Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорости возникновения родов

    Для образования первоначального тонкого слоя отложений может играть существенную роль температурный градиент у самой стенки в диффузионном подслое. Это особенно важно в тех случаях, когда температурный профиль скважины может оказаться н монотонным. Такая картина наблюдается в скважинах Западной Сибири из-за наличия зон вечной мерзлоты на различных глубинах /21/. В таких случаях на колебания температур у стенки оперативно будет реагировать, прежде всего, пограничный подслой, тогда как на средней температуре потока небольшие колебания градиента по сечению трубы могут не сказаться. Между тем даже небольшие колебания температуры в пограничном слое приведут к существенному изменению его состояния как дисперсной системы. При этом из-за изменения скорости возникновения центров кристаллизации существенные колебания будут происходить в наиболее высокодисперсной части спектра распределения частиц дисперсной фазы, всецело определяющей интенсивность формирования отложений в гидродинамических условиях. Такого рода аномалии были отмечены при обработке результатов исследований ряда скважин Западной Сибири /21/. [c.123]


    Посторонние включения могут взаимодействовать и не взаимодействовать химически с раствором, обладать и не обладать кристаллографическим сродством с возникающей фазой. Включения, химически не взаимодействующие с раствором и не обладающие кристаллографическим сродством, могут также воздействовать на скорость возникновения зародышей новой фазы и линейную скорость их роста. Они могут рассматриваться как готовые поверхности, на границе с которыми облегчается возникновение зароды-щей новой фазы, и оказывать влияние на процесс образования зародышей благодаря неоднородностям поверхности и наличию трещин. Чем выше дисперсность включений, тем больше их влияние на процесс образования зародышей и рост кристалликов новой фазы. Включения оказывают влияние на процесс кристаллизации также благодаря разного рода адсорбционным явлениям, происходящим на их поверхности. [c.185]

    При выводе основного уравнения для скорости возникновения энтропии вследствие химической реакции, диффузии, теплопередачи и других неравновесных процессов важную роль играет составление различного рода балансов. [c.345]

    Любые свойства молекул, которые способствуют уменьшению интервала между температурой плавления и температурой перехода второго рода, еще более суживают температурные границы кристаллизации. Свойства молекул, способствующие увеличению интервала между и низшей температурой кристаллизации, действуют в том же направлении. Если скорость возникновения центров кристаллизации даже в этих границах мала, то трудно подобрать термические условия, необходимые для кристаллизации. Здесь уместно привести несколько примеров полимеров с регулярной химической структурой, которые описаны как некристаллические, и попытаться объяснить их неспособность к кристаллизации с точки зрения изложенных представлений. [c.229]

    Стенли [18,19] рассмотрел разного рода данные, которые можно использовать для сравнительной оценки теорий постепенной и прерывистой эволюции. К наиболее общим соображениям относится ожидание, что скорость макроэволюции (т. е. скорость возникновения семейств и отрядов, отражающих крупные морфологические изменения) должна быть 1) согласно модели постепенной эволюции, пропорциональна времени или, точнее, числу поколений, на протяжении которых могло развиваться разнообразие и 2) согласно модели прерывистой эволюции, пропорциональна степени расщепления, т. е. видообразования, которое имело место. Если удастся оценить как время, так и скорость расщепления, то тогда мы в принципе сможем провести различие между этими двумя гипотезами. На этой основе Стенли проводит сравнение между млекопитающими и двустворчатыми моллюсками. У млекопитающих скорость видообразования высокая и радиация в пределах группы, в результате которой возникло [c.117]


    Однако, уравнения (225, 226) могут выполняться при различных внешних условиях. В случае закрытых систем, для которых исключён обмен веществом и энергией с окружающей средой, стационарное состояние достигается только тогда, когда все термодинамические силы равны нулю Уг = О, а значить и скорость возникновения энтропии также равна нулю ст = 0. Такие стационарные состояния называют состояниями нулевого рода или [c.87]

Рис. 29.2. Изменение скорости эволюции брахиопод от кембрия до третичного времени. По оси ординат отложено число новых родов, приходящихся на мил-дион лет (скорость возникновения) по оси абсцисс — геологические периоды. Рис. 29.2. <a href="/info/21565">Изменение скорости</a> эволюции <a href="/info/1433025">брахиопод</a> от <a href="/info/1330413">кембрия</a> до третичного времени. По оси ординат отложено число новых родов, приходящихся на мил-дион лет (<a href="/info/1326286">скорость возникновения</a>) по оси абсцисс — геологические периоды.
    По оси ординат отложено число новых родов, приходящихся на миллион лет (скорость возникновения) по оси абсцисс — геологические периоды. [c.271]

