Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота адсорбции образования хим. соединения

    Некоторые исследователи считают, что величина теплоты адсорбции дает указание на тип наблюдаемой адсорбции. При физической адсорбции действуют те же силы, которые вызывают сжижение газов. Поэтому можно ожидать, что теплоты адсорбции в этом случае будут иметь тот же порядок величины, что и теплоты сжижения газов. С другой стороны, в хемосорбции участвуют такие же силы, которые приводят к образованию химических соединений, и поэтому можно ожидать, что теплоты хемосорбции будут иметь тот же порядок величины, что и теплоты образования этих соединений. Отсюда возникает мысль, что физическая адсорбция не может сопро- [c.20]


    Интересно, что теплота поверхностных реакций обычно значительно больше, чем теплота образования химического соединения. Так, теплота адсорбции кислорода на угле примерно в два раза больше теплоты сгорания твердого углерода. [c.105]

    Теплота адсорбции метанола в первом случае из-за образования водородных связей с кислородными комплексами на поверхности сажи велика. Благодаря кислотному характеру этих комплексов теплота адсорбции метанола вначале выше теплоты его конденсации и, постепенно уменьш аясь с ростом заполнения поверхности, приближается к теплоте конденсации сверху. Такая зависимость теплоты адсорбции от заполнения поверхности типична для неоднородной поверхности. В отличие от этого на ГТС, не содержа щей кислородных поверхностных соединений, теплота адсорбции метанола гораздо меньше теплоты конденсации и при увеличении заполнения поверхности постепенно возрастает вследствие ассоциации молекул спирта с образованием межмолекулярных водородных связей адсорбат — адсорбат и приближается к теплоте конденсации снизу. [c.16]

    При адсорбции свободная поверхностная энергия уменьшается и АР отрицательна. Так как до адсорбции молекулы газа могут двигаться в трех направлениях, а после адсорбции либо прочно удерживаться на твердой поверхности, либо двигаться только в двух направлениях, процесс адсорбции сопровождается понижением энтропии и А5 имеет отрицательное значение. Тогда из уравнения (а) следует, что АН также отрицательно. Это означает, что процессы адсорбции являются экзотермичными. Выделяющаяся при адсорбции теплота носит название теплоты адсорбции. При физической адсорбции теплоты адсорбции имеют значения такого же порядка, как и теплоты конденсации газов (2—3 ккал/моль), при хемосорбции теплоты адсорбции гораздо больше и имеют порядок теплот образования химических соединений (десятки ккал/моль). В соответствии с правилом Ле-Шателье ( 53), с повышением температуры количест- [c.284]

    На большинстве технических металлов адсорбция кислорода (вплоть до 0>1) протекает необратимо с образованием прочных химических соединений. Одним из показателей, нередко характеризующих прочность связи адсорбированных частиц с поверхностью металла, является теплота адсорбции. Теплоты хемосорбции изменяются в широких пределах — от 80 кДж/моль и меньше для серебра до 800 кДж/моль — для вольфрама. [c.36]


    Теплота адсорбции Е, т. е. теплота образования поверхностного соединения АВ—К и D—К, равна [c.205]

    Выше мы обычно характеризовали прочность промежуточных поверхностных соединений величинами теплот их образования (теплот адсорбции). Удобным критерием их прочности являются также величины энергий связей, которые рассмотрены ниже. [c.463]

    Изучение адсорбции кислорода и углеводородов на поверхности окислительных катализаторов полупроводников показало, что поверхность их неоднородна и теплоты адсорбции, энергии активации изменяются с заполнением. Следовательно, адсорбированные ион-радикалы закреплены на различных участках поверхности с различной прочностью связи. Перекисные радикалы связаны с поверхностью катализатора в одних случаях через атом углерода, а в других — через атом кислорода. Анализ адсорбционных данных показывает, что прочность этих связей для различных катализаторов не одинакова. Если перекисный радикал закреплен на поверхности прочно, то он способен частично разрушаться с образованием нового радикала и соединения типа ЕОг, распадающегося в объеме и легко превращающегося в конечные продукты окисления СО, СО2 и НгО например  [c.413]

