладает сульфидированная форма молиб-дата кобальта. [c.118]

    Существуют разл. системы классификации Р. х. В зависимости от путей возбуждения реагентов в активное состояние Р.х. по дразделяют на плазмохим., радиационно-хям., термич., фотохим., электрохим. и др. Кинетич. классификация Р.х. учитывает молекулярность реакции (число молекул, участвующих в каждом элементарном акте,-обычно моно-, би- и тримолекулярные р-ции), порядок реакции (степень, в к-рой концентрация в-ва входит в кинетическое уравнение р-ции, устанавливающее зависимость скорости Р. х. от концентрации реагентов). По формальным признакам (изменение степени окисления, перераспределение связей, фазовому состоянию, топологии и др.) Р. X. делятся на окислительно-восстановительные реакции, присоединения реакции, замещения реакции, гетерогенные реакции, гомогенные реакции, реакции в растворах, реакции в твердых телах, топохимичес-кие реакции, перегруппировки молекулярные,, элиминирования реакции и т.д. Классификация по формальным признакам обычно не зависит от механизма р-ции. Напр., р-ции присоединения объединяются общим внеш. признаком-образованием одного нового соед. из двух или неск. исходных в р-циях замещения один фрагмент молекулы замещается на другой, при изомеризации происходит перераспределение связей между атомами в молекуле без изменения ее состава и т.д. [c.212]

    Мы попытались применить качественные выводы теории Маркуса к задаче подбора активаторов каталитических окислительно-восстановительных реакций, в которых скоростьлимитирующей стадией является окисление восстановленной формой катализатора (У.ЗЗ) [431. В качестве модельной была выбрана реакция окисления сульфаниловой кислоты персульфатом, катализируемая серебром(1) [44]. Как показали наши исследования [45], скорость этой реакции определяется стадией окисления серебра(1) до серебра(П)  [c.214]

    Основным процессом окислительно-восстановительных реакций (ОВ-реакций) является перенос электрона. Термодинамический подход (ер. разд. 3.5). не дает никакой информации относительно скорости и механизма ОВ-процессов, происходящих при задаяных условиях. Гидратированный электрон e aq может существовать в свободном состоянии в воде (полупериод жизни для реакции e aq-fH20—ьН-ЬОН при избытке. воды равен 8>10 с [46]), [c.157]

    Наконец, следует упомянуть о влиянии комплексообразования и среды на скорость окислительно-восстановительных реакций и, Мр и Ри. Как уже было отмечено, многие ионы обладают склонностью к образованию более нли менее прочных комплексов с анионами кислот, что отражается на кинетике реакций окисления и восстанов- ления. В общем случае можно сказать, что связывание некоторой доли реагирующих ионов в комплекс должно вызвать уменьшение скорости. К такому результату приводит обычно комплексообразование с нитрат-ионами. Однако сульфатные и хлоридные комплексы оказываются часто более реакционноспособными, чем простые гидратированные ионы. Например, реакции восстановления Ри (IV) двухвалентным железом и четырехвалентным ураном, окисления и (IV) трехвалентным таллием и четырех- валентным нептунием ускоряются в присутствии сульфат-ионов. С другой стороны, на реакцию между Мр (V) и Мр (III) эти ионы не оказывают действия. Хлоридные комплексы Ри (IV), Ри (VI) и 5п (II) реагируют значительно быстрее, чем простые ионы этих металлов, однако при акции с И (III) и V (III) комплексообразование (IV) с хлор-ионами не оказывает заметного влияния скорость. Комплексообразование продуктов реакции анионами кислот также влияет на кинетику, если ско- Ьсти прямой и обратной реакций не сильно отличаются эуг от друга. Заметное ускорение дисиропорционирова-Ы Мр (V) в присутствии 80 -ионов объясняется обра- [c.17]

    Рассматривая окислительно-восстановительные реакции при помощи рис. 62, мы, пользуясь электрохимическими представлениями о равновесных потенциалах, обсуждали возможность протекания таких реакций, где вовсе не обязательно участие металлического электрода, на котором устанавливается скачок потенциала. Так, мы говорили о разложении воды под влиянием различных окислителей (Рг, СЬ, СЮз, ЗгОа) с выделением кислорода или восстановителей (например Сг") с выделением водорода. Каждый из этих процессов можно представить протекающим в гальваническом элементе, у которого одним электродом будет кислородный или водородный, а другим — хлорный, гипохлоритный или какой-либо другой. Но э. д. с. таких элементов, определяемая-величиной собственных потенциалов электродов, является мерой максимальной работы соответствующих процессов. Зная знак и величину максимальной работы, мы можем судить о термодинамической возможности протекания рассматриваемого процесса (независимо от способа его протекания). Поэтому выводы, следующие из диаграммы рис. 62 или подобной ей, справедливы для реакций, совершающихся как на электродах, так и в их отсутствие, т. е. при непосредственном смешении растборов реагирующих веществ. Разумеется, скорость реакций зависит от способа их совершения и может значительно разниться при протекании на электродах и просто при смешении растворов. [c.335]

    Скорость окислительно-восстановительных реакций. Скорость [слительно-восстановительных реакций не всегда находится 1рямой зависимости от разности нормальных окислительно- становительных потенциалов. Прежде всего надо помнить, нормальные окислительно-восстановительные потенциалы еделяются в строго ограниченных условиях. При изменении ледних значения потенциалов изменяются в ту или иную сто-ly соответственно может изменяться скорость реакции, а в не- орых случаях и ее направление. Большое значение имеют. анном случае pH, ионная сила раствора, а также присутствие Шлексообразующих веществ. [c.145]