    По оси ординат отложено число новых родов, приходящихся ка миллион лет (скорости возникновения). / — парнокопытные II — хищные И — непарнокопытные V — непарно  [c.271]

    Полярографические максимумы представляют собой воспроизводимое увеличение силы/ тока сверх ожидаемого значения предельного тока. Различают максимумы 1-го и 2-го рода (рис. Д.108). Они образуются в результате вихревых явлений вокруг капель и перемещения дополнительных количеств деполяризатора к электродам. Причиной возникновения максимумов 1-го рода является разность потенциалов и связанное с ней различие поверхностного натяжения в нижней и верхней частях капли ртути. Образование максимумов 2-го рода обусловлено большой скоростью вытекания ртути из капилляра. Максимумы 1-го рода характерны в основном для разбавленных растворов фонового электролита, максимумы 2-го рода — для растворов с высокой концентрацией фонового электролита (>0,5 и.). Максимумы, первого рода практически не зависят от к, максимумы второго рода исчезают при малых значениях к (небольшая скорость вытекания ртути). [c.291]

    При практическом использовании диаграмм состояния учитывают особенности силикатных систем, которые приводят к отклонениям от равновесных состояний. В силикатных системах вследствие высокой вязкости расплавов и малой скорости диффузионных процессов истинное равновесие устанавливается с большим трудом. Это способствует сохранению различного рода неравновесных состояний, переохлаждению расплавов, возникновению стеклообразного состояния. Наиболее отчетливо неравновесные состояния проявляются при охлаждении, осуществляемом со сравнительно высокой скоростью. Возможность фиксации неравновесных состояний при резком охлаждении используется как положительный фактор в производстве стеклоизделий, материалов, содержащих стекловидную фазу, и др. [c.48]

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]

    Движение внутри самой ртутной капли, вызываемое процессом вытекания ртути из капилляра, также приводит к перемешиванию раствора и возникновению максимумов второго рода. На неподвижных твердых электродах могут возникать максимумы третьего рода, которые связаны с повышенной скоростью наложения напряжения на РКЭ. [c.213]

    После установления температурного режима печи в нее вводят ампулу, которую при помощи крючков соединяют с мотором и противовесом. Ампула должна целиком помещаться в высокотемпературной зоне печи так, чтобы загруженные компоненты расплавились и произошло их взаимодействие. Температура в этой части печи должна на 40—50°С превышать температуру плавления соединения. После изотермической выдержки в течение 30—40 мин включают мотор, и ампула начинает перемещаться в более холодную зону. Происходит направленная кристаллизация расплава и возможен рост монокристалла. Скорость движения ампулы выбирается в пределах от 0,5 до 3 см/ч. Если при высокой скорости роста монокристалл не образуется, необходимо снизить скорость движения ампулы, одновременно выяснив, нет ли препятствий для равномерного движения ее. Всякого рода толчки и вибрация могут способствовать возникновению побочных центров кристаллизации и порче монокристалла. [c.87]


    Таким образом, возникновение и развитие износа в условиях схватывания второго рода находится в определенном интервале температур. Так как температура поверхности трения зависит от скорости и нагрузки, то образование и развитие процессов схватывания второго рода также зависит от скорости и нагрузки и находится в определенных их границах. [c.23]

    С целью определения границ начала возникновения процесса схватывания второго рода в различных масляных средах в условиях граничной смазки в зависимости от скорости и нагрузки были проведены специальные исследования, в результате которых установлено, что масла, имеющие различную химическую и физическую активность, по-разному взаимодействуют с поверхностями трения в тех или иных условиях трения и оказывают различное сопротивление возникновению и развитию процесса схватывания второго рода. [c.56]

    В диапазоне средних скоростей изменение размеров образцов вызывает а) изменение качественных характеристик изнашивания поверхностей трения образцов, переходы одних видов износа в другие при неизменных условиях трения б) изменение границ возникновения и развития процессов схватывания первого и второго рода в) смещение критических точек перехода одних видов износа в другие. [c.94]