    С целью удовлетворительного объяснения механизма адсорбции ОСС с кремнеземами методами хроматографии и спектроскопии систематически изучено влияние степени дегидроксилирования поверхности силикагеля. На силикагелях, прокаленных при 150,240, 500°С, исследована адсорбция низкомолекулярных ОСС. Адсорбция метил-, этилмеркаптана и диметилсульфида обратима, изостерические теплоты адсорбции их достаточно велики (при заполнении поверхности силикагеля т = 0,2 моль/м на силикагеле, прокаленном при 500°С, составляют соответственно 41, 57, 68 кДж/моль), что объясняется возможностью образования водородных связей [150—152]. Наблюдаемое различие взаимодействия этих соединений с поверхностью силикагеля определяется симметрией н характером локализации в пространстве орбиталей, занятых неподеленными парами электронов атома серы [150]. При адсорбции этих соединений на силика геле при 150 С [152] наблюдаются достаточно высокие начальные теплоты [c.42]

    Наличие эмпирического соотношения лучше, чем полное отсутствие каких бы то ни было соотношений. Одно из таких эмпирических соотношений, которое мы кратко опишем ниже, представляет собой соотношение, связывающее теплоту адсорбции и теплоту образования соответствующего соединения. Причины, обосновывающие такую связь, еще не вполне понятны. [c.108]

    Часть 4 (1961 г.). Теплофизические и термодинамические свойства элементов и соединений. Теплоты сгорания органических соединений. Теплоемкость, энтропия, теплоты образования, свободная энергия образования, изменения теплосодержания и теплоемкости при плавлении, испарении и пр. для элементов, неорганических и органических соединений. Значения термодинамических функций в зависимости от температуры для элементов и некоторых неорганических и органических соединений. Величины эффекта Джоуля — Томсона и изотермического эффекта Дросселя. Термодинамические функции растворов металлов. Теплоты адсорбции, смачивания, нейтрализации и др. [c.97]

    В зависимости от характера взаимодействия поглощаемого вещества (адсорбата) с поглотителем (адсорбентом) различают физическую адсорбцию и хемосорбцию. При хемосорбции осуществляется химическое взаимодействие между адсорбатом и адсорбентом, сопровождающееся образованием нового химического соединения на поверхности адсорбата. Физическая адсорбция определяется неуравновешенностью молекулярных сил на границе фаз. В результате взаимного притяжения молекул адсорбента и адсорбата молекулы поверхностного слоя удерживают молекулы адсорбата, что приводит к уменьшению содержания последнего в фазе, граничащей с адсорбентом. Адсорбция является экзотермическим процессом. Выделяющаяся при этом теплота носит название теплоты адсорбции. Примерные значения теплот адсорбции основных газов приводятся в работах [16, 77]. [c.53]

    Данные, полученные фотоэлектрическим и термоионным методами и методом контактных потенциалов, качественно согласуются друг с другом, подтверждая точку зрения, что. между адсорбированными частицами действительно происходит обмен электронами с образованием поверхностного диполя, величина которого в каждом частном случае все еще не определена. Между такими диполями возникают силы отталкивания, и многочисленные измерения наводят на мысль, что величина диполей меняется с изменением величины покрытия поверхности. По-видимому, несмотря на скудные доказательства, это изменение величины диполей с заполнением поверхности не может быть объяснено деформацией диполей, обусловленной только взаимной индукцией, должна меняться также начальная связь, или свободная валентность, или, другими словами, остаточные свободные валентности на металлическом субстрате должны изменяться по силе в процессе образования поверхностного соединения. Представление, что диполи образуются посредством ковалентного связывания с атомными d-орбитами, получает много подтверждений при изучении теплот адсорбции на металлах и их сплавах, а также при исследовании различных каталитических процессов. [c.21]


    В силикагелях с гидратированной поверхностью в результате наложения кислотно-основных взаимодействий электронов ароматического ядра с гидроксилом кремнекислоты теплота адсорбции ароматических углеводородов значительно превышает теплоту адсорбции насыщенных — и резко уменьшается при дегидратации поверхности кремнезема. По данным А. В. Киселева [66], повышенная адсорбция бензола на гидратированной поверхности силикагеля связана с образованием молекулярных соединений (комплексов) между слабым основанием — бензолом (электродонорной молекулой) — и гидроксилом кремнекислоты (алектроноакцептор-ным и протоно-донорным адсорбентом) [c.236]

    Теплота адсорбции при процессах отравления очень высока, что доказывает химическую связь молекул яда с атомами катализатора. Антикатализаторы способны не только блокировать свободные активные центры, но и вытеснять с них адсорбированные молекулы реагента. Отравление никеля серой заключается в образовании на его активных центрах молекул N 8, очень прочных и каталитически неактивных, поэтому и катализатор теряет свою активность. Сродство N1 к 5 настолько велико, что, например, N1 Ренея способен вырывать атомы серы из любых сернистых соединений (стр. 383). [c.70]