    Скорость окислительно-восстановительных реакций плутония в целом определяется скоростями окислительно-восстановительных реакций его ионов с реагентами, с одной сгороны, и реакций диспропорционирования, с другой причем соотношение между скоростями зависит от условий протекания этих двух процессов. На скорость и направление реакций оказывает сильное влияние наличие в растворах таких комплексообразователей, как S04 , F , Р0 и СОз , образующих весьма прочные комплексы с ионами плуто-ния. Кроме того, на скорость этих процессов оказывают влияние также реакции комплексообразования ионов плутония с самими окислительно-восстановительными реагентами. [c.453]

    Перенос электронов между различными компонентами системы нециклического электронного транспорта совершается с различной скоростью. Наиболее медленной считается окислительно-восстановительная реакция между двумя фотосистемами, то есть между цитохромами Вз и I (10" сек). Перенос электронов от воды к хлорофиллу а реакционного центра фотосистемы 2 (Рб5о) происходит с большей скоростью (10-3 сек). Реакции окисления цитохрома 1 и пластоцианина, а также реакция 2— ферредоксин осуществляются со скоростью сек. Образование первичных восстановителей и имеет скорость 10 сек. [c.168]

    Больщие задачи стоят перед специалистами в области изучения кинетики окислительно-восстановительных реакций, проводимых с помощью ЭИ. Важно определить влияние концентрации реагирующих веществ и роль внещней или внутренней диффузии в реакциях ЭИ с восстанавливаемым кислородом или окисляемым водородом, растворенными в воде роль температуры в изменении скоростей рассматриваемых реакций влияние гелевой или относительно жесткопористой структуры ЭИ на кинетику окислительно-восстановительных реакций и т. д. [c.124]

    В табл. 4.18 приведены значения квантовых выходов у. Вид уравнения (4.86) указывает на простую конкуренцию между реакцией мономолекулярной дезактивации возбужденных ионов иО + (или, скорее, комплексов иО + А ) и окислительно-восстановительной реакцией. Отношение констант скоростей двух этих реакций равно 0,2. Абсолютные квантовые выходы (до - 5), по-вндимому, указывают на цепную реакцию (допускается, что происходит полное комплексообразование, что неверно для низких значений А, и что реакция требует столкновения возбужденного комплекса со второй молекулой кислоты). Влияние длины волны (уменьшение выхода с увеличением длины волны) сводится к клеточному эффекту (бб.аьшей вероятности прохождения первичной обратной реакции внутри клетки , если избыточная энергия фотохимических продуктов выше). По-видимому, те же общие особенности характерны для подобных реакций окисления лимонной кислоты, миндальной кислоты и этилового спирта, указанных в других разделах этой книги. [c.300]

    Как видно из рис. 176, зависимость логарифма константы скорости от формального окислительно-восстановительного потенциала для всех приведенных лигандов линейна, за исключением малоновой кислоты. Аномальное поведение малоновой кислоты, возможно, связано с повышенной подвижностью метиленового водорода, что отмечалось ранее при использовании малоновой кислоты в других окислительно-восстановительных реакциях [32]. В пользу такого объяснения свидетельствует падение константы скорости при замене малоновой кислоты на диметил-малоновую. [c.382]

    При недостатке меди деятельность окислительных ферментов, в состав которых входит этот элемент, резко ослабляется. Так, например, А. С. Оканенко и Л. К. Островская показали, что при недостатке меди активность полифенолоксидазы у кок-сагыза уменьшилась более чем в 10 раз . Большое влияние меди на скорость окислительно-восстановительных реакций в организмах показано также рядом других исследователей гз, 299, 478 Несмотря на то что ряд микроэлементов — марганец, цинк и некоторые другие оказывают большое влияние на скорость окислительно-восстановительных процессов, действие меди в этих реакциях является специфическим и не может быть выполнено каким-либо другим элементом. [c.115]

    Найдено, что скорость окислительно-восстановительной реакции Hg +T13+ — = 2Hg2+ + Tl+ описывается уравнением [c.587]

    Окислительно-восстановительная реакция между трилоновым комплексом железа, гидроперекисью и ронгалитом протекает с высокой скоростью в полимеризуемой системе при pH среды около 10 [2]. [c.246]

    Для определения порядка окислительно-восстановительной реакции в водном растворе между ионами ЗгОз н I" (офазуются Ь и 504 ) изучались скорости процесса при различных концентрациях. Результаты представлены в табл. 40. Составьте выражение зависимости скорости от концентраций реагирующих веществ. Каковы порядки процесса по реагентам и общий Напишите уравнение окислительно-восстановительной реакции и сравните сте-хиометрические коэффициенты с порядками реакции. [c.128]

    По мере выгорания кокс обогащается углеродом, так как сгорание содержащегося в нем водорода идет с большей скоростью, чем сгорание углерода кокса. В результате скорость горения кокса значительно понижается. По-видимому, в результате резкого снижения реакционной способности кокса при малых его концентрациях кажущийс я порядок реакции его горения становится вторым по концентрации кокса. Поэтому наиболее затруднена глубокая регенерация катализатора. Наличие в составе катализатора металла— катализатора окислительно-восстановительных реакций — позволяет значительно снизить содержание кокса в регенерированном катализаторе —до 0,1% и менее, так как скорость горения остаточного кокса возрастает в этом случае на порядок и более. При высоком содержании кокса на регенерируемом катализаторе затруднен отвод из регенератора больших количеств тепла. Поэтому регенерация катализатора в общем осуществляется значительно легче, когда установки каталитического крекинга работают с высокой кратностью циркуляции катализатора. [c.229]


Смотреть страницы где упоминается термин окислительно-восстановительной реакции скорости реакции: [c.13]    [c.24]    [c.202]    [c.18]    [c.311]    [c.93]    [c.250]   
Практикум по физической химии Изд 4 (1975) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции



© 2025 chem21.info Реклама на сайте