    Следовательно, к уже доказанным выше полон<ениям, что колеблющийся процесс горения способен вызвать акустические колебания, надо добавить доказательство того, что акустические колебания в свою очередь способны вызвать колеблющийся процесс горения. Существование этой обратной связи является чрезвычайно важным моментом в цепи рассуждений. Если обратиться к анализу физических процессов, лежащих в основе возникновения обратной связи, то окажется, что их довольно много, они сложны и достаточно разнообразны. Это делает необходимым посвятить вопросу о механизмах обратной связи специальную главу книги (гл. VII). Чтобы уже здесь придать наглядность этим рассуждениям, полезно дать какой-либо пример явления такого рода. Укажем с этой целью на почти очевидный факт акустические колебания связаны с колебаниями скорости течения, а скорость течения влияет, как известно, на процесс горения (изменяет конфигурацию фронта пламени, изменяет скорость сгорания и т. п.). Таким образом, колебания скорости течения, вызванные [c.171]

    Экспериментальными исследованиями [5, 6] установлено, что закономерности возникновения кризиса кипения гелия в каналах в условиях вынужденного движения те И4е, что и при кипении обычных жидкостей (например, воды) в аналогичных условиях (рис. 3.29 и 3.30). Наклонные части кривых на рис. 3.29 и 3.30 днр—[(х), ограниченные справа А гр, соответствуют кризисам I рода, возникающим при пузырьковом кипении жидкости в канале. Влияние массовой скорости на кризис I рода неоднозначно. Ниспадающие участки соответствуют кризисам II рода (высыхание тонких жидкостных пленок на стенках канала), для которых характерно постоянство граничного паросодержания л гр. [c.242]

    При наблюдении в микроскоп [16] ртутной капли, помещенной в раствор, содержащий белки, заметно медленное ламинарное воспроизводимое движение раствора к шейке капли. На рис. 195 приведена зависимость скорости этого движения от потенциала, причем эта кривая аналогична по форме полярографической кривой. Однако следует заметить, что влияние тангенциального движения на величину тока в присутствии белков незначительно, и, следовательно, форма каталитической волны не определяется интенсивностью этого движения. Добавление желатины не подавляет это движение, что не является неожиданным, так как сам исследуемый раствор уже содержит поверхностноактивное вещество — белок. До сих пор не дано объяснение причин возникновения движения поверхности капли в присутствии поверхностноактивных веществ. В отличие от максимума первого рода (см. гл. XIX) это движение не прекращается при увеличении напряжения. [c.386]

    Штакельберг [19, 59] в вопросе о причинах возникновения максимумов первого рода придерживается теории Фрумкина, кроме случая образования отрицательных максимумов. Для поддержания движения поверхности ртути необходимо все время сохранять разность плотности зарядов на шейке капли и в ее нижней части. При возникновении положительных максимумов эта разность плотности зарядов удерживается самопроизвольно и даже увеличивается, так как к шейке капли подается свежий раствор, богатый деполяризатором, что обусловливает уменьшение поляризации шейки по отношению к нижней части капли, куда подходит уже частично обедненный раствор. Однако в случае отрицательных максимумов подача свежего раствора к нижней части капли, наоборот, приводит к выравниванию разности потенциалов вдоль поверхности электрода. Для объяснения того, что тангенциальное движение в этом случае все же сохраняется, Штакельберг [19, 59] предположил, что увеличение плотности тока на шейке капли происходит вследствие того, что первый, наиболее подвижный и наиболее обедненный деполяризатором слой раствора переносится движущейся поверхностью ртути от нижней части капли к ее шейке, где в результате этого переноса увеличивается градиент концентрации дс дх)х=о- Этот процесс может протекать до тех пор, пока концентрация деполяризатора около нижней части капли отлична от нуля как только происходит падение его концентрации до нуля, разность потенциалов вдоль поверхности капли выравнивается и ток максимума уменьшается до значения предельного тока. Поэтому в случае отрицательных максимумов тангенциальное движение электролита достигает наибольшей скорости в области значения потенциала полуволны, когда изменение градиента концентрации около шейки капли является наибольшим. [c.420]

    Увеличение полярографического предельного диффузионного тока при максимуме второго рода вызвано движением раствора вблизи поверхности капельного электрода [77]. Направление движения ртути при этом всегда следующее из центра капли — к нижней части ее, вдоль поверхности ртути — к шейке капли,— затем горизонтально параллельно плоскости среза капилляра — внутрь капли (рис. 221). Электролит движется с наибольшей скоростью при потенциале нулевого заряда по мере удаления от этого потенциала движение постепенно замедляется. Величина скорости тангенциального движения при возникновении максимумов второго рода на порядок меньше, чем в случае максимумов первого рода. Между скоростью вытекания ртути из капилляра и скоростью движения раствора существует линейная зависимость. Крюкова и Кабанов [60, 63, 78] наблюдали скорость движения электролита V по движению суспензированных в растворе частиц активированного угля для расчета величины скорости они предложили эмпирическое выражение [c.426]