    Как уже указывалось (стр. 93), по современным представлениям следует различать 1) обычную адсорбцию за счет сил притяжения и 2) хемосорбцию за счет химических валентных сил. Несмотря на то, что между обоими типами адсорбции нельзя провести резкой грани, во многих отношениях они значительно различаются. При обычной адсорбции газ или пар конденсируется по всей поверхности многослойно, выделяющаяся при этом теплота адсорбции невелика и составляет 2000—8000 тл1г-мол, и процесс обратим. В случаях хемосорбции образуется мономолекулярный слой, занимающий обычно не всю поверхность, а локализующийся на наиболее активных участках. Остальная часть поверхности при этом также сорбирует, но чаще всего лишь физически. Теплота хемосорбции может доходить до 200 000 кал г-мол, причем десорбция протекает с большим трудом, и часто вещество десорбируется химически измененным. При хемосорбции получаются настоящие двумерные химические соединения, поэтому их часто называют двумерными. Для образования таких соединений необходима некоторая энергия активации. [c.116]

    В действительности, при физической адсорбции, как правило, не наблюдаются очень высокие теплоты адсорбции, но в ряде случаев они достигают и превышают 20 ккал1моль. Теплоты хемосорбции обычно имеют высокие значения. Так, например, теплота адсорбции кислорода на некоторых металлах имеет порядок величины в несколько сот килокалорий иа моль. С другой стороны, бывают случаи, когда теплота хемосорбции имеет даже отрицательное значение, как, например, при образовании эндотермических соединений. [c.21]

    Теплоты адсорбции аргона на некоторых адсорбантак и теплоты образования соединений включения [98] [c.678]

    Ортоводород и параводород. Когда атомы, обладающие ядерным спином, образуют двухатомную молекулу, могут возникнуть два типа молекул с параллельными и антипараллельными спинами атомных ядер. На практике такие ситуации возникают при образовании молекул Нг, О2 и СЬ. С увеличением молекулярной массы различия в свойствах этих двух типов молекул уменьшаются, но у водорода эти соединения можно четко разделить. Их называют ортоводородом (0-Н2), если ядерные спины параллельны, и параводородом (п-Нг), если антипараллель-ны. Относительное содержание двух форм в равновесии подчиняется распределению Больцмана, и расчетные значения относительного содержания п-Нг при разных температурах хорошо согласуются с экспериментом (99,82 и 50,41% при 20 и 70 К соответственно). Наиболее существенно отличаются удельные теплоемкости (табл. 5.2), и относительное содержание двух форм определяют по теплопроводности. Используя различия в теплотах адсорбции, эти две формы водорода можно разделить на колонке с оксидом алюминия. [c.267]

    Адсорбция кислорода на атомно-чистой поверхности графита при комнатной температуре полностью необратима и в начальной области заполнений сопровождается выделением высоких теплот. При этом происходит образование кислородных поверхностных комплексов, подтверждаемое химическим анализом [3]. На рис. 1 приведены дифференциальные теплоты адсорбции 5д кислорода, по данным Ю. А. Зарифьянца, и изменения о при адсорбции кислорода и хлора в зависимости от количества адсорбированного газа (числа атомов на 1 см реакционноспособных призматических граней графитовых кристаллитов). В области заполнений до 10 см значение а не меняется. Формально, учитывая лишь постоянство а и не зная данных по теплотам адсорбции, можно сказать, что происходит физическая адсорбция. Напротив, зная данные по высоким теплотам адсорбции (см. рис. 1, кривая 1) и данные химического анализа, можно утверждать, что в этой области заиолнений происходит типичная химическая адсорбция. Как объяснить эти, на первый взгляд, взаимоисключаюгцие явления В начальной области адсорбция происходит на заполненных поверхностных состояниях. Таковыми являются разорванные а-связи, захватившие из я-зоны свободные электроны [4]. Такие электроны принимают участие в образовании пасыш енных химических поверхностных соединений (карбонильных групп). Заряд поверхности при этом не меняется. Дальнейшая адсорбция протекает уже на других поверхностных состояниях и сопровождается локализацией электронов и изменением величины а. Аналогичная картина наблюдается при адсорбции молекулярного хлора (см. рис. 1, кривая 5). Таким образом, в случае реальной поверхности, когда адсорбция непосредственно протекает на ионизированных дефектах, данные по электропроводности не являются однозначным критерием химической адсорбции. [c.109]

    Адсорбция, не сопровождающаяся образованием химического соединения обычного типа, в свою очередь делится на адсорбцию физическую и адсорбцию активированную. Физическая адсорбция обусловливается силами взаимного притяжения молекул. Эти силы часто называют вандерваальсовыми, поэтому физическую адсорбцию называют также вандерваальсовой адсорбцией. Молекулярные силы притяжения могут удерживать на поверхности адсорбента несколько слоев молекул поглощенного вещества — полимолекулярная адсорбция. (Следует, однако, иметь в виду, что в этом случае возможно также и образование только мономолекулярного слоя таким образом, наличие мономолекулярного слоя не исключает физической адсорбции.) При физической адсорбции поглощенное вещество не взаимодействует с поглотителем процесс протекает чрезвычайно быстро, и очень часто равновесие между фазами, участвующими в процессе адсорбции, устанавливается практически мгновенно. Адсорбция — процесс экзотермический. Выделяющееся при этом тепло называется теплотой адсорбции. Теплота физической адсорбции сравиительно невелика (ориентировочно от нескольких килоджоулей до нескольких десятков килоджоулей на моль поглощенного вещества) и [c.6]

    Цепной механизм, предложенный Кобозевым и Анохиным [274] для каталитического окисления водорода при температурах ниже 200°, а также Бенневитцем и Нейманом [45] для гидрогенизации этилена при обыкновенной температуре, подвергся критике Зельдовича и Рогинского [516], которые считают, что нет основания предполагать образование объемных цепей для гетерогенных газовых реакций при низких температурах, ненормально высокие скорости таких реакций, повидимому, возможны согласно молекулярно-кинетическим представлениям, принимая во внимание теплоты активации и адсорбции, а также изотермы адсорбции реагирующих соединений. [c.182]

    Как следует -из предыдущей главы, максимальной скорости процесса в данных условиях должен отвечать оптимум величин теплот адсорбции компонентов реакции. Это означает, что образующиеся промежуточные поверхностные соединения при максимальной скорости реакции характеризуются некоторой оптимальной прочностью. При малой прочности таких поверхностных соединений скорость их образования, как видно из соотношения линейности, будет мала, а скорость разложения велика. Следовательно, можно ожидать, что стационарная концентрация поверхностного соединения будет мала, т. е. область средних заполнений поверхности катализатбра не будет достигнута, что приведет к малой скорости реакции. [c.461]

    Первые результаты в этом направлении были получены Лэнгмюром, затем Баландиным, Тэйлором, Ридилом и другими, показавшими, что первичный акт гетерогенного катализа представляет собою валентное взаимодействие атомов или молекул реагента с поверхностными атомами твердого тела катализатора иначе говоря, формой взаимодействия катализатора с реагентами является промежуточная хемосорбция. Таким образом, был осуществлен синтез физических теорий и химической теории промежуточных соединений. От физических теорий были заимствованы указания о роли адсорбции в катализе, о влиянии на активацию реагентов взаимного сближения реагирующих частиц и теплоты адсорбции. Представление о химической индифферентности катализатора по отношению к реагентам было отброшено. От химической теории были восприняты указания о валентно-химиче-ском взаимодействии катализатора с реагентами понятие об образовании индивидуальных соединений постоянного соатава было оставлено.  [c.12]