    Как и в случае максимума первого рода, здесь наблюдается аналогия между относительным движением поверхности ртути при возникновении максимума и движением капли ртути, падающей через раствор. По теории Левича и Фрумкина [911, в случае капли, падающей через раствор, скорость движения поверхности капли ртути V на ее экваторе по отношению к центру капли равна [c.427]

    Так как направление движения раствора в случае отрицательных максимумов первого рода такое же, как и ири возникновении максимумов второго рода, т. е. от нижней части к шейке каили, то форма отрицательного максимума не изменяется при увеличении скорости вытекания ртути и концентрации фона только изменяется его высота. [c.429]

    Физический смысл критических условий второго рода можно пояснить следующим образом. Причиной возникновения критического условия потухания является то обстоятельство, что скорость реакции не может неограниченно возрастать с температурой. В случае критических условий первого рода предел такому возрастанию кладется переходом реакции в диффузионную область. При критических условиях второго рода оп происходит от ограниченной скорости поступления смеси в реактор. [c.428]

    Различия скоростей эволюции в разных группах xapoiuo документированы. Иллюстрацией служат представленные здесь средние скорости возникновения родою в трех группах (Simpson, 1953)  [c.310]

    Еще одной иллюстрацией служат различные наклоны кривых, описывающих скорости возникновения родов в трех отрядах млекопитающих в третичном периоде (Simpson, 1967) (рис.29.1). [c.310]

Рис. 29.1. Изменение скорости возникновения родов в трех отрядах млекопитающих на протяжении третичного периода. По оси ординат отложено члсло новых родов за 1 млн. лет, I — парнокопытные // нотоунгуляты II — иепарнокапытные. (Из Simpson, 1967, Рис. 29.1. Изменение скорости возникновения родов в трех <a href="/info/1911462">отрядах млекопитающих</a> на протяжении <a href="/info/1352595">третичного периода</a>. По оси ординат отложено члсло новых родов за 1 млн. лет, I — парнокопытные // нотоунгуляты II — иепарнокапытные. (Из Simpson, 1967,
    Скорости ЭВОЛЮЦИИ, измеренные на основе этого критерия, известны под названием скоростей возникновения родов. Ниже приведены данные о средних скоростях возникновения родов, в трех группах (Simpson, 1953)  [c.269]

    Изиестпо, что в процессе электрокристаллизации металл выделяется прежде всего на активных местах, определяемых микрогеометрией и кристаллографическими особенпостями поверхиости, а также наличием различного рода адсорбционных пленок. Во время толчка тока достигается потенциал, при котором металл начинает отлагаться и па менее активных или неактивных участках поверхности. Одновременно с ростом плотпости тока возрастает скорость возникновения кристаллических зародышей и соответственно скорость распространения осадка вдоль фронта роста кристаллов. Во время кратковременного пребывания электрода под анодной составляющей тока происходит устрппепие сверхвапряженных участков поверхности, и последняя выполняется однородными кристаллическими плоскостями. [c.572]

    Неравновесная термодинамика граничных условий решает задачи, учитывающие то обстоятельство, что непосредственно у поверхности обтекаемого тела значения макроскопических параметров текущей среды отличаются от соответсвующих параметров, характеризующих состояние поверхности (например, температуры). Это отличие может быть описано введением некоторых эффективных граничных условий, которые имеют вид разного рода кажущихся разрывов макроскопических параметров у границ конденсированной фазы. Фактически это означает, что вместо граничных условий прилипания вводится граничное условие скольжения. Обобщённые системы феноменологических уравнений, вытекающие из выражения для граничной скорости возникновения энтропии, приводят к выявлению необычных эффектов, например, к выводу о возможности существования неравновесного поверхностного натяжения на непроницаемой границе газ-твёрдое тело или к объяснению обращённого профиля температуры в паровой фазе между двумя жидкими поверхностями (см. В. М. Жданов, В.И.Ролдугин Неравновесная термодинамика и кинетическая теория разреженных газов. УФН. 1998. Т. 168. С. 407-437). [c.47]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    При сохранении тонкого водяного слоя анионного ПАВ при перекачке мангышлакской нефти по трубопроводам всегда существуют условия для возникновения местной коррозии стенок трубы. Для снижения опасности местной коррозии и снижения общей скорости коррозии в сульфонольных растворах были испытаны различного рода неорганические и органические добавки. В этой связи добавка силиката, приводящая к улучшению смачиваемости металла водой в двухфазной среде раствор сульфонола — мангышлакская нефть как ингибитора коррозии, представляла особый интерес. [c.104]

    В зависимости от причин, которые вызывают тангенциальные движения поверхности ртутной капли, полярографические максимумы делят на максимумы 1, 2, и 3-го рода. Причиной полярографических максимумов 1-го рода является неравномерность поляризации и не-равкомериость подачи восстанавливающегося вещества. В 1965 г. де Леви показал, что основная причина неравномерного распределения плотности тока при возникновении максимумов 1-го рода — неравномерность подачи восстанавливающегося вещества к ртутной капле вследствие эксцентричного характера ее роста. Такой характер роста капли является результатом двух процессов радиального расширения капли и дополнительного перемещения центра капли вниз (см. рис. 4.8, б). Как показал де Леви, в этих условиях плотность тока у дна капли больше плотности тока у ее шейки приблизительно в два раза, что связано с большей скоростью движения растягивающейся поверхности навстречу потоку диффузии именно в нижней части капли. Таким образом, эксцентричный характер роста капли вызывает неравномерное распределение плотности тока на капле, которое в обычных условиях усиливается за счет экранирования верхней части капли срезом капилляра. В разбавленных растворах неравномерное распределение тока вызывает заметное омическое падение потенциала между отдельными участками поверхности, т. е. неравномерную поляризацию. Так как разным потенциалам соответствуют различные значения пограничного натяжения, то вдоль поверхности капли возникает градиент пограничного натяжения, который и приводит к тангенциальным движениям поверхности ртути. Тангенциальные движения вызывают размешивание раствора, что, в согласии с законами конвективной диффузии, ведет к резкому возрастанию тока. [c.230]

    Накопленные к настоящему времени в литературе по этим вопросам данные связаны в основном со следующими четырьмя проблемами 1) влияние адсорбции ПАОВ в условиях нестационарной диффузии на протекающие с его участием электрохимические процессы (адсорбционные предшествующие и последующие волны) 2) влияние адсорбции электрохимически инактивного ПАОВ на диффузионные процессы у твердого электрода в стационарных условиях 3) влияние адсорбции не участвующих в электродном процессе ПАОВ на скорость конвективных потоков у поверхности жидкого электрода в условиях, когда причина возникновения конвекции не связана с адсорбцией ПАОВ (полярографические максимумы первого и второго рода) 4) возникновение в определенных условиях при адсорбции ПАОВ спонтанных тангенциальных движений поверхности жидкого электрода (полярографические максимумы третьего рода). [c.124]

    В этом разделе рассматривается влияние адсорбированного на подвижной границе электрод/раствор ПАОВ на конвекцию этой границы в условиях, когда возникновение тангенциальных движений не связано с адсорбцией ПАОВ. Причиной таких тангенциальных движений поверхности жидкого электрода может быть неравномерность поляризации и неравномерность подачи восстанавливающегося вещества (тангенциальные движения первого рода). Кроме того, тангенциальные движения поверхности ртути могут быть связаны с самим процессом вытекания ртути из капилляра при больших скоростях течения струя ртути сначала движется вертикально до дна капли, а затем, растекаясь в стороны, образует симметричные завихрения (тангенциальные движения второго рода). [c.143]

    Так, например, начало возникновения процесса схватывания второго рода в среде масла МС-20 при удельном давлении 100/сг/сж происходит при скорости 2,7 м(сек. В тех же условиях трения, но в среде химически активной гипоидной смазки процесс схватывания наступает при скорости скольжения 4,5 м1сек (фиг, 37), [c.57]