    При адсорбции на твердых телах разной природы проявляются молекулярные и химические взаимодействия во всем их разнообразии от ван-дер-ваальсовых взаимодействий до образования нестойких донорно-акцепторных соединений и прочных ковалентных связей. Исследование этих взаимодействий в случае адсорбции имеет свои преимущества. Во-первых, в отличие от газов и жидких растворов, силовые центры на поверхности адсорбента фиксированы. Во-вторых, в отличие от объема твердого тела, на поверхности можно реализовать невозмущенное состояние отдельных функциональных групп, например гидроксильных. Вместе с тем, поверхностные соединения и адсорбционные комплексы можно изучать с помощью химических и физических методов, дающих богатую информацию о химии поверхности, природе адсорбционного взаимодействия и состоянии адсорбированного вещества. Здесь нашли широкое применение химические, изотопнообменные, дифр актометрические и спектроскопические методы исследования состава и структуры поверхностного слоя твердого тела и поверхностных соединений, спектроскопические и радиоспектроскопические методы изучения состояния адсорбционных комплексов, а также статические и динамические (в частности, хроматографические и калориметрические) методы измерения изотермы адсорбции, теплоты адсорбции и теплоемкости адсорбционных систем. Однако исследованию адсорбции комплексом этих методов долгое время мешала неоднородность состава и структуры самих объектов исследования — традиционно применявшихся адсорбентов (активные угли, силикагели и другие ксерогели). В результате, во-первых, образовался разрыв между молекулярными моделями адсорбции, используемыми в теоретических исследованиях, и экспериментальными данными, получаемыми на адсорбентах, по степени чистоты и неоднородности структуры весьма далеких от теоретических моделей. Благодаря этому молекулярная теория адсорбции не находила экспериментальной базы, и ее развитие задерживалось. Во-вторых, выпускавшийся набор адсорбентов не смог удовлетворить и запросы новой техники. Например, для использования в хроматографии [c.5]

    Несомненно, что В1" -ионы играют существенную, пока еще не выясненную роль в реакции. Для коэффициента диффузии D 0 "-ионов из внутренних частей кристаллов к поверхности в молибдате висмута авторы [21] получили D = D(,exp (—29000/Л Г),где Ig >о= —3,73. По аналогии с промежуточным комплексом в процессе окисления олефинов в непредельные альдегиды хемосорбированный [С4Н7] часть авторов считает я-аллильным симметричным карбанионным соединением. Это представление наталкивается на некоторые трудности, так как аллильный вариант приводил бы скорее к образованию метилакролеина. Кроме того, неясно, могут ли одни и те же комплексы приводить к образованию диенов и непредельных альдегидов. В ряде случаев катализаторы, не способные вызывать образование ни акролеина, ни акрилонитрила, отлично катализируют образование дивинила из бутилена и изопрена из амилена [28]. Большинство авторов считает аллильные комплексы связанными дативной я-связью с ионом переходного металла. Предполагается, что при этом используются свободные d-орбитали. Но реакция прекрасно идет на SbaOs, в котором нет переходных элементов. Таким образом, в элементарном механизме пока много неясного. Слишком большие энергии связи реагирующих веществ с катализаторами из-за изменения глубины адсорбционной ямы замедляют катализ (см. главу I). При этом может измениться и контролирующая стадия, так как для стадий с обычными переходными комплексами энергия активации падает с ростом теплоты адсорбции — а( ацс. [c.288]

    Гидрофильность, как и лиофильпооть вообще, определяется прежде всего величиной свободной энергии связи данного вещества или поверхности данного тела, напр, дисперсной фазы, с водой. Т. обр. гидрофильность можно оценить соответствующими тепловыми эффектами, измерения к-рых при различных т-рах позволяют с помощью методов химич. термодинамики вычислить свободную энергию связи. В этом смысле гидра гацию следова1го бы рассматривать как проявление гидрофильности. Обычно же гидрофильность характеризуют адсорбционной связью с водой, образованием с нею неопределенных соединений. Полная характеристика гидрофильности выражается распределением количества воды по величинам анергии связи. Для воды, адсорбционно связанной с единицей поверхности данного твердого тела, практически учитывают только энергию связи первого слоя молекул воды (мопомолекулярного слоя), так как энергия связи последующих слоев значительно меньше. Гидрофильность выражается, т. обр., дифференциальными теплотами смачивания данного тела водой на единицу его поверхности или теплотами адсорбции водяного пара. Для этого могут быть измерены интегральные теплоты смачивания или адсорбции при различных количествах адсорбционно связанной воды. [c.469]

    В случае м-гексана молекула слишком велика для того, чтобы ее можно было заключить в клатратную ячейку льда, и, конечно, образование клатратного соединения не наблюдается. При температурах ниже —35 °С адсорбция имеет нормальный характер теплота адсорбции не зависит от степени заполнения поверхности и близка к значению теплоты конденсации гексана в жидкое состояние [П]. Однако при температурах выше —35°С первая адсорбируемая порция гексана показывает относительно высокую теплоту адсорбции, которая понижается с ростом степени заполнения поверхности до значений, соответствующих теплоте конденсации объема. Исходя из этого, а также из соответствующих различий в энтропии адсорбции выше и ниже —35 °С, мы пришли к выводу, что н-гексан образует поверхностные клатратоподобные структуры. Молекула может находиться в созданной на поверхности ячейке примерно так, как это показано на рис. 5.3. Очень похожее поведение наблюдали Отвилл и сотр. [12] при адсорбции различных органических паров, включая алканы, на поверхности жидкой воды. [c.96]

    В 1917 г. Ленгмюром была дана определенная форма концепции хемосорбции. Выдвинутая Тейлором и в настоящее время достаточно подтвержденная гипотеза о том, что для перехода от физически к химически адсорбированному состоянию необходима энергия активации, привела непосредственно к исследованию вопроса, какие другие типы медленных процессов могут происходить в этих системах, к исследоваршю замены одного адсорбированного газа другим и разработке некоторых методов введения газа в субстрат, которое может легко контролироваться. Представления о том, что поверхность металлического субстрата можно рассматривать как щах.матную доску свободных валентностей, что испарение и конденсация на фиксированных участках являются независимыми процессами и что соседние молекулы не влияют на эти процессы, привели к первым попыткам кинетической обработки каталитических процессов, и наибольщее признание получила точка зрения, что при хемосорбц-ии в результате реакций радикалов образуются новые поверхностные соединения, т. е. поверхностные гидриды или металлорганические соединения. Результаты усовершенствования экспериментальной техники измерений теплот адсорбции заставили предположить, что эти постулаты вообще не могут быть правильными, и было обращено внимание на проверку каждого из них. В связи с проблемой поверхностной подвижности хемосорбированных частиц в свою очередь возникли следующие вопросы существует ли точка плавления или интервал плавления для хемосорбированного монослоя, равняется ли расстояние передвижения одному атомному радиусу или более, существует ли на кристаллической поверхности преимущественное направление для передвижения адсорбированных частиц, каков по величине период неподвижности между передвижениями. Мы также уверены, что по крайней мере во многих случаях теплота хемосорбции не постоянна, а падает с увеличением степени покрытия. Это явление привлекло внимание к таким представлениям, как гетерогенность поверхности, взаимодействие хемосорбированных радикалов или молекул поверхностных соединений друг с другом, и была постулирована возможность существования свободных валентностей, изменяющихся по силе при прогрессирующем образовании поверхностного соединения. [c.20]

    Если поверхностная плотность первого адсорбционного слоя становится достаточно высокой, то наступает полимолекулярная адсорбция с образованием второго и последующего адсорбционных слоев. Теплота адсорбции последующих слоев близка к теплоте испарения жидкости или превышает ее за счет поляризации молекул в первом слое и индуцированной поляризации в последующих слоях. При большой разнице в теплотах адсорбции первого и последующих адсорбционных слоев, что вероятно для катализаторов в каталитических реакциях, уравпеипе полимолекулярной адсорбции удовлетворительно аппроксимируется линейным уравнением БЭТ [89] V = Ут/[1— Р/Рз)], где У —объем адсорбированного сорбата, Ут — его объем для образования монослоя, Р — парциальное давление сорбата, Ра — давление насыщенного пара сорбата при температуре эксперимента (реакции). Расчеты показали, что для многих технически важных органических соединений и процессов при повышенных давлениях имеет место полимолекулярная адсорбция, и это необходимо учитывать при выводе кинетических уравнений соответствующих реакций. [c.23]

    С повышением температуры интенсивность теплового движения молекул растет и затрудняет их фиксацию на поверхности раздела фаз. Следовательно, с повышением температуры равновесие смещается в сторону десорбции, адсорбция уменьшается. Отсюда, согласно принципу Ле Шателье, следует неизбежный вывод адсорбция должна сопровождаться выделением теплоты, которая называется теплотой адсорбции. При физической адсорбции теплота адсорбции по величине того же порядка, что и теплота конденсации паров (2—4 ккал1моль) при хемосорбции теплота адсорбции гораздо больше и имеет порядок теплот образования химических соединений (десятки ктл/моль). [c.184]


Смотреть страницы где упоминается термин Теплота адсорбции образования хим. соединения : [c.69]    [c.59]    [c.116]    [c.127]    [c.490]    [c.104]    [c.98]    [c.98]    [c.260]    [c.14]    [c.405]    [c.115]    [c.154]    [c.222]    [c.59]   
Справочник инженера-химика Том 1 (1937) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Теплота образования

Теплота образования соединения

Теплота соединения



© 2024 chem21.info Реклама на сайте