    Для уменьшения интенсивности изнашивания и устранения нежелательных видов износа — схватывания металлов в деталях машин, работающих с малой скоростью скольжения при больших удельных давлениях в условиях сухого или полусухого трения (в условиях возможного возникновения и развития процесса схвз тывания первого рода), путем увеличения поверхности трения, изменения размеров, форм деталей п т. п. следует создавать условия, которые способствуют уменьшению теплоотдачи сопряженных деталей и повышению температуры в трущихся поверхностных объемах металлов. В деталях машин, работающих с большой скоростью скольжения, большой удельной нагрузкой (в условиях возможного возникновения процесса схватывания второго рода), путем уменьшения поверхности трения, изменения размеров, форм деталей н т. п. следует создавать условия, которые способствуют увеличению теплоотдачи сопряженных деталей и снижению температуры в трущихся поверхностных объемах металлов. [c.94]

    В результате проведения этих мероприятий на поверхности трения деталей образуются прочные пленки, которые в течение 450 возвратно-поступательных циклов (4500 мм пути) при удельных нагрузках 1200 кг/см и скоростях относительного перемещения 0,0005 м1сек не разрушаются, препятствуют образованию металлических контактов и полностью устраняют в данных условиях возникновение процесса схватывания первого рода. [c.166]

    В ароматич ряду механизмы 3 р более разнообразны Наиб изучено электроф ароматич замещение (5 Аг), протекающее с промежут образоваиием катионного ст-комплекса (см Ароматические соединения) К этому типу замещения относятся р-ции нитрования, сульфирования, азосочетания, алкилирования и ацилирования по Фриделю Крафтсу и др, причем скорость р-ции и место вхождения заместителя зависят от природы присутствующих в субстрате групп (ориентанты первого и второго рода) В качестве уходящей группы выступает обычно водород, хотя известны примеры замещения одной группы на другую (г/лсо-замещение) Нуклеоф замещение в электронодефицитной ароматич. молекуле протекает чаще всего через стадию образования анионного ст-комплекса Др важнейшие механизмы нуклеоф замещения в ароматич ряду механизм 5 I и ариновый, характеризующийся возникновением дегидробеизолов Изменение условий протекания одной и той же р-цни может привести к изменению механизма процесса и строения продуктов, напр [c.161]

    Эмпирическое направление, рассмотрение которого было начато во втором томе настоящего издания, базируется на данных статистического анализа известных кристаллических структур белков, равновесной термодинамики, формальной кинетики и концепциях Полинга-Кори и Козмана, т.е. исходит из предположения об исключительной роли в сборке гетерогенной аминокислотной последовательности регулярных вторичных структур и представления о гидрофобных взаимодействиях как главной упаковочной силе. Считается, что по сравнению с множеством мыслимых нерегулярных локальных структур вторичные структуры являются самыми стабильными их возникновение, инициирующее процесс и обусловливающее дальнейшее его развитие, осуществляется с наибольшей скоростью. Благодаря гидрофобным взаимодействиям вторичные структуры образуют супервторичные, т.е. полярные остатки стремятся расположиться на внешней оболочке глобулы, а неполярные - в ее интерьере. Идеальная модель трехмерной структуры белка, согласно эмпирическому подходу, должна представлять собой ансамбль вторичных и супервто-ричных структур и иметь гидрофобное ядро, экранированное от водной среды гидрофильной оболочкой. Процесс создания такой модели из статистического клубка должен быть равновесным фазовым переходом первого рода, подчиняющимся классической термодинамике, статистической физике и формальной кинетике так же, как им подчиняются процессы кристаллизации малых молекул и образования линейных спиральных сегментов гомополипептидов. [c.6]

    Обычно при разработке ингибиторов или при их иприменении в кислых средах (травление, перевозка кислот, защита химической аппаратуры и т. п.) учитывают лишь потерю массы металла вследствие развития процессов общей равномерной коррозии. Однако практика показывает, что такая оценка явно недостаточна, так как в большинстве случаев оборудование, механизмы, аппараты работают не только в. условиях воздействия агрессивных кислых сред, но и под влиянием различного рода механических напряжений. Механические напряжения Могут усиливать равномерную коррозию металла в кислой среде, а также приводить к локальным коррозионным поражениям, скорость которых в десятки Тысячи раз выше скорости равномерной коррозии. Совместное действие среды Механического фактора вызывает коррозионно-механическое разрушение, которое выражается в усилении общей коррозии, возникновении коррозионного растрескивания 11 коррозионной усталости. [c.61]


Смотреть страницы где упоминается термин Скорости возникновения родов: [c.309]    [c.83]    [c.82]    [c.221]   
Эволюция организмов (1980) -- [ c.269 ]




ПОИСК





Смотрите так же термины и статьи:

возникновение



© 2025 chem21.info Реклама на сайте